

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	OpenLMI providers PROVIDERSVER documentation

OpenLMI

OpenLMI = Open Linux Management Infrastructure.

OpenLMI is open-source project aiming to improve management of Linux systems
using WBEM standards. We reuse many already available open-source WBEM
components, adding the missing ones and integrating them into one system
management solution.

In short, WBEM can be described as a remote API for system management.
See WBEM overview [http://www.openlmi.org/node/1785] for details.

Table of Contents

	OpenLMI Tools documentation
	LMIShell

	LMI metacommand

	OpenLMI Tools API reference

	OpenLMI server components
	Usage & Troubleshooting

	Account Provider

	Fan Provider

	Hardware Provider

	Journald Provider

	Locale Provider

	LogicalFile Provider

	Power Management

	Realmd Provider

	SELinux Provider

	Service Provider

	Software Provider

	SSSD Provider

	Storage Provider

	Networking Provider

	CIM classes

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

OpenLMI Tools documentation

OpenLMI Tools is a part of OpenLMI Project [http://www.openlmi.org/]. It is a collection of
client-side utilities for interacting with OpenLMI Providers.

It consists of LMIShell and LMI metacommand.

	LMIShell
	Startup

	Namespaces

	Classes

	Instances

	Instance Names

	Associated Objects

	Association Objects

	Indications

	Return Values

	Interactive Interface

	Builtin features

	LMI metacommand
	Usage

	Configuration

	Account command line reference

	Hardware command line reference

	Journald command line reference

	Locale command line reference

	Logical File command line reference

	Networking command line reference

	Power Management command line reference

	Realmd command line reference

	Service command line reference

	Software command line reference

	SSSD command line reference

	Storage command line reference

	System command line reference

	Command development

	OpenLMI Tools API reference
	LMIShell API reference

	LMI Scripts API reference

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

LMIShell

LMIShell provides a (non)interactive way how to access CIM objects provided
by OpenPegasus or sblim-sfcb broker. The shell is based on a python
interpreter and added logic, therefore what you can do in pure python, it
is possible in LMIShell. There are classes added to manipulate with CIM
classes, instance names, instances, etc. Additional classes are added to
fulfill wrapper pattern and expose only those methods, which are necessary
for the purpose of a shell.

Short example:

$ lmishell
> c = connect('localhost', 'root', 'password')
> for proc in c.root.cimv2.LMI_Processor.instances():
... print "Name:\t%s, Clock Speed:\t%s" % (proc.Name, proc.MaxClockSpeed)
...
Name: QEMU Virtual CPU version 1.6.2, Clock Speed: 2000
Name: QEMU Virtual CPU version 1.6.2, Clock Speed: 2000

	Startup

	Namespaces

	Classes

	Instances

	Instance Names

	Associated Objects

	Association Objects

	Indications

	Return Values

	Interactive Interface

	Builtin features

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Startup

By running the following, you will gain an interactive interface of the shell.
The LMIShell is waiting for the end of an input to quit – by hitting
<ctrl+d> you can exit from it:

$ lmishell
> <ctrl+d>
$

or:

$ lmishell
> quit()
$

Establish a connection

Following examples demonstrate, how to connect to a CIMOM by issuing a
connect() call.

Username/Password authentication

Common means of performing the authentication is done by providing a username
and password to connect() function. See the following example:

> c = connect("host", "username")
password: # <not echoed>
>

or:

> c = connect("host", "username", "password")
>

Unix socket

LMIShell can connect directly to the CIMOM using Unix socket. For this type of
connection, the shell needs to be run under root user and the destination
machine has to be either localhost, 127.0.0.1 or ::1. This type of
connection is supported by TOG-Pegasus and there needs to be a Unix socket file
present at /var/run/tog-pegasus/cimxml.socket. If the condition is not
met, classic username/password method will be used.

See following example:

> c = connect("localhost")
>

Credentials validation

Function connect() returns either LMIConnection object, if
the connection can be established, otherwise None is returned. Suppose, the
LMIShell is run in verbose mode (-v, --verbose, -m
or --more-verbose is used). See following example of creating a connection:

> # correct username or password
> c = connect("host", "username", "password")
INFO: Connected to host
> isinstance(c, LMIConnection)
True
> # wrong login username or password
> c = connect("host", "wrong_username", "wrong_password")
ERROR: Error connecting to host, <error message>
> c is None
True
>

NOTE: By default, LMIShell prints out only error messages, when calling a
connect(); no INFO messages will be print out. It is possible to
suppress all the messages by passing -q or --quiet).

Server’s certificate validation

When using https transport protocol, LMIShell tries to validate each
server-side certificate against platform provided CA trust store. It is
necessary to copy the server’s certificate from each CIMOM to the platform
specific trust store directory.

NOTE: It is possible to make LMIShell skip the certificate validation
process by lmishell -n or --noverify.

See following example:

$ lmishell --noverify
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Namespaces

Namespaces in CIM and LMIShell provide a natural way, how to organize all
the available classes and their instances. In the shell, they provide a
hierarchic access point to other namespaces and corresponding classes.

The root namespace plays a special role in the managed system; it is the
first entry point from the connection object and provides the access to other
clamped namespaces.

Available namespaces

To get a LMINamespace object for the root namespace of the managed
system, run following:

> root_namespace = c.root
>

To list all available namespace from the root one, run following code:

> c.root.print_namespaces()
...
> ns_lst = c.root.namespaces
>

If you want to access any namespace deeper (e.g. cimv2), run this:

> cimv2_namespace = c.root.cimv2
> cimv2_namespace = c.get_namespace("root/cimv2")
>

Available classes

Each namespace object can print its available classes. To print/get the list of
the classes, run this:

> c.root.cimv2.print_classes()
...
> classes_lst = c.root.cimv2.classes()
>

Queries

Using a LMINamespace object, it is possible to retrieve a list of
LMIInstance objects. The LMIShell supports 2 query languages:

	WQL

	CQL

Following code illustrates, how to execute WQL and CQL queries:

> instances_lst = namespace.wql("query")
> instances_lst = namespace.cql("query")
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Classes

Each class in LMIShell represents a class provided by a CIMOM. You can get a
list of its properties, methods, instances, instance names and ValueMap
properties. It is also possible to print a documentation string, create a new
instance or new instance name.

Getting a class object

To get a class which is provided by a broker, you can do following:

> cls = c.root.cimv2.ClassName
>

Fetching a class

Objects of LMIClass use lazy fetching method, because some methods
do not need the lmiwbem.CIMClass object.

To manually fetch the lmiwbem.CIMClass object, call following:

> cls.fetch()
>

The methods, which need the lmiwbem.CIMClass object to be fetched
from CIMOM, do this action automatically, without the need of calling
LMIClass.fetch() method by hand.

Class Methods

Following example illustrates, how to work with LMIClass methods:

> cls.print_methods()
...
> cls_method_lst = cls.methods()
>

Class Properties

To get a list of properties of a specific class, run following code:

> cls.print_properties()
...
> cls_property_lst = cls.properties()
>

Instances

Following part described basic work flow with LMIInstance and
LMIInstanceName objects.

Get Instances

Using a class object, you can access its instances. You can easily get a list
of (filtered) instances, or the first one from the list. The filtering is uses
input dictionary, if present, where the dictionary keys represent the instance
properties and the dictionary values represent your desired instance property
values.

To get LMIInstance object, execute the following example:

> inst = cls.first_instance()
> inst_lst = cls.instances()
>

Get Instance Names

The lmiwbem.CIMInstanceName objects clearly identify
lmiwbem.CIMInstance objects. LMIShell can retrieve
LMIInstanceName objects, by calling following:

> inst_name = cls.first_instance_name()
> inst_names_lst = cls.instance_names()
>

Filtering

Both methods LMIClass.instances() or LMIClass.instance_names()
can filter returned objects by their keys/values. The filtering is achieved by
passing a dictionary of {property : value} to the corresponding method. See
following example:

> inst_lst = cls.instances({"FilterProperty" : FilterValue})
> inst_names_lst = cls.instance_names({"FilterProperty" : FilterValue})
>

New Instance Name

LMIShell is able to create a new wrapped lmiwbem.CIMInstanceName, if
you know all the primary keys of a remote object. This instance name object can
be then used to retrieve the whole instance object.

See the next example:

> inst_name = cls({Property1 : Value1, Property2 : Value2, ...})
> inst = inst_name.to_instance()
>

Creating a new instance

LMIShell is able to create an object of specific class, if the provider support
this operation.

See the following example:

> cls.create_instance({"Property1" : Value1, "Property2" : Value2})
>

NOTE: Value can be a LMIInstance object, as well. LMIShell
will auto-cast such object.

ValueMap Properties

A CIM class may contain ValueMap properties (aliases for constant values) in
its MOF definition. These properties contain constant values, which can be
useful, when calling a method, or checking a returned value.

ValueMap properties are formed from 2 MOF properties of a class definition:

	Values – list of string names of the “constant” values

	ValueMap – list of values

Get ValueMap properties

To get a list of all available constants, their values, use the following
code:

> cls.print_valuemap_properties()
...
> valuemap_properties = cls.valuemap_properties()
...
> cls.PropertyValues.print_values()
...
>

NOTE: The suffix “Values” provides a way, how to access ValueMap
properties.

Get ValueMap property value

Following example shows, how to retrieve a constant value:

> constant_value_names_lst = cls.PropertyValues.values()
> cls.PropertyValues.ConstantValueName
ConstantValue
> cls.PropertyValues.value("ConstantValueName")
ConstantValue
>

Get ValueMap property value name

LMIShell can also return string representing constant value. See the following
code:

> cls.PropertyValue.value_name(ConstantValue)
'ConstantValueName'
>

Useful Properties

Following part describes few useful LMIClass properties.

Class Name

Every class object can return a name of the CIM class, see following:

> cls.classname
ClassName
>

Namespace

Every class belongs to certain namespace, to get a string containing the
corresponding namespace for each class, run following:

> cls.namespace
Namespace
>

Connection Object

This property returns a connection object, which was used to retrieve the
class (refer to Establish a connection). See next example:

> cls.connection
LMIConnection(URI='uri', user='user'...)
>

Wrapped Object

This property returns a wrapped lmiwbem object. See the example:

> instance.wrapped_object
CIMClass(u'ClassName', ...)
>

Documentation

To see a class documentation (based on MOF definitions), run:

> cls.doc()
... pretty verbose output displayed in a pages (can be modified by
setting environment variable PAGER) ...
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Instances

Each instance in LMIShell represents a CIM instance provided by a CIMOM.

Operations, that can be done within a LMIInstance:

	get and set properties

	list/print/execute its methods

	print a documentation string

	get a list of associated objects

	get a list of association objects

	push (update) a modified object to CIMOM

	delete a single instance from the CIMOM.

Instance Methods

To get a list of methods, run following:

> instance.print_methods()
...
> method_lst = instance.methods()
>

To execute a method within an object, run this:

> instance.Method(
... {"Param1" : value1,
... "Param2" : value2, ...})
LMIReturnValue(
 rval=ReturnValue,
 rparams=ReturnParametersDictionary,
 errorstr="Possible error string"
)
>

NOTE: Instances do not auto-refresh after a method calls. It is
necessary to perform this operation by hand (See Instance refreshing).

To get the result from a method call, see following:

> rval, rparams, errorstr = instance.Method(
... {"Param1" : value1,
... "Param2" : value2, ...})
>

The tuple in the previous example will contain return value of the method call
(rval), returned parameters (rparams) and possible error string
(errorstr).

Synchronous methods

LMIShell can perform synchronous method call, which means, that the LMIShell is
able to synchronously wait for a Job object to change its state to Finished
state and then return the job’s return parameters. LMIShell can perform the
synchronous method call, if the given method returns a object of following
classes:

	LMI_StorageJob

	LMI_SoftwareInstallationJob

	LMI_SoftwareVerificationJob

	LMI_NetworkJob

LMIShell first tries to use indications as the waiting method. If it fails,
then it uses polling method instead.

Following example illustrates, how to perform a synchronous method call:

> rval, rparams, errorstr = instance.SyncMethod(
... {"Param1" : value1,
... "Param2" : value2, ...})
>

NOTE: See the prefix Sync of a method name.

When a synchronous method call is done:

	rval will contain the job’s return value

	rparams will contain the job’s return parameters

	errorstr will contain job’s possible error string

It is possible to force LMIShell to use only polling method, see the next
example:

> rval, rparams, errorstr = instance.SyncMethod(
... {"Param1" : value1,
... "Param2" : value2, ...},
... PreferPolling=True)
>

Signal handling

LMIShell can properly handle SIGINT and SIGTERM, which instruct the shell
to cancel the synchronous call. When such signal is received, the background
job, for which the LMIShell is waiting, will be asked to terminate, as well.

Instance Properties

To get a list of properties, see following:

> instance.print_properties()
...
> instance_prop_lst = instance.properties()
>

It is possible to access an instance object properties. To get a property, see the
following example:

> instance.Property
PropertyValue
>

To modify a property, execute following:

> instance.Property = NewPropertyValue
> instance.push()
LMIReturnValue(rval=0, rparams={}, errorstr="")
>

NOTE: If you change an instance object property, you have to execute a
LMIInstance.push() method to propagate the change to the CIMOM.

ValueMap Parameters

A CIM Method may contain ValueMap parameters (aliases for constant values) in
its MOF definition.

To access these parameters, which contain constant values, see following code:

> instance.Method.print_valuemap_parameters()
...
> valuemap_parameters = instance.Method.valuemap_parameters()
>

Get ValueMap parameter value

By using a ValueMap parameters, you can retrieve a constant value defined in
the MOF file for a specific method.

To get a list of all available constants, their values, use the following
code:

> instance.Method.ParameterValues.print_values()
...
>

NOTE: The suffix Values provides a way, how to access ValueMap parameters.

To retrieve a constant value, see the next example:

> constant_value_names_lst = instance.Method.ParameterValues.values()
> instance.Method.ParameterValues.ConstantValueName
ConstantValue
> instance.Method.ParameterValues.value("ConstantValueName")
ConstantValue
>

Get ValueMap parameter

Method can also contain a mapping between constant property name and
corresponding value. Following code demonstrates, how to access such
parameters:

> instance.Method.ConstantValueName
>

Get ValueMap parameter value name

LMIShell can also return string representing constant value. See the following
code:

> instance.Method.ParameterValue.value_name(ConstantValue)
ConstantValueName
>

Instance refreshing

Local objects used by LMIShell, which represent CIM objects at CIMOM side, can
get outdated, if such object changes while working with LMIShell’s one.

To update object’s properties, methods, etc. follow the next example:

> instance.refresh()
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

Instance deletion

A single instance can be removed from the CIMOM by executing:

> instance.delete()
True
>

NOTE: After executing the LMIInstance.delete() method, all the
object properties, methods will become inaccessible.

Deletion of the instance can be verified by:

> instance.is_deleted
True
>

Documentation

For an instance object, you can also use a documentation method, which will
display verbose information of its properties and values.

See next example:

> instance.doc()
... pretty verbose output displayed in a pages (can be modified by
setting environment variable PAGER) ...
>

MOF representation

An instance object can also print out its MOF representation. This can be
achieved by running:

> instance.tomof()
... verbose output of the instance in MOF syntax ...
>

Useful Properties

Following part describes LMIInstance useful properties.

Class Name

Each instance object provide a property, that returns its class name. To get a
string of the class name, run following:

> instance.classname
ClassName
>

Namespace

Each instance object also provides a property, that returns a namespace name.
To get a string of the namespace name, run following:

> instance.namespace
Namespace
>

Path

To retrieve a unique, wrapped, identification object for the instance,
LMIInstanceName, execute following:

> instance.path
LMIInstanceName(classname="ClassName"...)
>

Connection Object

This property returns a connection object, which was used to retrieve the
instance (refer to Establish a connection). See next example:

> instance.connection
LMIConnection(URI='uri', user='user'...)
>

Wrapped Object

This property returns a wrapped lmiwbem object. See the example:

> instance.wrapped_object
CIMInstance(classname=u'ClassName', ...)
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Instance Names

LMIInstanceName is a object, which holds a set of primary keys and
their values. This type of object exactly identifies an instance.

Key properties

To get a list of key properties, see following example:

> instance_name.print_key_properties()
...
> instance_name.key_properties()
...
> instance_name.SomeKeyProperty
...
>

Instance Names deletion

A single instance can be removed from the CIMOM by executing:

> instance_name.delete()
True
>

NOTE: After executing the LMIInstanceName.delete() method, all
the object key properties, methods will become inaccessible.

Deletion of the instance can be verified by:

> instance_name.is_deleted
True
>

Conversion to a LMIInstance

This type of object may be returned from a method call. Each instance name can
be converted into the instance, see next example:

> instance = instance_name.to_instance()
>

Useful Properties

Following part describes LMIInstanceName useful properties.

Class Name

The property returns a string representation of the class name. See next
example:

> instance_name.classname
ClassName
>

Namespace

The property returns a string representation of namesapce. See next example:

> instance_name.namespace
Namespace
>

Host Name

This property returns a string representation of the host name, where the CIM
instance is located.

> instance_name.hostname
Hostname
>

Connection Object

This property returns a connection object, which was used to retrieve the
instance name (refer to Establish a connection). See next example:

> instance.connection
LMIConnection(URI='uri', user='user'...)
>

Wrapped Object

This property returns a wrapped lmiwbem object. See the example:

> instance.wrapped_object
CIMInstanceName(classname='ClassName', keybindings=NocaseDict(...), host='hostname', namespace='namespace')
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Associated Objects

CIM defines an association relationship between managed objects. Following text
describes the means of retrieving associated objects within a given one.

Associated Instances

To get a list of associated LMIInstance objects with a given
object, run following:

> associated_objects = instance.associators(
... AssocClass=cls,
... ResultClass=cls,
... ResultRole=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
> first_associated_object = instance.first_associator(
... AssocClass=cls,
... ResultClass=cls,
... ResultRole=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst))

NOTE: Refer to LMIInstance.associators() and
LMIInstance.first_associator().

Associated Instance Names

To get a list of associated LMIInstanceName objects with a given
object, run following:

> associated_object_names = instance.associator_names(
... AssocClass=cls,
... ResultClass=cls,
... Role=role,
... ResultRole=result_role)
> first_associated_object_name = instance.first_associator_name(
... AssocClass=cls,
... ResultClass=cls,
... Role=role,
... ResultRole=result_role)
>

NOTE: Refer to LMIInstance.associator_names() and
LMIInstance.first_associator_name().

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Association Objects

CIM defines an association relationship between managed objects. Following text
describes the means of retrieving association objects within a given one. An
association object is the object, which defines the relationship between two
other objects.

Association Instances

To get association LMIInstance objects that refer to a particular
target object, run following:

> association_objects = instance.references(
... ResultClass=cls,
... Role=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
> first_association_object = instance.first_reference(
... ResultClass=cls,
... Role=role,
... IncludeQualifiers=include_qualifiers,
... IncludeClassOrigin=include_class_origin,
... PropertyList=property_lst)
>

NOTE: Refer to LMIInstance.references() and
LMIInstance.first_reference()

Association Instance Names

To get a list of association LMIInstanceName objects, run
following:

> association_object_names = instance.reference_names(
... ResultClass=cls,
... Role=role)
> first_association_object_name = instance.first_reference_name(
... ResultClass=cls,
... Role=role)
>

NOTE: Refer to LMIInstance.reference_names() and
LMIInstance.first_reference_name().

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Indications

Indication is a reaction to some specific event that occurs in response to a
particular change in data. LMIShell can perform an indication subscription, by
which we can receive such event responses.

Indication handler

The first step is to set up an indication handler. This is a routine that will
be triggered when the OpenLMI sends us an indication for which we have
registered (see below). It is important to set up the handler first so that we
can generate a unique registration name and avoid conflicts with other clients
that may wish to register for the same indication. The indication handler may
be part of the same process that will initiate the provider registration or it
may be an independent script, but the unique registration name must be
acquired first in either case.

The following example describes creating a handler and a listener for an
indication:

> def handler(indication, arg1, arg2, **kwargs):
... """
... Indication handler.
...
... :param CIMInstance indication: exported lmiwbem.CIMInstance
... :param arg1: ...
... :param arg2: ...
... ...
... """
... do_something_with(indication)
> listener = LMIIndicationListener()
> unique_name = listener.add_handler("indication-name-XXXXXXXX", handler, arg1, arg2, **kwargs)
> listener.start(listening_port, cert_file, key_file)
>

The first argument of the handler is a lmiwbem.CIMInstance object;
the exported indication. The other arguments are handler-specific; Any number of
arguments may be specified as necessary; those arguments must then be provided
to the LMIIndicationListener.add_handler() method of the listener. In
the above example, the string used in the
LMIIndicationListener.add_handler() call is specified with, at least,
eight “X” characters. Those characters will be replaced by unique string,
which is generated by the listeners to avoid a handler name clash. Use of this
uniqueness capability is not mandatory but is highly recommended. The
substituted name is returned as the result of the
LMIIndicationListener.add_handler() method so it can be used later.

When all necessary handlers are registered, the listener can be started by
calling LMIIndicationListener.start(), which takes up to three
arguments, one mandatory (port) and two optional when using SSL (cert_file and
key_file; paths to X509 certificate and private key in PEM format).

Subscribing to an indication

The LMIShell is capable of creating an indication subscription with the filter and
handler objects in one single step. This example is based upon sblim-cmpi-base
provider.

How to subscribe to an indication, please, follow the next example:

> c = connect("host", "privileged_user", "password")
> c.subscribe_indication(
... QueryLanguage="WQL",
... Query='SELECT * FROM CIM_InstModification',
... Name=unique_name,
... CreationNamespace="root/interop",
... SubscriptionCreationClassName="CIM_IndicationSubscription",
... FilterCreationClassName="CIM_IndicationFilter",
... FilterSystemCreationClassName="CIM_ComputerSystem",
... FilterSourceNamespace="root/cimv2",
... HandlerCreationClassName="CIM_IndicationHandlerCIMXML",
... HandlerSystemCreationClassName="CIM_ComputerSystem",
... # destination computer, where the indications will be delivered
... Destination="http://192.168.122.1:%d" % listening_port
...)
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

The previous code can be simplified by omitting some optional parameters:

	QueryLanguage: DMTF:CQL

	CreationNamespace: root/interop

	SubscriptionCreationClassName: CIM_IndicationSubscription

	FilterCreationClassName: CIM_IndicationFilter

	FilterSystemCreationClassName: CIM_ComputerSystem

	FilterSourceNamespace: root/cimv2

	HandlerCreationClassName: CIM_IndicationHandlerCIMXML

	HandlerSystemCreationClassName: CIM_ComputerSystem

Simplified subscription:

> c = connect("host", "privileged_user", "password")
> c.subscribe_indication(
... Name=unique_name,
... Query='SELECT * FROM CIM_InstModification',
... Destination="http://192.168.122.1:5988"
...)
LMIReturnValue(rval=True, rparams={}, errorstr="")
>

NOTE: Make sure, that you are logged-in with an account, which has write
privileges in the root/interop namespace.

In this state, we have a indication subscription created.

Auto-delete subscriptions

By default all subscriptions created by LMIShell will be auto-deleted, when
the shell quits. To change this behavior, you can pass Permanent=True
keyword parameter to LMIConnection.subscribe_indication() call, which
will prevent LMIShell from deleting the subscription.

Listing subscribed indications

To list all the subscribed indications, run following code:

> c.print_subscribed_indications()
...
> subscribed_ind_lst = c.subscribed_indications()
>

Unsubscribing from an indication

By default, the subscriptions created by the shell are auto-deleted, when the
shell quits.

If you want to delete the subscriptions sooner, you can use the following methods:

To unsubscribe from a specific indication:

> c.unsubscribe_indication(unique_name)
LMIReturnValue(rval=True, rparams={}, errorstr="")

Or to unsubscribe from all indications:

> c.unsubscribe_all_indications()
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Return Values

Method calls return an object, that represents a return value of the given method. This
type of object can be converted into python’s typical 3-item tuple and consists of 3
items:

	rval – return value

	rparams – return value parameters

	errorstr – error string, if any

Following example shows, how to use and convert LMIReturnValue object to
tuple:

> return_value = instance.MethodCall()
> return_value.rval
0
> return_value.rparams
[]
> return_value.errorstr

> (rval, rparams, errorstr) = return_value
> rval
0
> rparams
[]
> errorstr

>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Interactive Interface

This section covers some features, that are present in the interactive
interface or are related to the LMIShell.

History

When using the interactive interface of the LMIShell, you can use up/down
arrows to navigate in history of all the commands you previously used.

Clearing the history

If you want to clear the history, simply run:

> clear_history()
>

Reversed search

The LMIShell can also search in the history of commands by hitting <ctrl+r>
and typing the command prefix (as your default shell does). See following:

(reverse-i-search)'connect': c = connect("host", "username")

Exception handling

Exception handling by the shell can be turned off – since then, all the
exceptions need to be handled by your code. By default, LMIShell handles
the exceptions and uses C-like return values (See section Return Values)
To allow all the exceptions to propagate to your code, run this:

> use_exceptions()
>

To turn exception handling by the shell back on, run this:

> use_exceptions(False)
>

Cache

The LMIShell’s connection objects use a temporary cache for storing CIM class
names and CIM classes to save network communication.

The cache can be cleared, see following example:

> c.clear_cache()
>

The cache can be also turned off, see next example:

> c.use_cache(False)
>

Tab-completion

Interactive interface also supports tab-completion for basic programming
structures and also for CIM objects (such as namespace, classes, methods and
properties completion, etc).

Following code shows few examples:

> c = conn<tab>
> c = connect(

> lmi_service_class = c.root.c<tab>
> lmi_service_class = c.root.cimv2
> lmi_service_class = c.root.cimv2.lmi_ser<tab>
> lmi_service_class = c.root.cimv2.LMI_Service

> sshd_service = lmi_s<tab>
> sshd_service = lmi_service_class

> sshd_service.Stat<tab>
> sshd_service.Status

> sshd_service.Res<tab>
> sshd_service.RestartService(

> lmi_service_class.Req<tab>
> lmi_service_class.RequestedStateChangeValues
> lmi_service_class.RequestesStateChangeValues.Sh<tab>
> lmi_service_class.RequestedStateChangeValues.Shutdown
> # similar for method calls, as well
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMIShell

Builtin features

This section describes built-in features of the LMIShell.

Configuration file

The LMIShell has a tiny configuration file with location ~/.lmishellrc.
In configuration file, you can set these properties:

location of the history used by interactive mode
history_file = "~/.lmishell_history"
length of history file, -1 for unlimited
history_length = -1
default value for cache usage
use_cache = True
default value for exceptions
use_exceptions = False
default value for indication_cert_file
indication_cert_file = ""
default value for indication_key_file
indication_key_file = ""

NOTE: indication_cert_file and indication_key_file are
used by Synchronous methods, if the given method waits for an
indication using LMIIndicationListener. Both configuration options
may contain path to X509 certificate and private key in PEM format,
respectively. If the configuration options are not set, SSL connection will not
be used.

Inspecting a script

If you want to inspect a script after it has been interpreted by the LMIShell,
run this:

$ lmishell -i some_script.lmi
some stuff done
>

NOTE: Prefered extension of LMIShell’s scripts is .lmi.

LMI Is Instance

LMIShell is able to verify, if a LMIInstance or
LMIInstanceName object passed to lmi_isinstance() is a
instance of LMIClass.

The function is similar to python’s isinstance():

> lmi_isinstance(inst, cls)
True/False
>

LMI Associators

LMIShell can speed up associated objects’ traversal by manual joining, instead
of calling LMIInstance.associators(). The call needs to get a list of
association classes, for which the referenced objects will be joined. The
list must contain objects of LMIClass.

See following example:

> associators = lmi_associators(list_of_association_classes)
>

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

LMI metacommand

Is a command line interface for OpenLMI Providers sitting on top of LMIShell.
It provides an easy to use interface for system management through modular
commands. These dynamically extend the functionality of LMI metacommand.

Short example:

$ lmi -h myhost.example.org storage fs create --label=opt-root ext4 /dev/vda5

Contents:

	Usage

	Configuration

	Account command line reference

	Hardware command line reference

	Journald command line reference

	Locale command line reference

	Logical File command line reference

	Networking command line reference

	Power Management command line reference

	Realmd command line reference

	Service command line reference

	Software command line reference

	SSSD command line reference

	Storage command line reference

	System command line reference

	Command development

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Usage

LMI metacommand is a command line utility build on top of client-side
libraries. It can not do much on its own. Its functionality is extended by
commands that are installed separately. Each command operates on a set of
providers that need to be installed on managed machine. Commands can be invoked
directly from shell or within interactive mode.

Running from command line

It can run single command given on command line like this:

lmi -h ${hostname} service list --all

Getting help

For detailed help run:

lmi --help

To get a list of available commands with short descriptions:

lmi help

For help on a particular registered command:

lmi help service

Interactive mode

Or it can be run in interactive mode when command is omitted:

$ lmi -h ${hostname}
lmi> help
...
lmi> sw search django
...
lmi> sw install python-django
...
lmi> exit

help command is always your good friend. Following two lines gets you the
same help message:

lmi> help storage raid
...
lmi> storage raid --help
...

Built-in commands

Interactive mode comes with few special commands not available from command
line. To get their list, type:

lmi> : help

They are prefixed with : and optional space. Currently only namespace nesting
commands are supported. Those are :cd, :.. and :pwd.

They work as expected:

lmi> :pwd # top-level namespace
/lmi
lmi> :cd storage # you can do storage specific stuff here
>storage> :pwd
/lmi/storage
>storage> :cd raid # we don't care about anything but raid
>>raid> :pwd
/lmi/storage/raid
>>raid> :cd /lmi/sw # let's manage packages now
>sw> :..
lmi>

Static commands

Aren’t prepended with : and except for help are again available only in
interactive mode.

	EOF
	Same as hitting ^D. If some nested into some command’s
namespace, it will map to :cd .. and parent namespace will
become active. If the top-level namespace is active, program
will exit.

	exit
	Exits immediately. It accepts optional exit code as an argument.

	help
	Lists available commands. Accepts command path as an optional
argument.

Extending metacommand

In order to make the LMI metacommand useful, you’ll need to install some
commands. If you run Fedora, the easiest way to get them is with your favorite
package manager:

sudo dnf install 'openlmi-scripts-*'

Note

On RHEL you’ll need to add EPEL [https://fedoraproject.org/wiki/EPEL] to your repositories before installing
them with yum.

They will be automatically discovered by LMI metacommand. You can ensure their presence with this simple test:

$ lmi help
Commands:
 file - File and directory management functions.
 group - POSIX group information and management.
 help - Print the list of supported commands with short description.
 hwinfo - Display hardware information.
 journald - Test for provider version requirements
 locale - System locale management.
 net - Networking service management.
 power - System power state management.
 service - System service management.
 sssd - SSSD system service management.
 storage - Basic storage device information.
 sw - System software management.
 system - Display general system information.
 user - POSIX user information and management.

For more informations about particular command type:
 help <command>

As Python eggs

They may be installed on any distribution. Go for them also if you want to be
more up to date. They are available for download from PyPI [https://pypi.python.org/pypi?%3Aaction=search&term=openlmi-scripts*&submit=search]. The easiest way
to install them is with pip (shipped with python-pip package):

pip search openlmi-scripts
pip install --user openlmi-scripts-{hardware,system,service,storage}

Bleeding edge

Commands are available from our git repository [https://github.com/openlmi/openlmi-scripts]. Follow instructions there to
install the most up to date versions.

Documentation

Check out documentation of currently implemented commands.

	Account command line reference

	Hardware command line reference

	Journald command line reference

	Locale command line reference

	Logical File command line reference

	Networking command line reference

	Power Management command line reference

	Realmd command line reference

	Service command line reference

	Software command line reference

	SSSD command line reference

	Storage command line reference

	System command line reference

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Configuration

LMI metacommand has the main configuration file located in:

/etc/openlmi/scripts/lmi.conf

User can have his own configuration file taking precedence over anything in
global one above:

$HOME/.lmirc

Configuration is written in INI-like configuration files. Please refer to
ConfigParser [http://docs.python.org/2/library/configparser.html]‘s documentation for details.

Follows a list of sections with their list of options. Most of the options
listed here can be overridden with command line parameters.

See also

configuration

Section [Main]

	CommandNamespace : string

	Python namespace, where command entry points will be searched for.

Defaults to lmi.scripts.cmd.

	Trace : boolean

	Whether the exceptions should be logged with tracebacks.

Defaults to False.

Can be overridden with --trace and --notrace options on
command-line.

Note

For most exceptions generated by scripts a Verbosity option
needs to be highest as well for tracebacks to be printed.

	Verbosity: integer

	A number within range -1 to 2 saying, how verbose the output shall be. This
differs from log_level, which controls the logging messages written to
file. If logging to console is enabled it sets the minimum severity level.
-1 Suppresses all messages except for errors. 0 shows warnings, 1 info
messages and 2 enables debug messages. This option also affects the
verbosity of commands, making them print more information to stdout.

Defaults to 0.

Can be overridden with -v and -q flags on command-line.

Section [CIM]

	Namespace : string

	Allows to override default CIM namespace, which will be passed to
script library functions.

Defaults to root/cimv2.

Section [SSL]

	VerifyServerCertificate : boolean

	Whether to verify server-side certificate, when making secured
connection over https.

Defaults to True.

Can be overridden with -n | --noverify flag on command-line.

Section [Format]

	HumanFriendly : boolean

	Whether to print values in human readable forms (e.g. with units).

Defaults to False.

Can be overridden with -H | --human-frienly flag on command-line.

	ListerFormat : one of {csv, table}

	What format to use, when listing tabular data. csv format allows for
easy machine parsing, the second one is more human friendly.

Defaults to table.

Can be overridden with -L | --lister-format option on command line.

	NoHeadings : boolean

	Whether to suppress headings (column names) when printing tables.

Defaults to False.

Can be overridden with -N | --no-headings option on command line.

Section [Log]

	Level : one of {DEBUG, INFO, WARNING, ERROR, CRITICAL}

	Minimal severity level of messages to log. Affects only logging to a
file. See the main_verbosity option controlling console logging level.

Defaults to ERROR.

	LogToConsole : boolean

	Whether the logging to console is enabled.

Defaults to True

On command-line the same could be achieved by redirecting stderr to
/dev/null.

	ConsoleFormat : string

	Format string used when logging to a console. This applies to warnings and
more severe messages. Refer to Format String in python’s documentation for
details.

Defaults to %(levelname)s: %(message)s.

	ConsoleInfoFormat : string

	Format string used when logging to a console. Applies to info and debug
messages. Refer to Format String in python’s documentation for details.

Defaults to %(message)s.

	FileFormat : string

	Format string used, when logging to a console. This applies only when
OutputFile is set (see below). Refer to Format String in python’s
documentation for details.

	Defaults to

	%(asctime)s:%(levelname)-8s:%(name)s:%(lineno)d - %(message)s

	OutputFile : string

	Allows to set a path to file, where messages will be logged. No log
file is written at default.

Defaults to empty string.

Can be overridden on command line with --log-file option.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Account command line reference

These commands allow to query and manage users and groups.

user

POSIX user information and management.

Usage:

lmi user list

lmi user show [<user> ...]

lmi user create <name> [options]

lmi user delete [–no-delete-home] [–no-delete-group] [–force] <user> ...

Commands:

	list

	Prints a list of users.

	show

	Show detailed information about user. If no users are provided,
all of them are displayed.

	create

	Creates a new user. See Create options below for options
description.

	delete

	Delete specified user (or user list). See Delete options
below for options description.

Create options:

	-c gecos, –gecos=gecos

	Set the GECOS field to gecos.

	-d dir, –directory=dir

	Set the user’s home directory to dir.
If this option is not set, a default value
is used.

	-s shell, –shell=shell

	Set user’s login shell to shell. If this
option is not set, a default value is used.

	-u uid, –uid=uid

	Use user ID uid for the newly created user.
If this option is not set, a default value
is used.

	-g gid, –gid=gid

	Set user’s primary group ID to gid. If this
option is not set, a default value is used.

	-r, –reserved

	The user is a system user.
Implies the -M option.

	-M, –no-user-home

	Don’t create a home directory.

	-n, –no-user-group

	Don’t create a primary group for user.

	-p, –password=pwd

	Set user’s password to ‘pwd’.

	-P, –plain-password

	If set, the password set in ‘-p’ parameter
is plain text. Otherwise, it is already
encrypted by supported hash algorithm.
See crypt(3).

Delete options:

	–no-delete-home

	Do not remove home directory.

	–no-delete-group

	Do not remove users primary group.

	–force

	Remove home directory even if the user is not owner.

group

POSIX group information and management.

Usage:

lmi group list [<group> ...]

lmi group create [–reserved] [–gid=gid] <group>

lmi group delete <group>

lmi group listuser [<group>] ...

lmi group adduser <group> <user> ...

lmi group removeuser <group> <user> ...

Commands:

	list

	List groups. If no groups are given, all are listed.

	create

	Creates a new group.

	delete

	Deletes a group.

	listuser

	List a users in a group or in a list of groups.

	adduser

	Adds a user or a list of users to the group.

	removeuser

	Removes a user or a list of users from the group.

Options:

	-r, –reserved

	Create a system group.

	-g, –gid=gid

	GID for a new group.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Hardware command line reference

This command can display various hardware information.

hwinfo

Display hardware information.

Usage:

lmi hwinfo [all]

lmi hwinfo system

lmi hwinfo motherboard

lmi hwinfo cpu

lmi hwinfo memory

Commands:

	all

	Display all available information.

	system

	Display system information.

	motherboard

	Display motherboard information.

	cpu

	Display processor information.

	memory

	Display memory information.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Journald command line reference

This command allows to query and watch system logs through journald service. It
can also log custom messages.

journald

Journald message log management.

Usage:

lmi journald list [(–reverse | –tail)]

lmi journald logger <message>

lmi journald watch

Commands:

	list

	Lists messages logged in the journal

	logger

	Logs a new message in the journal

	watch

	Watch for newly logged messages

Options:

	–reverse

	List messages from newest to oldest

	–tail

	List only the last 50 messages

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Locale command line reference

This command allows to display and set system locale.

locale

System locale management.

Usage:

lmi locale show [(–locale | –vc-keyboard | –x11-keymap)]

lmi locale set-locale (<locale> <value>) ...

lmi locale set-vc-keyboard [–convert] <keymap> [<keymap-toggle>]

lmi locale set-x11-keymap [–convert] <layouts> [<model> <variant> <options>]

Commands:

	show

	Show detailed information about system locale
cathegory (locale variables, key mapping on the
virtual console, default key mapping of
the X11 server).
If no cathegory is provided via option, all
locale information is displayed.

	set-locale

	Set locale variables.

	set-vc-keyboard

	Set the key mapping on the virtual console.

	set-x11-keymap

	Set the default key mapping of the X11 server.

Show options:

	–locale

	Display locale variables.

	–vc-keyboard

	Display key mapping on the virtual console.

	–x11-keymap

	Display default key mapping of the X11 server.

Set options:

	–convert

	Try to set the nearest console keyboard/X11 keyboard
setting for the chosen X11 keyboard/console keyboard
setting.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Logical File command line reference

This command allows to query file system structure. It can also create and
delete empty directories – mount points.

file

File and directory management functions.

Usage:

lmi file list <directory> [<depth>]

lmi file createdir <directory>

lmi file deletedir <directory>

lmi file show <target>

Commands:

	list

	List a directory. When depth is specified, at most depth levels
will be listed recursively.

The files and directories are listed in a tree-like structure.

	Possible listed file types are:

	
	F : Regular data file.

	Dev : Device file. Can be either block or character device.

	Dir : Directory.

	P : Pipe file.

	L : Symbolic link.

	S : Unix socket.

	createdir

	Create a directory. The parent directory must exist.

	deletedir

	Delete a directory. The directory must be empty.

	show

	Show detailed information about target. Target can be any file
on the remote system.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Networking command line reference

This command allows to manage networking devices and their configuration.

net

Networking service management.

Usage:

lmi net device (–help | show [<device_name> ...] | list [<device_name> ...])

lmi net setting (–help | <operation> [<args>...])

lmi net activate <caption> [<device_name>]

lmi net deactivate <caption> [<device_name>]

lmi net enslave <master_caption> <device_name>

lmi net address (–help | <operation> [<args>...])

lmi net route (–help | <operation> [<args>...])

lmi net dns (–help | <operation> [<args>...])

Commands:

	device

	Display information about network devices.

	setting

	Manage the network settings.

	activate

	Activate setting on given network device.

	deactivate

	Deactivate the setting.

	enslave

	Create new slave setting.

	address

	Manipulate the list of IP addresses on given setting.

	route

	Manipulate the list of static routes on given setting.

	dns

	Manipulate the list of DNS servers on given setting.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Power Management command line reference

This command allows to display and control system power states.

power

System power state management.

Usage:

lmi power list

lmi power suspend

lmi power hibernate

lmi power reboot [–force]

lmi power poweroff [–force]

Commands:

	list

	Prints a list of available power states.

	suspend

	Suspend the system (suspend to RAM).

	hibernate

	Hibernate the system (suspend to disk).

	reboot

	Shutdown and reboot the system (–force will skip shutdown of running services).

	poweroff

	Shutdown the system (–force will skip shutdown of running services).

Options:

	–force

	Skip shutting down services first

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Realmd command line reference

This command allows to join or leave AD or Kerberos domain.

realmd

Manage AD or Kerberos domain membership.

Usage:

lmi realmd [show]

lmi realmd join -u <user> [-p <password>] -d <domain>

lmi realmd leave -u <user> [-p <password>] -d <domain>

Commands:

	show

	Show joined domain.

	join

	Join the given domain.

	leave

	Leave the given domain.

Options:

	-u, –user

	The username to be used when authenticating to the domain.

	-p, –password

	Optional password for the authentication. If omitted you
will be prompted for one.

	-d, –domain

	The domain to be joined/left.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Service command line reference

This command allows to list and manage system services.

service

System service management.

Usage:

lmi service list [(–enabled | –disabled)]

lmi service show <service>

lmi service start <service>

lmi service stop <service>

lmi service enable <service>

lmi service disable <service>

lmi service restart [–try] <service>

lmi service reload <service>

lmi service reload-or-restart [–try] <service>

Commands:

	list

	Prints a list of services. Only enabled services are
printed at default.

	show

	Show detailed information about service.

	start

	Starts a service.

	stop

	Stops the service.

	restart

	Restarts the service.

	reload

	Ask the service to reload its configuration.

reload-or-restart

Reload the service if it supports it. If not, restart it
instead.

Options:

	–enabled

	List only enabled services.

	–disabled

	List only disabled services.

	–try

	Whether to abandon the operation if the service is not running.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Software command line reference

This command allows to list and manage rpm packages and repositories.

sw

System software management.

Usage:

lmi sw search [(–repoid <repository>)] [–allow-duplicates] <package>...

lmi sw list (–help | <what> [<args>...])

lmi sw show (–help | <what> [<args>...])

lmi sw install [–force] [–repoid <repository>] <package> ...

lmi sw install –uri <uri>

lmi sw update [–force] [–repoid <repository>] <package> ...

lmi sw remove <package> ...

lmi sw verify <package> ...

lmi sw enable <repository> ...

lmi sw disable <repository> ...

Commands:

	list

	List various information about packages, repositories or
files.

	show

	Show detailed informations about package or repository.

	install

	Install packages on system. See below, how package can be
specified. Installation from URI is also supported, it must
be prefixed with –uri option.

	update

	Update package.

	remove

	Remove installed package.

	verify

	Verify package. Files that did not pass the verification are
listed prefixed with a sequence of characters, each
representing particular attribute, that failed. Those are:

	S file Size differs

	M Mode differs (includes permissions and file type)

	5 digest (formerly MD5 sum) differs

	D Device major/minor number mismatch

	L readLink(2) path mismatch

	U User ownership differs

	G Group ownership differs

	T mTime differs

	P caPabilities differ

	enable

	Enable one or more repositories.

	disable

	Disable one or more repositories.

Options:

	–force

	Force installation. This allows to install package already
installed – make a reinstallation or to downgrade package
to older version.

–repoid <repository>

Select a repository, where the given package will be
searched for.

	–uri <uri>

	Operate upon an rpm package available on remote system
through http or ftp service.

	–installed

	Limit the query only on installed packages.

	–help

	Get a detailed help for subcommand.

Specifying <package>:

Package can be given in one of following notations:

	<name>

	<name>.<arch>

	<name>-<version>-<release>.<arch> # nvra

	<name>-<epoch>:<version>-<release>.<arch> # nevra

	<epoch>:<name>-<version>-<release>.<arch> # envra

Bottom most notations allow to precisely identify particular package.

sw list

List packages, repositories or files.

Usage:

lmi sw list [all] [–allow-duplicates]

lmi sw list installed

lmi sw list available [–repoid <repository>] [–allow-duplicates]

lmi sw list repos [–disabled | –all]

lmi sw list files [-t <file_type>] <package>

Commands:

	all

	
	List installed and available packages.

	installed

	
	List installed packages.

	available

	
	List available packages.

	repos

	
	List repositories. Only enabled ones are listed by default.

	files

	
	List files belonging to a package.

Options:

	–allow-duplicates

	Print all possible versions of package found.
Normally only the newest version is shown.

	–repoid <repository>

	List just packages available in given <repository>.

	–all

	List all repositories.

	–disabled

	List only disabled repositories.

-t –type (file | directory | device | symlink | fifo)

List only particular file type.

sw show

Show details of package or repository.

Usage:

lmi sw show pkg [–installed | –repoid <repository>] <package>

lmi sw show repo <repository>

Options:

	–installed

	Do not search available packages. This speeds up
the operation when only installed packages shall
be queried.

	–repoid <repository>

	Search just this repository.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

SSSD command line reference

This command allows to manage SSSD service.

sssd

SSSD system service management.

Usage:

lmi sssd status

lmi sssd restart [–try]

lmi sssd set-debug-level <level> [–until-restart] [options]

lmi sssd service

lmi sssd domain

Commands:

	status

	Prints SSSD service’s status.

	restart

	Restarts the SSSD service.

	set-debug-level

	Set debug level of selected (all by default) components.

	service

	Manage supported services.

	domain

	Manage SSSD domains.

Restart options:

	–try

	Whether to abandon the operation if the service
is not running.

Set-debug-level options:

–until-restart

Set the debug level but switch it to original
value when SSSD is restarted.

	–all

	Select all components (default)

	–monitor

	Select the SSSD monitor.

–services=svc,...

Comma separated list of SSSD services.

–domains=dom,...

Comma separated list of SSSD domains.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Storage command line reference

These commands allow listing and manipulation with block devices.

Common options

	<device> can be specified as one of:

	DeviceID of appropriate CIM_StorageExtent. This is internal OpenLMI ID of
the device and it should be stable across system reboots.

	Device name directly in /dev directory, such as /dev/sda. This device
name is available as Name property of CIM_StorageExtent.

	Name of MD RAID or logical volume. This method cannot be used when the
name is not unique, for example when there are two logical volumes with
the same name, allocated from different volume groups. This name is
available as ElementName property of CIM_StorageExtent.

	<vg> represents name of a volume group, with or without /dev/ prefix.

	Any <size>, such as size of new partition or new logical volume, can
be specified with ‘T’, ‘G’, ‘M’ or ‘K’ suffix, which represents appropriate
unit (terabytes, gigabytes etc.) 1K (kilobyte) is 1024 of bytes.
The suffix is case insensitive, i.e. 1g = 1G.

storage

Basic storage device information.

Usage:

lmi storage fs <cmd> [<args> ...]

lmi storage luks <cmd> [<args> ...]

lmi storage lv <cmd> [<args> ...]

lmi storage mount <cmd> [<args> ...]

lmi storage partition <cmd> [<args> ...]

lmi storage partition-table <cmd> [<args> ...]

lmi storage raid <cmd> [<args> ...]

lmi storage vg <cmd> [<args> ...]

lmi storage thinpool <cmd> [<args> ...]

lmi storage thinlv <cmd> [<args> ...]

lmi storage depends [–deep] [<device> ...]

lmi storage list [<device> ...]

lmi storage provides [–deep] [<device> ...]

lmi storage show [<device> ...]

lmi storage tree [<device>]

Commands:

	fs

	Filesystem and other data format management.

	luks

	LUKS management.

	lv

	Logical Volume management.

	mount

	Mount management.

	partition

	Partition management.

	partition-table

	Partition table management.

	raid

	MD RAID management.

	vg

	Volume Group management.

	thinpool

	Thin Pool management.

	thinlv

	Thin Logical Volume management.

	list

	List short information about given device. If no devices
are given, all devices are listed.

	show

	Show detailed information about given devices. If no devices
are provided, all of them are displayed.

	provides

	Show devices, which are created from given devices
(= show children of the devices).

For example, if a disk is provided, all partitions on it are
returned. If ‘deep’ is used, all RAIDs, Volume Groups and
Logical Volumes indirectly allocated from it are returned too.

	depends

	Show devices, which are required by given devices to operate
correctly (= show parents of the devices).

For example, if a Logical Volume is provided, its Volume Group
is returned. If ‘deep’ is used, also all Physical Volumes and
appropriate disk(s) are returned.

	tree

	Show tree of devices, similar to lsblk.

If no device is provided, all devices are shown, starting
with physical disks.

If a device is provided, tree starts with the device
and all dependent devices are shown.

Options:

	device

	Identifier of the device. Either one of:

	DeviceID of appropriate CIM_StorageExtent object. This is
internal OpenLMI ID of the device and it should be stable
across system reboots.

	Device name directly in /dev directory, such as ‘/dev/sda’.
This device name is available as Name property of
CIM_StorageExtent object.

	Name of MD RAID or logical volume. This method cannot be used
when the name is not unique, for example when there are two
logical volumes with the same name, allocated from different
volume groups. This name is available as ElementName
property of CIM_StorageExtent object.

	–deep

	Show all ancestors/children the device, not only the immediate
ones.

storage fs

Filesystem and other data format management.

Usage:

lmi storage fs list [–all] [<device> ...]

lmi storage fs create [–label=<label>] <fstype> <device> ...

lmi storage fs delete <device> ...

lmi storage fs list-supported

Commands:

	list

	List filesystems and other data formats (RAID metadata,
...) on given devices.
If no devices are provided, all filesystems are listed.
If –all option is set, all filesystem, including system
ones like tmpfs, cgroups, procfs, sysfs etc are listed.

	create

	Format device(s) with given filesystem.
If more devices are given, the filesystem will span
over these devices (currently supported only by btrfs).

For list of available filesystem types, see output of
lmi storage fs list-supported.

	delete

	Delete given filesystem or data format (like partition
table, RAID metadata, LUKS, physical volume metadata etc)
on given devices.

list-supported

List supported filesystems, which can be used as
lmi storage fs create <fstype> option.

storage luks

LUKS management

Usage:

lmi storage luks list

lmi storage luks create [-p <passphrase>] <device>

lmi storage luks open [-p <passphrase>] <device> <name>

lmi storage luks close <device>

lmi storage luks addpass [-p <passphrase>] [-n <new-passphrase>] <device>

lmi storage luks deletepass [-p <passphrase>] <device>

Commands:

	list

	List available LUKS formats and their clear-text devices
(if any).

	create

	Format given device with LUKS format. Any data on the device
will be destroyed.

	open

	Open given device formatted with LUKS and expose its clear-text
data as a new block device.

	close

	Close given device formatted with LUKS and destroy its
clear-text block device.

	addpass

	Add new passphrase to given LUKS-formatted device. Each device
can have up to 8 separate passwords and any of them can be used
to decrypt the device.

	deletepass

	Remove given passphrase from LUKS-formatted device.

Common options:

	-p, –passphrase=passphrase

	Passphrase. It will be read from the
terminal, if it is not provided on command
line.

	-n, –new-passphrase=passphrase

	New passphrase. It will be read from the
terminal, if it is not provided on command
line.

Open options:

	<device>

	Device with LUKS format on it.

	<name>

	Name of the clear-text block device to create.

Close options:

	<device>

	Device with LUKS format on it, previously opened by
‘lmi storage luks open’.

storage lv

Logical Volume management.

Usage:

lmi storage lv list [<vg> ...]

lmi storage lv create <vg> <name> <size>

lmi storage lv delete <lv> ...

lmi storage lv show [<lv> ...]

Commands:

	list

	List available logical volumes on given volume groups.
If no volume groups are provided, all logical volumes are
listed.

	create

	Create a logical volume on given volume group.

	delete

	Delete given logical volume.

	show

	Show detailed information about given Logical Volumes. If no
Logical Volumes are provided, all of them are displayed.

Options:

	vg

	Name of the volume group, with or without /dev/ prefix.

	size

	Size of the new logical volume, by default in bytes.
‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify other
units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB
(= 1024 bytes).
The suffix is case insensitive, i.e. 1g = 1G = 1073741824
bytes.

‘E’ suffix can be used to specify number of volume group
extents, ‘100e’ means 100 extents.

storage mount

Mount management.

Usage:

lmi storage mount list [–all] [<target> ...]

lmi storage mount create <device> <mountpoint> [(-t <fs_type>) (-o <options>)]

lmi storage mount delete <target>

lmi storage mount show [–all] [<target> ...]

Commands:

	list

	List mounted filesystems with a device attached to them.
<target> can be specified either as device names
or mountpoints.

	create

	Mount a specified device on the path given by mountpoint.
Optionally, filesystem type, common options (filesystem
independent) and filesystem specific options can be provided. If no
filesystem type is specified, it is automatically detected.

Options can be provided as a comma-separated string of
‘option_name:value’ items. Possible option names are:

AllowExecution AllowMandatoryLock AllowSUID AllowUserMount
AllowWrite Auto Dump FileSystemCheckOrder InterpretDevices
Silent SynchronousDirectoryUpdates SynchronousIO
UpdateAccessTimes UpdateDirectoryAccessTimes UpdateFullAccessTimes
UpdateRelativeAccessTimes

Possible option values for all of the options except for
FileSystemCheckOrder are ‘t’, ‘true’, ‘f’, ‘false’. All of them are
case insensitive.
The FileSystemCheckOrder option’s value is a number.

In case an option is not recognized as being one of the possible
options listed above, it’s used as a filesystem dependent option.

Examples:

create /dev/vda1 /mnt -t ext4 -o ‘AllowWrite:F,InterpretDevices:false’

create /dev/vda2 /mnt -o ‘FileSystemCheckOrder:2’

create /dev/vda3 /mnt -o ‘user_xattr,barrier=0’

create /dev/vda4 /mnt -o ‘Dump:t, AllowMandatoryLock:t, acl’

	delete

	Unmount a mounted filesystem. Can be specified either as a device
path or a mountpoint.

	show

	Show detailed information about mounted filesystems with a device
attached to them. <target> can be specified either as device names
or mountpoints.
<spec>. Optionally, show all mounted filesystems.

storage partition

Partition management.

Usage:

lmi storage partition list [<device> ...]

lmi storage partition create [–logical | –extended] <device> [<size>]

lmi storage partition delete <partition> ...

lmi storage partition show [<partition> ...]

Commands:

	list

	List available partitions on given devices.
If no devices are provided, all partitions are listed.

	create

	Create a partition on given device.

If no size is given, the resulting partition will occupy the
largest available space on disk.

The command automatically creates extended and logical
partitions using these rules:

	If no partition type (logical or extended) is provided and
MS-DOS partition is requested and there is extended partition
already on the device, a logical partition is created.

	If there is no extended partition on the device and there are
at most two primary partitions on the device, primary
partition is created.

	If there is no extended partition and three primary partitions
already exist, new extended partition with all remaining space
is created and a logical partition with requested size is
created.

	delete

	Delete given partitions.

	show

	Show detailed information about given partitions. If no
partitions are provided, all of them are displayed.

Options:

	size

	Size of the new partition volume, by default in sectors.
‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify other
units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB
(= 1024 bytes).
The suffix is case insensitive, i.e. 1g = 1G = 1073741824 bytes.

device,

	partition

	Identifier of the device/partition. Either one of:

	DeviceID of appropriate CIM_StorageExtent object. This is
internal OpenLMI ID of the device and it should be stable
across system reboots.

	Device name directly in /dev directory, such as ‘/dev/sda’.
This device name is available as Name property of
CIM_StorageExtent object.

	Name of MD RAID or logical volume. This method cannot be used
when the name is not unique, for example when there are two
logical volumes with the same name, allocated from different
volume groups. This name is available as ElementName
property of CIM_StorageExtent object.

	–logical

	Override the automatic behavior and request logical partition.

	–extended

	Override the automatic behavior and request extended partition.

storage partition-table

Partition table management.

Usage:

lmi storage partition-table list [<device> ...]

lmi storage partition-table create [–gpt | –msdos] <device> ...

lmi storage partition-table show [<device> ...]

Commands:

	list

	List partition tables on given device.
If no devices are provided, all partition tables are listed.

	create

	Create a partition table on given devices. The devices must be
empty, i.e. must not have any partitions on them. GPT partition
table is created by default.

	show

	Show detailed information about partition table on given
devices. If no devices are provided, all of them are displayed.

Options:

	device

	Identifier of the device. Either one of:

	DeviceID of appropriate CIM_StorageExtent object. This is
internal OpenLMI ID of the device and it should be stable
across system reboots.

	Device name directly in /dev directory, such as ‘/dev/sda’.
This device name is available as Name property of
CIM_StorageExtent object.

	Name of MD RAID or logical volume. This method cannot be used
when the name is not unique, for example when there are two
logical volumes with the same name, allocated from different
volume groups. This name is available as ElementName
property of CIM_StorageExtent object.

	–gpt

	Create GPT partition table (default).

	–msdos

	Create MS-DOS partition table.

storage raid

MD RAID management.

Usage:

lmi storage raid list

lmi storage raid create [–name=<name>] <level> <device> ...

lmi storage raid delete <device> ...

lmi storage raid show [<device> ...]

Commands:

	list

	List all MD RAID devices on the system.

	create

	Create MD RAID array with given RAID level from list of devices.

	delete

	Delete given MD RAID devices.

	show

	Show detailed information about given MD RAID devices. If no
devices are provided, all MD RAID devices are displayed.

Options:

	device

	Identifier of the device. Either one of:

	DeviceID of appropriate CIM_StorageExtent object. This is
internal OpenLMI ID of the device and it should be stable
across system reboots.

	Device name directly in /dev directory, such as ‘/dev/sda’.
This device name is available as Name property of
CIM_StorageExtent object.

	Name of MD RAID or logical volume. This method cannot be used
when the name is not unique, for example when there are two
logical volumes with the same name, allocated from different
volume groups. This name is available as ElementName
property of CIM_StorageExtent object.

	level

	RAID level. Supported levels are: 0, 1, 4, 5, 6, 10.

storage vg

Volume Group management.

Usage:

lmi storage vg list

lmi storage vg create [–extent-size=<size>] <name> <device> ...

lmi storage vg delete <vg> ...

lmi storage vg show [<vg> ...]

lmi storage vg modify <vg> [–add=<device>] ... [–remove=<device>] ...

Commands:

	list

	List all volume groups on the system.

	create

	Create Volume Group with given name from list of devices.

	delete

	Delete given Volume Groups.

	show

	Show detailed information about given Volume Groups. If no
Volume Groups are provided, all of them are displayed.

	modify

	Add or remove Physical Volumes to/from given Volume Group.

Options:

	device

	Identifier of the device. Either one of:

	DeviceID of appropriate CIM_StorageExtent object. This is
internal OpenLMI ID of the device and it should be stable
across system reboots.

	Device name directly in /dev directory, such as ‘/dev/sda’.
This device name is available as Name property of
CIM_StorageExtent object.

	Name of MD RAID or logical volume. This method cannot be used
when the name is not unique, for example when there are two
logical volumes with the same name, allocated from different
volume groups. This name is available as ElementName
property of CIM_StorageExtent object.

	vg

	Name of the volume group, with or without /dev/ prefix.

	size

	Requested extent size of the new volume group, by default in
bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify
other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB
(=1024 bytes).
The suffix is case insensitive, i.e. 1g = 1G = 1073741824 bytes.

	-a <device> , –add=<device>

	Device to add to a Volume Group.

	-r <device> , –remove=<device>

	Device to remove from a Volume Group.

storage thinpool

Thin Pool management.

Usage:

lmi storage thinpool list

lmi storage thinpool create <name> <vg> <size>

lmi storage thinpool delete <tp> ...

lmi storage thinpool show [<tp> ...]

Commands:

	list

	List all thin pools on the system.

	create

	Create Thin Pool with given name and size from a Volume Group.

	delete

	Delete given Thin Pools.

	show

	Show detailed information about given Thin Pools. If no
Thin Pools are provided, all of them are displayed.

Options:

	vg

	Name of the volume group, with or without /dev/ prefix.

	tp

	Name of the thin pool, with or without /dev/ prefix.

	size

	Requested extent size of the new volume group, by default in
bytes. ‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify
other units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB
(=1024 bytes).
The suffix is case insensitive, i.e. 1g = 1G = 1073741824 bytes.

storage thinlv

Thin Logical Volume management.

Usage:

lmi storage thinlv list [<tp> ...]

lmi storage thinlv create <tp> <name> <size>

lmi storage thinlv delete <tlv> ...

lmi storage thinlv show [<tlv> ...]

Commands:

	list

	List available thin logical volumes on given thin pools.
If no thin pools are provided, all thin logical volumes are
listed.

	create

	Create a thin logical volume on given thin pool.

	delete

	Delete given thin logical volume.

	show

	Show detailed information about given Thin Logical Volumes. If no
Thin Logical Volumes are provided, all of them are displayed.

Options:

	tp

	Name of the thin pool, with or without /dev/ prefix.

	size

	Size of the new logical volume, by default in bytes.
‘T’, ‘G’, ‘M’ or ‘K’ suffix can be used to specify other
units (TiB, GiB, MiB and KiB) - ‘1K’ specifies 1 KiB
(= 1024 bytes).
The suffix is case insensitive, i.e. 1g = 1G = 1073741824
bytes.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

System command line reference

This command can display general system information.

system

Display general system information.

Usage:

lmi system

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

Command development

Do you want to write your own command? You are at the right place.
As a newcomer, you should start with Tutorial.

Once you have your command ready, don’t forget to make it public in our
repository.

Command versus Script:

Until now we’ve been using command as a term for a subcommand of LMI
metacommand and a package (rpm/python egg) containing it. In this
documentation you’ll encounter another words seemingly meaning the same.
Following dictionary tries to clear out any confusion:

	Term
	Description

	command
	Either a subcommand of LMI metacommand or a software
package containing a script. It may have several
subcommands.

	script
	Python library utilizing LMIShell for instrumenting
CIM providers through a CIMOM broker comming with one
or more commands for LMI metacommand.

	subcommand
	Same as command used in relation to either
metacommand or another command.

	command wrapper
	Implementation of a command in a script as a subclass of
LmiBaseCommand.

	top-level command
	Direct subcommand of LMI metacommand. It appers in its
help message.

	end-point command
	command without any subcommand. It handles command-line
arguments and renders output.

	command multiplexer
	command with one or more subcommands. They do not handle
command line arguments.

	command name
	Is a single word denoting command on a command line.

	command’s full name
	All command names leading up to the command optionally
including the lmi. For example in statement
lmi -h myhost.example.org storage fs create ext4 /dev/vda5
the full name of command create is
lmi storage fs create.

Contents:

	Tutorial
	Required knowledge

	Preparation

	OpenLMI LogicalFile introduction

	Let’s write some code

	Summary

	Basics
	Prerequisities

	Introduction

	Writing a library

	Command wrappers overview

	Setup script

	Conventions

	Debugging

	Command classes
	End-point commands

	Command multiplexers

	Command properties
	Options pre-processing

	Associating a function

	Function invocation

	Output rendering

	Command specific properties

	LmiSelectCommand properties

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

 	Command development

Tutorial

This is a step-by-step tutorial on developing a script for OpenLMI
providers. It explains how to create simple library for instrumenting OpenLMI
LogicalFile Provider, wrap its functionality with command wrapper and
register it as a subcommand of LMI metacommand.

Required knowledge

You should be familiar with terms like CIM, cimom, schema, provider,
DMTF profile. This short tutorial should be enough to get you started.

You should also be familiar with scripting in python and
LMIShell [http://www.openlmi.org/using_lmishell] which we use heavily in snippets below.

Preparation

You need tog-pegasus cimom up and running with openlmi-logicalfile
providers installed and registered on managed machine. There is a Quick Start
Guide [http://www.openlmi.org/QuickStart] to assist you with setting it up. We will connect to it from a
client which needs the following installed:

	openlmi-python-base

	openlmi-tools

Note

RHEL clients will also need openlmi-scripts installed because
LMI metacommand is not part of OpenLMI Tools there.

Installing python dependencies

For the first two items you may use standard rpms build for Fedora:

yum install openlmi-tools

Or you may install them to your user directory as python eggs with
pip:

pip install openlmi-tools

Dependencies are solved for you automatically in both cases.

Note

On RHEL there are several possible scenarios:

	install openlmi-tools as a python egg (see above)

	install openlmi-tools from git (see below)

	install both openlmi-tools and openlmi-scripts as rpms
with EPEL [https://fedoraproject.org/wiki/EPEL] repository enabled (for the latter package)

Make sure you don’t mix above options.

Or directly from git repository [https://github.com/openlmi/openlmi-scripts]. Please follow steps described there.

Setting up environment

We’ll stick to the process described
here [https://github.com/openlmi/openlmi-scripts#developing-lmi-scripts]
that lets us develop quickly without the need to reinstall anything while
making changes.

First let’s check out our openlmi-scripts repository:

git clone https://github.com/openlmi/openlmi-scripts.git
cd openlmi-scripts

Now let’s set up our workspace:

WSP=~/.python_workspace
mkdir $WSP
may be added to `$HOME/.profile` or `$HOME/.bashrc`
export PYTHONPATH=$WSP:$PYTHONPATH
export PATH="$PATH:$WSP"

Making script structure

We’ll use provided commands/make_new.py script to create the basic
structure and setup.py.skel file:

cd commands
this will ask us additional questions used to create setup.py.skel file
./make_new.py mylf

Because a script implementation for OpenLMI LogicalFile profile is
already present in upstream repository (in commands/logicalfile), we
need to name our library distinctly (e.g. mylf).

Following structure should be created:

mylf
├── doc
│ ├── _build
│ ├── cmdline.rst
│ ├── conf.py.skel
│ ├── index.rst
│ ├── Makefile
│ ├── python.rst
│ ├── _static
│ └── _templates
├── lmi
│ ├── __init__.py
│ └── scripts
│ ├── __init__.py
│ └── mylf
│ └── __init__.py
├── Makefile
├── README.md
├── setup.cfg
└── setup.py.skel

We should check that everything matches in mylf/setup.py.skel and correct
any shortcomings.

setup.py is generated out of setup.py.skel template by running:

make setup

OpenLMI LogicalFile introduction

OpenLMI LogicalFile is a CIM provider which provides a way to read
information about files and directories. The provider also allows to
traverse the file hierarchy, create and remove empty directories.

[image: LogicalFile model]
LogicalFile model

It consists mainly of few specializations of CIM_LogicalFile
representing any type of file on filesystem, LMI_UnixFile holding
unix specific information for each such file and association classes
between them. CIM_LogicalFile has following key properties inherited
by LMI_* subclasses above:

	Name

	CSName

	CSCreationClassName

	FSCreationClassName

	CreationClassName

	FSName

Only those shown in bold are mandatory. Others are ignored when
requesting an instance of CIM_LogicalFile. This applies also to
LMI_UnixFile with Name being replaced with LFName. None of
the presented classes supports enumeration of instances. Only references
can be obtained.

With CreateInstance() and DeleteInstance() calls issued on
class/object of LMI_UnixDirectory we are able to create and delete
directories.

Let’s write some code

Before writing code that actually does anything useful, we start by specifying
usage string. It is a command line API. Writing it will give you a clear
picture of what you’re going to implement and how it will be used. Once done,
all the subcommands can be implemented one by one in a straightforward way.

Writing usage string

Usage string is a module’s documentation, help message and a
prescription for command line parser, all-in-one. Writing it is pretty
straightforward. Let’s put it to mylf/lmi/scripts/mylf/cmd.py:

"""
Read informations about file system structure.

Usage:
 %(cmd)s list [options] <directory>
 %(cmd)s show [-L] <file>
 %(cmd)s create <directory>
 %(cmd)s delete <directory>

Options:
 -t --type <type> Filter listed files by their type. One of:
 any, file, device, directory, fifo, symlink, socket.
 Defaults to any.
 -L --dereference Causes symlink to be followed.
"""

The first line provides a short description that will be shown with

lmi help

after the command is registered. Text under Usage: and Options: are
parsed by docopt [http://docopt.org]. It is very well readable but writing it may pose quite a
challenge for the first time developer. Please refer to its documentation for
more information.

Note the %(cmd)s string which needs to be present instead of
lmi mylf or similar command names.

Note also spaces that separate options from their descriptions. There must
be a column of spaces at least 2 characters wide. Otherwise docopt will treat
description as a continuation of option specification.

Let’s add one more snippet so we can test it:

from lmi.scripts.common import command

MyLF = command.register_subcommands('MyLF', __doc__, {})

This creates a command multiplexer without any children (we’ll add them
later).

And finally let’s modify our mylf/setup.py.skel by adding entry point:

entry_points={
 'lmi.scripts.cmd': [
 'mylf = lmi.scripts.mylf.cmd:MyLF',
],
 }

Now we can install it and test it:

cd mylf
make setup # make setup.py out of template
make sure the $WSP is in $PYTHONPATH
python setup.py develop --install-dir=$WSP
lmi help
lmi help mylf

We should be able to see the usage string we’ve written.

Implementing show command

Now let’s implement the easiest command. Let’s start with appending following
snippet to mylf/lmi/scripts/mylf/__init__.py.

import os

from lmi.shell import LMIInstance, LMIInstanceName
from lmi.scripts.common import errors
from lmi.scripts.common import get_computer_system
from lmi.scripts.common import get_logger

LOG = get_logger(__name__)

def logical_file_type_name(file_identity):
 """
 Get a name of file type for supplied instance of ``CIM_LogicalFile``.
 """
 namemap = {
 'lmi_datafile' : 'file',
 'lmi_unixdevicefile' : 'device',
 'lmi_unixdirectory' : 'directory',
 'lmi_fifopipefile' : 'fifo',
 'lmi_symboliclink' : 'symlink',
 'lmi_unixsocket' : 'socket'
 }
 try:
 return namemap[file_identity.classname.lower()]
 except KeyError:
 LOG().warn('Unhandled logical file class "%s".',
 file_identity.classname)
 return 'unknown'

def permission_string(file_identity):
 """
 Make an ls-like permission string for supplied instance of
 ``CIM_LogicalFile``.
 """
 return ''.join(l if getattr(file_identity, a) else '-'
 for l, a in zip('rwx', ('Readable', 'Writeable', 'Executable')))

def get_logical_file_instance(ns, file_ident, dereference=False):
 """
 Get an instance of ``CIM_LogicalFile`` corresponding to given file
 identity.

 :param file_ident: Either a file path or an instance of ``LMI_UnixFile``.
 :param boolean dereference: Whether to follow symbolic links
 """
 if isinstance(file_ident, basestring):
 uf = get_unix_file_instance(ns, file_ident, dereference)
 elif isinstance(file_ident, LMIInstanceName):
 uf = file_ident.to_instance()
 else:
 uf = file_ident
 return uf.first_associator(AssocClass='LMI_FileIdentity')

def get_unix_file_instance(ns, path, dereference=False):
 """
 :param boolean dereference: Whether to follow symbolic links
 :returns: Instance of ``LMI_UnixFile`` corresponding to given *path*.
 """
 cs = get_computer_system(ns)
 uf_name = ns.LMI_UnixFile.new_instance_name({
 'CSCreationClassName' : cs.classname,
 'CSName' : cs.name,
 'LFName' : path,
 'LFCreationClassName' : 'ignored',
 'FSCreationClassName' : 'ignored',
 'FSName' : 'ignored',
 })
 try:
 uf = uf_name.to_instance()
 if dereference:
 lf = get_logical_file_instance(ns, uf, False)
 if logical_file_type_name(lf) == 'symlink':
 try:
 target = lf.TargetFile
 if not os.path.isabs(target):
 target = os.path.abspath(
 os.path.join(os.path.dirname(lf.Name), target))
 # recursively try to dereference
 uf = get_unix_file_instance(ns, target, dereference)
 except Exception as err:
 LOG.warn('failed to get link target "%s": %s',
 lf.TargetLink, err)
 return uf
 except:
 raise errors.LmiFailed('No such file or directory: "%s".' % path)

First two functions turn their argument to a human readable form. The other two
are somewhat special. They actually interact with a broker. Each such function
takes as a first argument a namespace object, LMIShell’s
abstraction, which acts as a liaison. All our communication is done through
this object. We always name it ns. These are getters we will need in
our Show command. Getters usually return one or several instances
of LMIInstanceName.

Now let’s place following into mylf/lmi/scripts/mylf/cmd.py.

from lmi.scripts import mylf
from lmi.scripts.common import command
from lmi.scripts.common import errors

class Show(command.LmiLister):
 COLUMNS = ('Attribute', 'Value')

 def transform_options(self, options):
 options['<path>'] = options.pop('<file>')

 def execute(self, ns, path, _dereference):
 uf = mylf.get_unix_file_instance(ns, path, _dereference)
 lf = mylf.get_logical_file_instance(ns, uf, _dereference)
 return [
 ('Path' , lf.Name),
 ('Type' , mylf.logical_file_type_name(lf)),
 ('User ID' , uf.UserID),
 ('Group ID' , uf.GroupID),
 ('Size' , lf.FileSize),
 ('Permissions' , mylf.permission_string(lf))
]

And change MyLF command there like this:

MyLF = command.register_subcommands('MyLF', __doc__,
 { 'show' : Show })

All is set up. To try it out:

$ lmi -h $HOST mylf show /root
Attribute Value
Path /root
Type directory
User ID 0
Group ID 0
Size 4096
Permissions r-x

Our Show command inherits from
LmiLister which renderes
a table. In order to do that it needs to know number of columns and their
headings which specifies COLUMNS property.

Most of the work is done in its
execute()
method. All parameters following namespace object come from command line. First
it collects the data, make them readable and then returns them as a list of
rows.

Command line options need to be modified before passing them to object method.
Several rules apply. We can see that
--dereference option is turned to _dereference parameter name.
Replacing leading dashes with single underscore is a default behaviour that you
may customize.

Sometimes you may want to rename an option. This is a case of <file>
argument that would be passed as a file which is python’s built-in. Here
comes
transform_options()
method into play. Any possible option manipulation is allowed here. It may be
used also to convert values to your liking.

Implementing list

Most of necessary functionality has been implemented in previous snippet for
the show command. Following snippet is enough to generate all the files in
directory. Put it again to mylf/lmi/scripts/mylf/__init__.py.

def make_directory_instance_name(ns, directory):
 """
 Retrieve object path of a directory.

 :type directory: string
 :param directory: Full path to the directory.
 :rtype: :py:class:`lmi.shell.LMIInstanceName.LMIInstanceName`
 """
 if directory != '/':
 directory = directory.rstrip('/')
 cs = get_computer_system(ns)
 return ns.LMI_UnixDirectory.new_instance_name(
 { 'CSCreationClassName' : cs.classname
 , 'CSName' : cs.name
 , 'CreationClassName' : 'LMI_UnixDirectory'
 , 'FSCreationClassName' : 'LMI_LocalFileSystem'
 , 'FSName' : ''
 , 'Name' : directory})

def get_directory_instance(ns, directory):
 """
 Retrieve instance of `LMI_UnixDirectory`.

 :type directory: string of :py:class:`lmi.shell.LMIInstanceName.LMIInstanceName`
 :param directory: Full path to the directory or its instance name.
 :rtype: :py:class:`lmi.shell.LMIInstance.LMIInstance`
 """
 if isinstance(directory, basestring):
 directory = make_directory_instance_name(ns, directory)
 if isinstance(directory, LMIInstanceName):
 directory = directory.to_instance()
 return directory

def list_directory(ns, directory, file_type='any'):
 """
 Yields instances of ``CIM_LogicalFile`` representing direct children of the
 given directory.

 :param directory: Either a file path or an instance of
 ``LMI_UnixDirectory``.
 :param file_type: Filter of files made by checking their type. One of: ::

 {'any', 'file', 'device', 'directory', 'fifo', 'symlink', 'socket'}
 """
 def _generate_children():
 for child in get_directory_instance(ns, directory).associators(
 AssocClass='LMI_DirectoryContainsFile',
 Role='GroupComponent',
 ResultRole='PartComponent'):
 if (file_type and file_type != 'any'
 and logical_file_type_name(child) != file_type):
 continue
 yield child
 return sorted(_generate_children(), key=lambda i: i.Name)

Note the associators() call on LMI_UnixDirectory instance. It
enumerates all CIM_LogicalFile instances that are referenced by
LMI_DirectoryContainsFile associations. These represent a relation of
parent directory and its direct children. Parent directory is referenced with
GroupComponent role while the children with PartComponent. It’s
advisable to always provide as much information to calls like:

	associators()

	associator_names()

	references()

	reference_names()

as possible. Without the AssocClass parameter given, broker would
try to enumerate all instrumented association classes possible,
resulting in very poor performance. Both Role and ResultRole
parameters need to be given here, otherwise a parent directory of the
one being enumerated would also appear in output.

Following subclass of LmiInstanceLister needs to be added to
mylf/lmi/scripts/mylf/cmd.py and added to MyLF subcommands
dictionary (omitted for now).

class List(command.LmiInstanceLister):
 CALLABLE = mylf.list_directory
 PROPERTIES = (
 'Name',
 ('Type', mylf.logical_file_type_name),
 ('Permissions', mylf.permission_string),
 ('Size', 'FileSize'))

 def verify_options(self, options):
 if options['--type'] is not None \
 and not options['--type'].lower() in {
 'any', 'file', 'directory', 'symlink', 'dev', 'socket',
 'fifo'}):
 raise errors.LmiInvalidOptions(
 'Unsupported type: %s' % options['--type'])

 def transform_options(self, options):
 file_type = options.pop('--type')
 if file_type is None:
 file_type = 'any'
 options['file-type'] = file_type

Instead of defining our own
execute()
method, we just associate list_directory() function with List command
using CALLABLE property. Thanks to the ability to transform option names in
any way, we are not limited to the use of arguments as listed in usage string.
Apart from renaming options, we also check the value of --type option.
Overriding
verify_options()
to check for validity of options is the more preferred approach compared to
delayed checking in associated function.

Implementing create and delete

Let’s again start with content of mylf/lmi/scripts/mylf/__init__.py
module.

def create_directory(ns, directory):
 """
 Create a directory.

 :type directory: string
 :param directory: Full path to the directory.
 """
 ns.LMI_UnixDirectory.create_instance(
 make_directory_instance_name(ns, directory).path.keybindings)

def delete_directory(ns, directory):
 """
 Delete an empty directory.

 :param directory: Either a file path or an instance of
 ``LMI_UnixDirectory``.
 """
 get_directory_instance(ns, directory).delete()

create_instance() call of any LMIClass creates a new instance, in this
case we create an instance of LMI_UnixDirectory. If it exists already, an
exception will be raised. On the other hand, delete_directory() operates on
an LMIInstance which must exists. If
directory does not exist or it’s not empty, an exception will be raised.

Now let’s move on to mylf/lmi/scripts/mylf/cmd.py:

class Create(command.LmiCheckResult):
 EXPECT = None
 CALLABLE = mylf.create_directory

class Delete(command.LmiCheckResult):
 EXPECT = None
 CALLABLE = mylf.delete_directory

LmiCheckResult is a special
command that prints no useful information. It allows us to check, whether the
associated function returns expected result and prints an error if not. Here we
expect None. Associated functions in this case throw an exception upon any
error which have the same effect.

Test it

lmi -h $HOST mylf create /root/some_directory
try it for the second time (it will fail)
lmi -h $HOST mylf create /root/some_directory
now let's delete it
lmi -h $HOST mylf delete /root/some_directory
try it for the second time (it will fail)
lmi -h $HOST mylf delete /root/some_directory

Summary

Now that the script is ready and tested, we may commit it, push it, do a
pull request and host it on PyPI [https://pypi.python.org/pypi]:

python setup.py register
python setup.py sdist upload

Source code of this example is available as a
tarball.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

 	Command development

Basics

This provides a general overview on what script is, how is it written
and is interfaced with.

Prerequisities

Reader should be familiar with a CIM [http://dmtf.org/standards/cim] (Common Information Model). He should
have a general idea about, what OpenLMI [http://openlmi.org] is and what it does. He should get
familiar with LMIShell [http://www.openlmi.org/using_lmishell], which is a python binary shipped with
OpenLMI Tools documentation.

Also user should be familiar with standard *nix command line
utilities [1].

Introduction

By a script in this document we mean:

	Python library utilizing LMIShell [http://www.openlmi.org/using_lmishell] for instrumenting CIM providers through
a CIMOM broker. It resides in lmi.scripts.<script_name> package. Where
<script_name> usually corresponds to some LMI profile name.

	Command wrappers for this library as a set of classes inheriting from
LmiBaseCommand. These may
create a tree-like hierarchy of commands. They are the entry points of
LMI metacommand to the wrapped functionality of library.

Command wrappers are part of the library usually grouped in a single
module named after the lmi command or cmd:

lmi.scripts.<script_name>.cmd

Writing a library

Library shall consist of a set of functions taking a namespace or connection object as a first argument. There are no special
requirements on how to divide these functions into submodules. Use common
sense. Smaller scripts can have all functionality in
lmi/scripts/<script_name>/__init__.py module. With wrappers usually
contained in lmi/scripts/<script_name>/cmd.py.

Library should be written with an ease of use in mind. Functions should
represent possible use cases of what can be done with particular
providers instead of wrapping 1-to-1 a CIM class’s methods in python
functions.

Any function that shall be called by a command wrapper and communicates with a
CIMOM must accept a namespace object named as ns. It’s an instance of
LMINamespace providing quick access to
represented CIM namespace [2] and its classes. It’s also possible to specify
that function shall be passed a raw
LMIConnection object. For details see
Function invocation.

Service example

Suppose we have a service profile in need of ython interface. Real provider
implementation can be found at src/service directory in upstream git [3].
For more information please refer to service description [https://fedorahosted.org/openlmi/wiki/service].

As you may see, this implements single CIM class LMI_Service with a few
useful methods such as:

	StartService()

	StopService()

We’d like to provide a way how to list system services, get a details for one
of them and allow to start, stop and restart them.

Simplified [4] version of some of these functions may look like this:

def list_services(ns, kind='enabled'):
 for service in sorted(ns.LMI_Service.instances(),
 key=lambda i: i.Name):
 if kind == 'disabled' and service.EnabledDefault != \
 ns.LMI_Service.EnabledDefaultValues.Disabled:
 continue
 if kind == 'enabled' and service.EnabledDefault != \
 ns.LMI_Service.EnabledDefaultValues.Enabled:
 # list only enabled
 continue
 yield service

It yields instances of LMI_Service cim class. We prefer to use yield
instead of return when enumerating instances because of memory usage
reduction. For example when the user limits the number of instances listed.
With yield the number of iterations will be reduced automatically.

from lmi.shell import LMIInstanceName
from lmi.scripts.common import get_logger
from lmi.scripts.common.errors import LmiFailed

LOG = get_logger(__name__)

def start_service(ns, service):
 if isinstance(service, basestring):
 # let's accept service as a string
 inst = ns.LMI_Service.first_instance(key="Name", value=service)
 name = service
 else: # or as LMIInstance or LMIInstanceName
 inst = service
 name = inst.path['Name']
 if inst is None:
 raise LmiFailed('No such service "%s".' % name)
 if isinstance(inst, LMIInstanceName):
 # we need LMIInstance
 inst = inst.to_instance()
 res = inst.StartService()
 if res == 0:
 LOG().debug('Started service "%s" on hostname "%s".',
 name, ns.hostname)
 return res

In similar fashion, stop_service, restart_service and others could be
written.

ns argument typically represents root/cimv2 namespace which is the
main implementation namespace for OpenLMI providers. One could also make
these functions act upon a connection object like this:

def get_instance(c, service):
 inst = c.root.cimv2.LMI_Service.first_instance(
 key="Name", value=service)
 if inst is None:
 raise LmiFailed('No such service "%s".' % service)
 return inst

User can then easily access any other namespace he may need. Command classes
need to be informed about an object type the wrapped function expects (see
Function invocation).

The LOG variable provides access to the logger of this module. Messages
logged in this way end up in a log file [5] and console. Implicitly only
warnings and higher priority messages are logged into a console. This can
be changed with metacommand’s parameteres.

If operation fails due to some unexpected error, please raise
LmiFailed exception with human readable
description.

See also

Exceptions for conventions on using exceptions.

Upstream git [https://github.com/openlmi/openlmi-scripts] for more real world examples.

Command wrappers overview

They are a set of command classes wrapping up library’s functionality. They are
structured in a tree-like hierarchy where the root [6] command appears in a
help message of LMI metacommand. All commands are subclasses of
LmiBaseCommand.

Behaviour of commands is controlled by class properties such as these:

class Show(command.LmiShowInstance):
 CALLABLE = 'lmi.scripts.service:get_instance'
 PROPERTIES = (
 'Name',
 'Caption',
 ('Enabled', lambda i: i.EnabledDefault == 2),
 ('Active', 'Started'),
 'Status')

Example above contains definition of Show command wrapper for instances of
LMI_Service. Its associated function is get_instance() located in
lmi.scripts.service module [7]. Properties used will be described
in detail later. Let’s just say,
that PROPERTIES specify a way how the instance is rendered.

Top-level commands

Are entry points of a script library. They are direct subcommands of lmi.
For example:

$ lmi help
$ lmi service list
$ lmi sw show openlmi-providers

help, service and sw are top-level commands. One script (such as
service above) can provide one or more of them. They need to be listed in a
setup.py script in entry_points argument of setup() function. More
details will be noted later in Setup script.

They contain usage string which is a documentation and prescription of
command-line arguments in one string. This string is printed when user
requests command’s help:

$ lmi help service

Usage string

looks like this:

"""
System service management.

Usage:
 %(cmd)s list [--all | --disabled]
 %(cmd)s start <service>

Options:
 --all List all services available.
 --disabled List only disabled services.
"""

Format of this string is very important. It’s parsed by a docopt [http://docopt.org/] command line
parser which uses it for parsing command-line arguments. Please refer to its
documentation for details.

Note

There is one deviation to common usage string. It’s the use of
%(cmd)s formatting mark. It is replaced with full command’s name.
Full name means that all subcommands and binary name prefixing current
command on command line are part of it. So for example full name of
command list in a following string passed to command line:

lmi sw list pkgs

is lmi sw list.

If parsing sw usage, it is just lmi sw.

The formatting mark is mandatory.

Options and arguments given on command-line are pre-processed before they are passed to end-point command. You
should get familier with it before writing your own usage strings.

End-point commands

Are associated with one or more function of script library. They handle the
following:

	call docopt [http://docopt.org/] parser on command line arguments

	make some name pre-processing on them (see
Options pre-processing)

	verify them (see End-point commands)

	transform them (see End-point commands)

	pass them to associated function

	collect results

	render them and print them

Developper of command wrappers needs to be familiar with each step. We will
describe them later in details.

There are following end-point commands available for subclassing:

	LmiCheckResult (see LmiCheckResult)

	LmiLister (see LmiLister)

	LmiInstanceLister (see LmiInstanceLister)

	LmiShowInstance (see LmiShowInstance)

They differ in how they render the result obtained from associated function.

These are documented in depth in End-point commands.

Command multiplexers

Provide a way how to group multiple commands under one. Suppose you want to
list packages, repositories and files. All of these use cases need different
arguments, and render different information thus they should be represented by
independent end-point commands. What binds them together is the user’s intent
to list something. He may wish to do other operation like show, add,
remove etc. with the same subject. Having all combination of these intents
and subjects would generate a lot of commands under the top-level one. Let’s
instead group them under particular intent like this:

	sw list packages

	sw list repositories

	sw list files

	sw show package

To reflect it in our commands hierarchy, we need to use
LmiCommandMultiplexer
command.

class Lister(command.LmiCommandMultiplexer):
 """ List information about packages, repositories or files. """
 COMMANDS = {
 'packages' : PkgLister,
 'repositories' : RepoLister,
 'files' : FileLister
 }

Where COMMANDS property maps command classes to their names. Each command
multiplexer consumes one command argument from command line, denoting its
direct subcommand and passes the rest of options to it. In this way we can
create arbitrarily tall command trees.

Top-level command is nothing else than a subclass of LmiCommandMultiplexer.

Specifying profile and class requirements

Most commands require some provider installed on managed machine to work
properly. Each such provider should be represented by an instance of
CIM_RegisteredProfile on remote broker. This instance looks like
this (in MOF syntax):

instance of CIM_RegisteredProfile {
 InstanceID = "OpenLMI+OpenLMI-Software+0.4.2";
 RegisteredOrganization = 1;
 OtherRegisteredOrganization = "OpenLMI";
 RegisteredVersion = "0.4.2";
 AdvertiseTypes = [2];
 RegisteredName = "OpenLMI-Software";
};

We are interested just in RegisteredName and RegisteredVersion
properties that we’ll use for requirement specification.

Requirement is written in LMIReSpL language. For its formal definition
refer to documentation of parser.
Since the language is quite simple, few examples should suffice:

	'OpenLMI-Software < 0.4.2'

	Requires OpenLMI Software provider to be installed in version lower
than 0.4.2.

	'OpenLMI-Hardware == 0.4.2 & Openlmi-Software >= 0.4.2'

	Requires both hardware and software providers to be installed in
particular version. Short-circuit evaluation is utilized here. It
means that in this example OpenLMI Software won’t be queried unless
OpenLMI Hardware is installed and having desired version.

	'profile "OpenLMI-Logical File" > 0.4.2'

	If you have spaces in the name of profile, surround it in double
quotes. profile keyword is optional. It could be also present in
previous examples.

Version requirements are not limited to profiles only. CIM classes may be
specified as well:

	'class LMI_SoftwareIdentity >= 0.3.0 & OpenLMI-LogicalFile'

	In case of class requirements the class keyword is mandatory. As
you can see, version requirement is optional.

	'! (class LMI_SoftwareIdentity | class LMI_UnixFile)'

	Complex expressions can be created with the use of brackets and other
operators.

One requirement is evaluated in these steps:

	Profile requirement

	
	Query CIM_RegisteredProfile for instances with
RegisteredName matching given name. If found, go to 2. Otherwise
query CIM_RegisteredSubProfile [10] for instances with
RegisteredName matching given name. If not found return
False.

	Select the (sub)profile with highest version and go to 3.

	If the requirement has version specification then compare it to the
value of RegisteredVersion using given operator. If the relation
does not apply, return False.

	Return True.

	Class requirement

	
	Get specified class. If not found, return False.

	If the requirement has version specification then compare it to the
value of Version [11] qualifier of
obtained class using given operator. And if the relation
does not apply, return False.

	Return True.

Now let’s take a look, where these requirements can be specified.
There is a special select command used to specify which command to load
for particular version on remote broker. It can be written like this:

from lmi.scripts.common.command import LmiSelectCommand

class SoftwareCMD(LmiSelectCommand):

 SELECT = [
 ('OpenLMI-Software >= 0.4.2 & OpenLMI-LogicalFile'
 , 'lmi.scripts.software.current.SwLFCmd')
 , ('OpenLMI-Software >= 0.4.2'
 , 'lmi.scripts.software.current.SwCmd')
 , ('OpenLMI-Software', 'lmi.scripts.software.pre042.SwCmd')
]

It says to load SwLFCmd command in case both OpenLMI Software and
OpenLMI LogicalFile providers are installed. If not, load the SwCMD from
current module for OpenLMI Software with recent version and fallback to
SwCmd for anything else. If the OpenLMI Software provider is not available
at all, no command will be loaded and exception will be raised.

Previous command could be used as an entry point in your setup.py script
(see the Entry points). There is also a utility that makes it look
better:

from lmi.scripts.common.command import select_command

SoftwareCMD = select_command('SoftwareCMD',
 ('OpenLMI-Software >= 0.4.2 & OpenLMI-LogicalFile'
 , 'lmi.scripts.software.current.SwLFCmd'),
 ('OpenLMI-Software >= 0.4.2', 'lmi.scripts.software.current.SwCmd'),
 ('OpenLMI-Software', 'lmi.scripts.software.pre042.SwCmd')
)

See also

Documentation of
LmiSelectCommand and
select_command.

And also notes on related LmiSelectCommand properties.

Command wrappers module

Usually consists of:

	license header

	usage dostring - parseable by docopt [http://docopt.org/]

	end-point command wrappers

	single top-level command

The top-level command is usally defined like this:

Service = command.register_subcommands(
 'Service', __doc__,
 { 'list' : Lister
 , 'show' : Show
 , 'start' : Start
 , 'stop' : Stop
 , 'restart' : Restart
 },
)

Where the __doc__ is a usage string and module’s doc string at the same
time. It’s mentioned in point 2. Service is a name, which will be listed
in entry_points dictionary described below. The
global variable’s name we assign to should be the same as the value of the
first argument to
register_subcommands(). The last
argument here is the dictionary mapping all subcommands of service to their
names [8].

Egg structure

Script library is distributed as a python egg, making it easy to distribute
and install either to system or user directory.

Following tree shows directory structure of service egg residing in
upstream git [https://github.com/openlmi/openlmi-scripts]:

commands/service
├── lmi
│ ├── __init__.py
│ └── scripts
│ ├── __init__.py
│ └── service
│ ├── cmd.py
│ └── __init__.py
├── Makefile
├── README.md
├── setup.cfg
└── setup.py.skel

This library then can be imported with:

from lmi.scripts import service

commands/service/lmi/scripts/service must be a package (directory with
__init__.py) because lmi.scripts is a namespace package. It
can have arbitrary number of modules and subpackages. The care should be taken
to make the API easy to use and learn though.

Use provided commands/make_new.py script to
generated it.

Setup script

Follows a minimal example of setup.py.skel script for service library.

from setuptools import setup, find_packages
setup(
 name="openlmi-scripts-service",
 version="@@VERSION@@",
 description='LMI command for system service administration.',
 url='https://github.com/openlmi/openlmi-scripts',
 platforms=['Any'],
 license="BSD",
 install_requires=['openlmi-scripts'],
 namespace_packages=['lmi', 'lmi.scripts'],
 packages=['lmi', 'lmi.scripts', 'lmi.scripts.service'],

 entry_points={
 'lmi.scripts.cmd': [
 'service = lmi.scripts.service.cmd:Service',
],
 },
)

It’s a template with just one variable @@VERSION@@ being replaced with
recent scripts version by running make setup command.

Entry points

The most notable argument here is entry_points which is a dictionary
containing python namespaces where plugins are registered. In this case, we
register single top-level command called
service in lmi.scripts.cmd namespace. This particular namespace is used
by LMI metacommand when searching for registered user commands. Service is
a command multiplexer, created with a call to
register_subcommands() grouping
end-point commands together.

Next example shows set up with more top-level commands [9]:

entry_points={
 'lmi.scripts.cmd': [
 'fs = lmi.scripts.storage.fs_cmd:Fs',
 'partition = lmi.scripts.storage.partition_cmd:Partition',
 'raid = lmi.scripts.storage.raid_cmd:Raid',
 'lv = lmi.scripts.storage.lv_cmd:Lv',
 'vg = lmi.scripts.storage.vg_cmd:Vg',
 'storage = lmi.scripts.storage.storage_cmd:Storage',
 'mount = lmi.scripts.storage.mount_cmd:Mount',
],
},

Conventions

There are several conventions you should try to follow in your shiny scripts.

Logging messages

In each module where logging facilities are going to be used, define global
varibale LOG like this:

from lmi.scripts.common import get_logger

LOG = get_logger(__name__)

It’s a callable used throughout particular module in this way:

LOG().warn('All the data of "%s" will be lost!', partition)

Each message should be a whole sentence. It shall begin with an upper case
letter and end with a dot or other sentence terminator.

Bad example:

LOG().info('processing %s', card)

Exceptions

Again all the exceptions should be initialized with messages forming
a whole sentence.

They will be catched and printed on stderr by LMI metacommand. If the
Trace option in Section [Main] is on, traceback will be printed. There is
just one exception. If the exception inherits from
LmiError, traceback won’t be printed
unless verbosity level is the highest one as well:

self refers to some command
self.app.config.verbosity == self.app.config.OUTPUT_DEBUG

This is a feature allowing for common error use-cases to be gracefully
handled. In your scripts you should stick to using
LmiFailed for such exceptions.

Following is an example of such a common error-case, where printing traceback
does not add any interesting information:

iname = ns.LMI_Service.new_instance_name({
 "Name": service,
 "CreationClassName" : "LMI_Service",
 "SystemName" : cs.Name,
 "SystemCreationClassName" : cs.CreationClassName
})
inst = iname.to_instance()
if inst is None:
 raise errors.LmiFailed('No such service "%s".' % service)
process the service instance

service is a name provided by user. If such a service is not found,
inst will be assigned None. In this case we don’t want to continue in
script’s execution thus we raise an exception. We provide very clear message
that needs no other comment. We don’t want any traceback to be printed, thus
the use of LmiFailed.

Debugging

To hunt down problems of your script during its development, metacommand
comes with few options to assist you:

	--trace

	This option turns on logging of tracebacks. Any exception but
LmiError will be logged with
traceback to stderr unless --quite option is on.
LmiError will be logged with
traceback if the verbosity (-v) is highest as well.

	-v

	Raise a verbosity. Pass it twice to make the verbosity highest. That
will cause a lot of messages being produced to stderr. It also
turns on logging of tracebacks for
LmiError if --trace option is
on as well.

	--log-file

	Allows to specify output file, where logging takes place. Logging level
is not affected by -v option. It can be specified in configuration
file.

While you debug it’s convenient to put above in your configuration file
~/.lmirc:

[Main]
Print tracebacks.
Trace = True

[Log]
OutputFile = /tmp/lmi.log
Logging level for OutputFile.
Level = DEBUG

See also

Configuration

See also

Docopt [http://docopt.org/] documentation, Command classes and Command properties.

	[1]	Described by a POSIX.

	[2]	Default namespace is "root/cimv2".

	[3]	view: https://fedorahosted.org/openlmi/browser/openlmi-providers
git: ssh://git.fedorahosted.org/git/openlmi-providers.git/

	[4]	Simplified here means that there are no documentation strings
and no type checking.

	[5]	If logging to a file is enabled in configuration.

	[6]	Also called a top-level command.

	[7]	Precisely in an __init__.py module of this package.

	[8]	Taken from older version of storage script.

	[9]	These names must exactly match the names in usage strings.

	[10]	This is a subclass of CIM_RegisteredProfile thus it has the
same properties.

	[11]	If the Version qualifier is missing, -1 will be used
for comparison instead of empty string.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

 	Command development

Command classes

Before reading this, please make sure you’re familiar with
Command wrappers overview.

End-point commands

Were already introduced before (see End-point commands).
We’ll dive into details here.

Every end-point command allows to verify and transform options parsed by
docopt [http://docopt.org/] before they are passed to associated function. This can happen in
methods:

	verify_options(self, options)

	Taking pre-processed options dictionary as a first argument.
Properties affecting this pre-processing can be found in
Options pre-processing. This method shall check option values or
their combinations and raise
LmiInvalidOptions if any inconsistency
is discovered.

Example usage:

class FileLister(command.LmiInstanceLister):
 DYNAMIC_PROPERTIES = True

 def verify_options(self, options):
 file_types = { 'all', 'file', 'directory', 'symlink'
 , 'fifo', 'device'}
 if (options['--type'] is not None
 and options['--type'] not in file_types):
 raise errors.LmiInvalidOptions(
 'Invalid file type given, must be one of %s' %
 file_types)

See also

API documentation on
verify_options()

	transform_options(self, options)

	Takes verified options dictionary which it modifies in place.

Example usage:

class Lister(command.LmiLister):
 COLUMNS = ('Device', 'Name', "ElementName", "Type")

 def transform_options(self, options):
 """
 Rename 'device' option to 'devices' parameter name for better
 readability.
 """
 options['<devices>'] = options.pop('<device>')

See also

API documentation on
transform_options()

Above methods can be used to process options in a way that any script library
function can be called. In case we need more control over what is called or
when we want to decide at runtime which function shall be called, we may override
execute() method
instead. Example of this may be found at Associating a function.

LmiCheckResult

This command invokes associated function on hosts in session, collects results
from them and compares them to an expected value. It does not produce any
output, when all returned values are expected.

This command class is very useful when wrapping up some CIM class’s method
such as LMI_Service::StartService(). Example can be seen in
Property descriptions.

Its specific properties are listed in LmiCheckResult properties.

See also

API documentation on
LmiCheckResult

LmiLister

Prints tablelike data. It expects associated function to return its result
in form:

[row1, row2, ...]

Where rowX is a tuple containing row values. Each such row is list or
tuple of the same length. There is a property COLUMNS defining column
names [1] (see LmiLister properties). Generator is preferred over
a list of rows.

class RaidList(command.LmiLister):
 COLUMNS = ('Name', "Level", "Nr. of members")

 def execute(self, ns):
 """
 Implementation of 'raid list' command.
 """
 for r in raid.get_raids(ns):
 members = raid.get_raid_members(ns, r)
 yield (r.ElementName, r.Level, len(members))

 # Could also be written as:
 #return [(r.ElementName, r.Level, len(raid.get_raid_members(ns, r)))
 # for r in raid.get_raids(ns)]

produces:

$ lmi -h $HOST storage raid list
Name Level Nr. of members
raid5 5 3

If COLUMNS property is omitted, returned value shall take the following
form instead:

(columns, data)

Where columns has the same meaning as COLUMNS as a class property and
data is the result of previous case [2].

def get_thin_pools(ns, verbose):
 for vg in lvm.get_tps(ns):
 extent_size = size2str(vg.ExtentSize, self.app.config.human_friendly)
 if verbose:
 total_space = size2str(vg.TotalManagedSpace,
 self.app.config.human_friendly)
 yield (vg.ElementName, extent_size, total_space)
 else:
 yield (vg.ElementName, extent_size)

class ThinPoolList(command.LmiLister):

 def execute(self, ns):
 """
 Implementation of 'thinpool list' command.
 """
 columns = ['ElementName', "ExtentSize"]
 if self.app.config.verbose:
 columns.extend(["Total space"])
 return (columns, get_thin_pools(ns, self.app.config.verbose))

Produces:

$ lmi -H -h $HOST storage thinpool list
ElementName ExtentSize
tp1 4M
$ # The same with increased verbosity
$ lmi -v -H -h $HOST storage thinpool list
ElementName ExtentSize Total space
tp1 4M 1024M

See also

API documentation on
LmiLister

LmiInstanceLister

Is a variant of LmiLister. Instead of rows being tuples, here they are
instances of some CIM class. Instead of using COLUMNS property for
specifying columns labels, PROPERTIES is used for the same purpose here.
Its primary use is in specifying which properties of instances shall be
rendered in which column. This is described in detail in
LmiShowInstance and LmiInstanceLister properties.

The expected output of associated function is therefore:

[instance1, instance2, ...]

Again, usage of generators is preferred.

See also

API documentation on
LmiInstanceLister

LmiShowInstance

Renders a single instance of some CIM class. It’s rendered in a form of
two-column table, where the first column contains property names and
the second their corresponding values. Rendering is controlled in the same
way as for LmiInstanceLister (see LmiShowInstance and LmiInstanceLister properties).

See also

API documentation on
LmiShowInstance

Command multiplexers

Group a list of commands under one. They were introduced
earlier. Their children
can be end-point commands as well as multiplexers. Thus arbitrary tall command
trees can be constructed - though not being very practical.

Multiplexer works like this

	it consumes one argument from command line

	selects one of its subcommands based on consumed argument

	passes the rest of arguments to selected subcommand and executes it

	returns the result to a caller

For example consider following list of arguments:

storage raid create --name raid5 5 /dev/vdb /dev/vdc /dev/vdd

LMI metacommand consumes storage command multiplexer and passes the rest
to it:

Storage().run(["raid", "create", "--name", "raid5", "5", "/dev/vdb",
 "/dev/vdc", "/dev/vdd"])

Storage, which can be defined like this:

Storage = command.register_subcommands(
 'storage', __doc__,
 { 'tree' : Tree,
 'partition': lmi.scripts.storage.cmd.partition.Partition,
 'fs' : lmi.scripts.storage.cmd.fs.FS,
 'raid' : lmi.scripts.storage.cmd.raid.Raid,
 },
)

, consumes the first argument and passes the rest to the raid command which
is again a multiplexer defined like this:

class Raid(command.LmiCommandMultiplexer):
 OWN_USAGE = __doc__
 COMMANDS = {
 'list' : RaidList,
 'create' : RaidCreate,
 'delete' : RaidDelete,
 'show' : RaidShow,
 }

create end-point command will then be invoked with:

["--name", "raid5", "5", "/dev/vdb", "/dev/vdc", "/dev/vdd"]

Note

Each above multiplexer is defined in its own module with usage string at
its top. It is far more legible than having couple of multiplexers sharing
single module.

Splitting usage string

Multiplexers delegating work to children multiplexers, like in the example above,
need to be given a special usage string.

Every multiplexer subcommand in the usage string must be followed with:

<cmd> [<args> ...]

Like in the usage of Storage above:

"""
Basic storage device information.

Usage:
 %(cmd)s tree [<device>]
 %(cmd)s partition <cmd> [<args> ...]
 %(cmd)s fs <cmd> [<args> ...]
 %(cmd)s raid <cmd> [<args> ...]
"""

cmd and args may be renamed to your liking. Only the form matters.
It ensures that anything after the cmd won’t be inspected by this
multiplexer – the work is delegated to the children.

As you can see, end-point and multiplexer commands may be freely mixed. The
tree end-point command does not have its own usage string because all its
arguments are parsed by Storage.

See also

General and class specific properties in Command properties.

	[1]	Having the same length as each row in returned data.

	[2]	Generator or a list of rows.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	LMI metacommand

 	Command development

Command properties

As noted before in End-point commands, command at first tries to
process input arguments, calls an associated function and then renders its
result. We’ll now introduce properties affecting this process.

Command class properties are written in their bodies and handled by their
metaclasses. After being processed, they are removed from class. So they are
not accessible as class attributes or from their instances.

Options pre-processing

Influencing properties:

	OPT_NO_UNDERSCORES (opt_no_underscores)

	ARG_ARRAY_SUFFIX (arg_array_suffix)

	OWN_USAGE (own_usage)

docopt [http://docopt.org/] will make a dictionary of options based on usage string such
as the one above (Usage string). Options dictionary matching this
example looks like this:

{ 'list' : bool # Usage:
, '--all' : bool # %(cmd)s list [--all | --disabled]
, '--disabled' : bool # %(cmd)s start <service>
, 'start' : bool #
, '<service>' : str # Options:
} # --all List all services available.
 # --disabled List only disabled services.

Values of this dictionary are passed to an associated function as arguments
with names created out of matching keys. Since argument names can not contain
characters such as <, >, -, etc., these need to be replaced.
Process of renaming of these options can be described by the following pseudo
algorithm:

	arguments enclosed in brackets are un-surrounded – brackets get
removed

"<service>" -> "service"

	arguments written in upper case are made lower cased

"FILE" -> "file"

	prefix of short and long options made of dashes shall be replaced with
single underscore

"-a" -> "_a"
"--all" -> "_all"

	any non-empty sequence of characters not allowed in python’s identitier
shall be replaced with a single underscore

"_long-option" -> "_long_option"
"special--cmd-#2" -> "special_cmd_2"

Points 3 and 4 could be merged into one. But we separate them due to effects
of OPT_NO_UNDERSCORES property described below.

See also

Notes in End-point commands for method
:py:meth`lmi.scripts.common.command.endpoint.LmiEndPointCommand.transform_options`
which is issued before the above algorithm is run.

Treating dashes

Single dash and double dash are special cases of commands.

Double dash in usage string allows to pass option-like argument to a script
e.g.:

lmi file show -- --file-prefix-with-double-dash

Without the '--' argument prefixing the file, docopt [http://docopt.org/] would throw an error
because of --file-prefix-with-double-dash being treated as an unknown
option. This way it’s correctly treated as an argument <file> given the
usage string:

Usage: %(cmd)s file show [--] <file>

Double dash isn’t passed to an associated function.

Single dash on a command line is commonly used to specify stdout or
stdint. For example in the following snippet:

Usage: %(cmd)s file copy (- | <file>) <dest>

'-' stands for standard input which will be read instead of a file if the
user wishes to.

Property descriptions

	OPT_NO_UNDERSCORES : bool (defaults to False)

	Modifies point 3 of options pre-processing. It causes the prefix of dashes
to be completely removed with no replacement:

"--long-options" -> "long-option"

This may not be save if there is a command with the same name as the
option being removed. Setting this property to True will cause
overwriting the command with a value of option. A warning shall be
echoed if such a case occurs.

	ARG_ARRAY_SUFFIX : str (defaults to "")

	Adds additional point (5) to options_transform_algorithm. All
repeatable arguments, resulting in a list of items, are renamed to
<original_name><suffix> [1]. Repeatable argument in usage string
looks like this:

"""
Usage: %(cmd)s start <service> ...
"""

Causing all of the <service> arguments being loaded into a list
object.

	OWN_USAGE : bool (defaults to False)

	Says whether the documentation string of this class is a usage string.
Each command in hierarchy can have its own usage string.

This can also be assigned a usage string directly:

class MySubcommand(LmiCheckResult):
 """
 Class doc string.
 """
 OWN_USAGE = "Usage: %(cmd)s --opt1 --opt1 <file> <args> ..."
 EXPECT = 0

But using a boolean value is more readable:

class MySubcommand(LmiCheckResult):
 """
 Usage: %(cmd)s --opt1 --opt1 <file> <args> ...
 """
 OWN_USAGE = True
 EXPECT = 0

Note

Using own usage strings in end-point commands is not
recommended. It brings a lot of redundancy and may prove problematic
to modify while keeping consistency among hierarchically nested
usages.

It’s more readable to put your usage strings in your command
multiplexers and put each of them in its own module.

See also

Command multiplexers

Associating a function

Influencing properties:

	CALLABLE (callable)

When command is invoked, its method
execute() will
get verified and transformed options as positional and keyword arguments.
This method shall pass them to an associated function residing in script
library and return its result on completion.

One way to associate a function is to use CALLABLE property. The other
is to define very own execute() method like this:

class Lister(command.LmiInstanceLister):
 PROPERTIES = ('Name', "Started", 'Status')

 def execute(self, ns, _all, _disabled, _oneshot):
 kind = 'enabled'
 if _all:
 kind = 'all'
 elif _disabled:
 kind = 'disabled'
 elif _oneshot:
 kind = 'oneshot'
 for service_inst in service.list_services(ns, kind):
 yield service_inst

This may come handy if the application object [2] needs to be accessed or
if we need to decide which function to call based on command line options.

Property descriptions

	CALLABLE : str (defaults to None)

	This is a mandatory option if
execute()
method is not overriden. It may be a string composed of a full path of
module and its callable delimited with ':':

CALLABLE = 'lmi.scripts.service:start'

Causes function start() of 'lmi.scripts.service' module to be
associated with command.

Callable may also be assigned directly like this:

from lmi.scripts import service
class Start(command.LmiCheckResult):
 CALLABLE = service.start
 EXPECT = 0

The first variant (by assigning string) comes handy if the particular
module of associated function is not yet imported. Thus delaying the import
until the point of function’s invocation - if the execution comes to this
point at all. In short it speeds up execution of LMI metacommand by
reducing number of module imports that are not needed.

Function invocation

Influencing properties:

	NAMESPACE (namespace)

Property descriptions

	NAMESPACE : str (defaults to None)

	This property affects the first argument passed to an associated function.
Various values have different impact:

	Value
	Value of first argument.
	Its type

	None
	Same impact as value "root/cimv2"
	lmi.shell.LMINamespace.LMINamespace

	False
	Raw connection object
	lmi.shell.LMIConnection.LMIConnection

	any path
	Namespace object with given path
	lmi.shell.LMINamespace.LMINamespace

This usually won’t need any modification. Sometimes perhaps associated
function might want to access more than one namespace, in that case an
instance of lmi.shell.LMIConnection.LMIConnection might prove more useful.

Namespace can also be overriden globally in a configuration file or with
an option on command line.

Output rendering

All these options begin with FMT_ which is a shortcut for formatter as
they become options to formatter objects. These can be defined not only in
end-point commands but also in multiplexers. In the latter case they set the
defaults for all their direct and indirect child commands.

Note

These options override configuration settings and command line options.
Therefor use them with care.

They are:

	FMT_NO_HEADINGS : bool (defaults to False)

	Allows to suppress headings (column or row names) in the output.

Note

With LmiLister command it’s preferable to set the COLUMNS
property to empty list instead. Otherwise associated function is
expected to return column headers as a first row in its result.

	FMT_HUMAN_FRIENDLY : bool (defaults to False)

	Forces the output to be more pleasant to read by human beings.

Command specific properties

Each command class can have its own specific properties. Let’s take a look on
them.

LmiCommandMultiplexer

	COMMANDS : dict (mandatory)

	Dictionary assigning subcommands to their names listed in usage string.
Example follows:

class MyCommand(LmiCommandMultiplexer):
 '''
 My command description.

 Usage: %(cmd)s mycommand (subcmd1 | subcmd2)
 '''
 COMMANDS = {'subcmd1' : Subcmd1, 'subcmd2' : Subcmd2}
 OWN_USAGE = True

Where Subcmd1 and Subcmd2 are some other LmiBaseCommand
subclasses. Documentation string must be parseable with docopt [http://docopt.org/].

COMMANDS property will be translated to
child_commands()
class method by
MultiplexerMetaClass.

	FALLBACK_COMMAND : lmi.scripts.common.command.endpoint.LmiEndPointCommand

	Command class used when no command defined in COMMANDS dictionary is
passed on command line.

Take for example this usage string:

"""
Display hardware information.

Usage:
 %(cmd)s [all]
 %(cmd)s system
 %(cmd)s chassis
"""

This suggests there are tree commands defined taking care of listing
hardware informations. Entry point definition could look like this:

class Hardware(command.LmiCommandMultiplexer):
 OWN_USAGE = __doc__ # usage string from above
 COMMANDS = { 'all' : All
 , 'system' : System
 , 'chassis' : Chassis
 }
 FALLBACK_COMMAND = All

Without the FALLBACK_COMMAND property, the multiplexer would not
handle the case when 'all' argument is omitted as is suggested in
the usage string. Adding it to command properties causes this multiplexer
to behave exactly as All subcommand in case that no command
is given on command line.

LmiSelectCommand properties

Following properties allow to define profile and class requirements for
commands.

	SELECT : list (mandatory)

	Is a list of pairs (condition, command) where condition is an
expression in LMIReSpL language. And command is either a string with
absolute path to command that shall be loaded or the command class itself.

Small example:

SELECT = [
 ('OpenLMI-Hardware < 0.4.2'
 , 'lmi.scripts.hardware.pre042.PreCmd'
)
 , ('OpenLMI-Hardware >= 0.4.2 & class LMI_Chassis == 0.3.0'
 , HwCmd
)
]

It says: Let the PreHwCmd command do the job on brokers having
openlmi-hardware package older than 0.4.2. Use the HwCmd
anywhere else where also the LMI_Chassis CIM class in version 0.3.0
is available.

First matching condition wins and assigned command will be passed all the
arguments. If no condition can be satisfied and no default command is set,
an exception will be raised.

See also

Definition of LMIReSpL mini-language:
parser

	DEFAULT : string or reference to command class

	Defines fallback command used in case no condition in SELECT can be
satisfied.

LmiLister properties

	COLUMNS : tuple

	Column names. It’s a tuple with name for each column. Each row of data
shall then contain the same number of items as this tuple. If omitted,
associated function is expected to provide them in the first row of
returned list. It’s translated to
get_columns()
class method.

If set to empty list, no column headers will be printed. Every item of
returned list of associated function will be treated as data. Note that
setting this to empty list makes the FMT_NO_HEADINGS property
redundant.

LmiShowInstance and LmiInstanceLister properties

These two classes expect, as a result of their associated function, an instance
or a list of instances of some CIM class. They take care of rendering them to
standard output. Thus their properties affect the way how their properties
are rendered.

	PROPERTIES : tuple

	Property names in the same order as the properties shall be listed. Items
of this tuple can take multiple forms:

	Property Name : str

	Will be used for the name of column/property in output table and the
same name will be used when obtaining the value from instance. Thus
this form may be used only if the property name of instance can appear
as a name of column.

	(Column Name, Property Name) : (str, str)

	This pair allows to render value of property under different name
(Column Name).

	(Column Name, getter) : (str, callable)

	This way allows the value to be arbitrarily computed. The second
item is a callable taking one and only argument – the instance of
class to be rendered.

Example below shows different ways of rendering attributes for instances
of LMI_Service CIM class:

class Show(command.LmiShowInstance):
 CALLABLE = 'lmi.scripts.service:get_instance'
 PROPERTIES = (
 'Name',
 ('Enabled', lambda i: i.EnabledDefault == 2),
 ('Active', 'Started'))

First property will be shown with the same label as the name of property.
Second one modifies the value of EnabledDefault from int to
bool representing enabled state. The last one uses different label for
property name Started.

	DYNAMIC_PROPERTIES : bool (defaults to False)

	Whether the associated function is expected to return the properties tuple
itself. If True, the result of associated function must be in form:

(properties, data)

Where properties have the same inscription and meaning as a
PROPERTIES property of class.

Otherwise, only the data is expected.

Note

Both LmiShowInstance
and LmiInstanceLister
expect different data to be returned. See LmiShowInstance
and LmiInstanceLister for more information.

Note

Omitting both PROPERTIES and DYNAMIC_PROPERTIES makes the
LmiShowInstance render all attributes of instance. For
LmiInstanceLister this is not allowed, either DYNAMIC_PROPERTIES
must be True or PROPERTIES must be filled.

LmiCheckResult properties

This command typically does not produce any output if operation succeeds. The
operation succeeds if the result of associated function is expected. There are
more ways how to say what is an expected result. One way is to use EXPECT
property. The other is to provide very own implementation of
check_result
method.

	EXPECT: (mandatory)

	Any value can be assigned to this property. This value is then expected
to be returned by associated function. Unexpected result is treated
as an error.

A callable object assigned here has special meaning. This object must
accept exactly two parameters:

	options - Dictionary with parsed command line options returned by
docopt [http://docopt.org/] after being processed by
transform_options().

	result - Return value of associated function.

If the associated function does not return an expected result, an error
such as:

There was 1 error:
host kvm-fedora-20
 0 != 1

will be presented to user which is not much helpful. To improve user
experience, the
check_result
method could be implemented instead. Note the example:

class Update(command.LmiCheckResult):
 ARG_ARRAY_SUFFIX = '_array'

 def check_result(self, options, result):
 """
 :param list result: List of packages successfuly installed
 that were passed as an ``<package_array>`` arguments.
 """
 if options['<package_array>'] != result:
 return (False, ('failed to update packages: %s' %
 ", ".join(set(options['<package_array>'])
 - set(result))))
 return True

The execute() method is not listed to make the listing shorter. This
command could be used with usage string such as:

%(cmd)s update [--force] [--repoid <repository>] <package> ...

In case of a failure, this would produce output like this one:

$ lmi sw update wt wt-doc unknownpackage
There was 1 error:
host kvm-fedora-20
 failed to update packages: unknownpackage

See also

Docopt [http://docopt.org/] home page and its git: http://github.org/docopt/docopt.

	[1]	Angle brackets here just mark the boundaries of name components. They
have nothing to do with arguments.

	[2]	Application object is accessible through app property of each
command instance.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

OpenLMI Tools API reference

This is a generated documentation from OpenLMI Tools sources.

Generated from version: 0.10.1

Contents:

	LMIShell API reference
	LMIBaseObject

	LMICIMXMLClient

	LMIClass

	LMICompleter

	LMIConnection

	LMIConsole

	LMIConstantValues

	LMIDecorators

	LMIExceptions

	LMIFormatter

	LMIHelper

	LMIIndicationListener

	LMIInstanceName

	LMIInstance

	LMIJob

	LMIMethod

	LMINamespace

	LMIObjectFactory

	LMIReturnValue

	LMIShellCache

	LMIShellClient

	LMIShellConfig

	LMIShellLogger

	LMIShellOptions

	LMIShellVersion

	LMISubscription

	LMIUtil

	LMIWSMANClient

	LMI Scripts API reference
	LMI Scripts common library reference

	Account Script python reference

	Hardware Script python reference

	Journald Script python reference

	Locale Script python reference

	Logical File Script python reference

	Networking Script python reference

	Power Management Script python reference

	Realmd Script python reference

	Service Script python reference

	Service Script python reference

	SSSD Script python reference

	Storage Script python reference

	System Script python reference

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

LMIShell API reference

This is a generated documentation from LMIShell‘s sources.

Generated from version: 0.10.1

Contents:

	LMIBaseObject

	LMICIMXMLClient

	LMIClass

	LMICompleter

	LMIConnection

	LMIConsole

	LMIConstantValues

	LMIDecorators

	LMIExceptions

	LMIFormatter

	LMIHelper

	LMIIndicationListener

	LMIInstanceName

	LMIInstance

	LMIJob

	LMIMethod

	LMINamespace

	LMIObjectFactory

	LMIReturnValue

	LMIShellCache

	LMIShellClient

	LMIShellConfig

	LMIShellLogger

	LMIShellOptions

	LMIShellVersion

	LMISubscription

	LMIUtil

	LMIWSMANClient

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIBaseObject

	
class lmi.shell.LMIBaseObject.LMIWrapperBaseObject(conn)

	Base class for all LMI wrapper classes, such as LMINamespace,
LMIClass, LMIInstanceName,
LMIInstance, LMIMethod.

	Parameters:	conn (LMIConnection) – connection object

	
connection

	Property returning LMIConnection object.

	Returns:	connection object

	Return type:	LMIConnection

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMICIMXMLClient

	
class lmi.shell.LMICIMXMLClient.LMICIMXMLClient(uri, username='', password='', verify_server_cert=True, key_file=None, cert_file=None)

	CIM-XML client.

	Parameters:	
	uri (string) – URI of the CIMOM

	username (string) – account, under which, the CIM calls will be
performed

	password (string) – user’s password

	verify_server_cert (bool) – indicates, whether a server side
certificate needs to be verified, if SSL used; default value is True

	key_file (string) – path to x509 key file; default value is None

	cert_file (string) – path to x509 cert file; default value is None

	
call_method(*args, **kwargs)

	Executes a method within a given instance.

	Parameters:	
	instance – object, on which the method will be executed. The
object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	method (string) – string containing a method name

	params (dictionary) – parameters passed to the method call

	Returns:	LMIReturnValue object with rval set to return
value of the method call, rparams set to returned parameters from
the method call, if no error occurs; otherwise rval is set to -1
and errorstr to appropriate error string

	Raises:	CIMError, ConnectionError,
TypeError

	
connect(*args, **kwargs)

	Connects to CIMOM.

NOTE: Applicable only wbem lmiwbem is used.

	
create_instance(*args, **kwargs)

	Creates a new wbem.CIMInstance object.

	Parameters:	
	classname (string) – class name of a new instance

	namespace (string) – namespace, of the new instance

	properties (dictionary) – property names and values

	qualifiers (dictionary) – qualifier names and values

	property_list (list) – list for property filtering; see
wbem.CIMInstance

	Returns:	new wbem.CIMInstance, if no error occurs; otherwise
None is returned

	Raises:	CIMError, ConnectionError

	
delete_instance(*args, **kwargs)

	Deletes a wbem.CIMInstance from the CIMOM side.

	Parameters:	instance – object to be deleted. The object needs to be instance
of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	Returns:	LMIReturnValue object with rval set to True,
if no error occurs; otherwise rval is set to False and
errorstr is set to corresponding error string

	Raises:	CIMError, ConnectionError,
TypeError

	
disconnect()

	Disconnects from CIMOM.

NOTE: Applicable only wbem lmiwbem is used.

	
dummy()

	Sends a “dummy” request to verify credentials.

	Returns:	LMIReturnValue with rval set to True, if
provided credentials are OK; False otherwise. If LMIShell uses
exceptions, CIMError or ConnectionError will
be raised.

	Raises:	CIMError, ConnectionError

	
exec_query(*args, **kwargs)

	Executes a query and returns a list of wbem.CIMInstance
objects.

	Parameters:	
	query_lang (string) – query language

	query (string) – query to execute

	namespace (string) – target namespace for the query

	Returns:	LMIReturnValue object with rval set to list
of wbem.CIMInstance objects, if no error occurs;
otherwise rval is set to None and errorstr is set to
corresponding error string

	Raises:	CIMError, ConnectionError

	
get_associator_names(*args, **kwargs)

	Returns a list of associated wbem.CIMInstanceName objects
with an input instance.

	Parameters:	
	instance – for this object the list of associated
wbem.CIMInstanceName will be returned. The object needs
to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	limit (int) – unused

	Returns:	list of associated wbem.CIMInstanceName objects
with an input instance, if no error occurs; otherwise an empty list
is returned

	Raises:	CIMError, ConnectionError,
TypeError

	
get_associators(*args, **kwargs)

	Returns a list of associated wbem.CIMInstance objects with
an input instance.

	Parameters:	
	instance – for this object the list of associated
wbem.CIMInstance objects will be returned. The object
needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter.

	IncludeQualifiers (bool) – indicates, if all qualifiers for each
object (including qualifiers on the object and on any returned
properties) shall be included as <QUALIFIER> elements in the
response.

	IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN
attribute shall be present on all appropriate elements in each
returned object.

	PropertyList (list) – if not None, the members of the array define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If it is None, no additional filtering is defined.

	limit (int) – unused

	Returns:	list of associated wbem.CIMInstance objects with
an input instance, if no error occurs; otherwise an empty list is
returned

	Raises:	CIMError, ConnectionError,
TypeError

	
get_class(*args, **kwargs)

	Returns a wbem.CIMClass object.

	Parameters:	
	classname (string) – class name

	namespace (string) – – namespace name, from which the
wbem.CIMClass should be retrieved; if None, default
namespace will be used (NOTE: see wbem)

	LocalOnly (bool) – indicates, if only local members should be
present in the returned wbem.CIMClass; any CIM elements
(properties, methods, and qualifiers), except those added or
overridden in the class as specified in the classname input
parameter, shall not be included in the returned class.

	IncludeQualifiers (bool) – indicates, if qualifiers for the class
(including qualifiers on the class and on any returned properties,
methods, or method parameters) shall be included in the response.

	IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN
attribute shall be present on all appropriate elements in the
returned class.

	PropertyList (list) – if present and not None, the members of the
list define one or more property names. The returned class shall
not include elements for properties missing from this list. Note
that if LocalOnly is specified as True, it acts as an additional
filter on the set of properties returned. For example, if property
A is included in the PropertyList but LocalOnly is set to True and
A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no
properties are included in the response. If the PropertyList input
parameter is None, no additional filtering is defined.

	Returns:	LMIReturnValue object with rval set to
wbem.CIMClass, if no error occurs; otherwise rval is
set to None and errorstr to appropriate error string

	Raises:	CIMError, ConnectionError

	
get_class_names(*args, **kwargs)

	Returns a list of class names.

	Parameters:	
	namespace (string) – namespace, from which the class names list
should be retrieved; if None, default namespace will be used
(NOTE: see wbem)

	ClassName (string) – defines the class that is the basis for the
enumeration. If the ClassName input parameter is absent, this
implies that the names of all classes.

	DeepInheritance (bool) – if not present, of False, only the names
of immediate child subclasses are returned, otherwise the names of
all subclasses of the specified class should be returned.

	Returns:	LMIReturnValue object with rval set to a
list of strings containing class names, if no error occurs;
otherwise rval is set to None and errorstr
contains an appropriate error string

	Raises:	CIMError, ConnectionError

	
get_instance(*args, **kwargs)

	Returns a wbem.CIMInstance object.

	Parameters:	
	path – path of the object, which is about to be retrieved. The
object needs to be instance of following classes:

	wbem.CIMInstanceName

	wbem.CIMInstance

	LMIInstanceName

	LMIInstance

	LocalOnly (bool) – indicates if to include the only elements
(properties, methods, references) overridden or defined in the
class

	IncludeQualifiers (bool) – indicates, if all Qualifiers for the
class and its elements shall be included in the response

	IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN
attribute shall be present on all appropriate elements in the
returned class

	PropertyList (list) – if present and not None, the members of the
list define one or more property names. The returned class shall
not include elements for properties missing from this list. Note
that if LocalOnly is specified as True, it acts as an additional
filter on the set of properties returned. For example, if property
A is included in the PropertyList but LocalOnly is set to True and
A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no
properties are included in the response. If the PropertyList input
parameter is None, no additional filtering is defined.

	Returns:	LMIReturnValue object, where rval is set to
wbem.CIMInstance object, if no error occurs; otherwise
rval is set to None and errorstr is set to corresponding
error string.

	Raises:	CIMError, ConnectionError,
TypeError

	
get_instance_names(*args, **kwargs)

	Returns a list of wbem.CIMInstanceName objects.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace name, where the instance names live

	inst_filter (dictionary) – dictionary containing filter values. The
key corresponds to the primary key of the
wbem.CIMInstanceName; value contains the filtering
value.

	limit (int) – unused

	kwargs (dictionary) – supported keyword arguments (these are
deprecated)

	Key or key (string) – filtering key, see above

	Value or value (string) – filtering value, see above

	Returns:	LMIReturnValue object with rval contains a
list of wbem.CIMInstanceName objects, if no error
occurs; otherwise rval is set to None and errorstr contains
appropriate error string

	Raises:	LMIFilterError, CIMError,
ConnectionError

	
get_instances(*args, **kwargs)

	Returns a list of wbem.CIMInstance objects.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace, where the instances live

	inst_filter (dictionary) – dictionary containing filter values. The
key corresponds to the primary key of the
wbem.CIMInstanceName; value contains the filtering
value.

	client_filtering (bool) – if True, client-side filtering will be
performed, otherwise the filtering will be done by a CIMOM. Default
value is False.

	limit (int) – unused

	kwargs (dictionary) – supported keyword arguments (these are
deprecated)

	Key or key (string) – filtering key, see above

	Value or value (string) – filtering value, see above

	Returns:	LMIReturnValue object with rval set to a
list of wbem.CIMIntance objects, if no error occurs;
otherwise rval is set to None and errorstr is set to
corresponding error string.

	Raises:	CIMError, ConnectionError

	
get_reference_names(*args, **kwargs)

	Returns a list of association wbem.CIMInstanceName objects
with an input instance.

	Parameters:	
	instance – for this object the association
wbem.CIMInstanceName objects will be returned. The
object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	limit (int) – unused

	Returns:	list of association wbem.CIMInstanceName objects
with an input instance, if no error occurs; otherwise an empty list
is returned

	Raises:	CIMError, ConnectionError,
TypeError

	
get_references(*args, **kwargs)

	Returns a list of association wbem.CIMInstance objects with
an input instance.

	Parameters:	
	instance – for this object the list of association
wbem.CIMInstance objects will be returned. The object
needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter.

	IncludeQualifiers (bool) – bool flag indicating, if all qualifiers
for each object (including qualifiers on the object and on any
returned properties) shall be included as <QUALIFIER>
elements in the response.

	IncludeClassOrigin (bool) – bool flag indicating, if the
CLASSORIGIN attribute shall be present on all appropriate
elements in each returned object.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If PropertyList is None, no additional filtering is
defined.

	limit (int) – unused

	Returns:	list of association wbem.CIMInstance objects with
an input instance, if no error occurs; otherwise an empty list is
returned

	Raises:	CIMError, ConnectionError,
TypeError

	
get_superclass(classname, namespace=None)

	Returns a superclass to given class.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace name

	Returns:	superclass to given class, if such superclass exists,
None otherwise

	Raises:	CIMError, ConnectionError

	
hostname

	

	Returns:	hostname of CIMOM

	Return type:	string

	
modify_instance(*args, **kwargs)

	Modifies a wbem.CIMInstance object at CIMOM side.

	Parameters:	
	instance (wbem.CIMInstance) – object to be modified

	IncludeQualifiers (bool) – indicates, if the qualifiers are
modified as specified in ModifiedInstance.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Only properties specified in the
PropertyList are modified. Properties of the ModifiedInstance
that are missing from the PropertyList are ignored. If the
PropertyList is an empty list, no properties are modified. If the
PropertyList is None, the set of properties to be modified consists
of those of ModifiedInstance with values different from the
current values in the instance to be modified.

	Returns:	LMIReturnValue object with rval set to 0,
if no error occurs; otherwise rval is set to -1 and
errorstr is set to corresponding error string.

	Raises:	CIMError, ConnectionError

	
uri

	

	Returns:	URI of the CIMOM

	Return type:	string

	
username

	

	Returns:	user name as a part of provided credentials

	Return type:	string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIClass

	
class lmi.shell.LMIClass.LMIClass(conn, namespace, classname)

	LMI wrapper class representing wbem.CIMClass.

	Parameters:	
	conn (LMIConnection) – connection object

	namespace (LMINamespace) – namespace object

	classname (string) – CIM class name

	
classname

	

	Returns:	class name

	Return type:	string

	
create_instance(self_wr, *args, **kwargs)

	Creates a new wbem.CIMInstance at the server side and
returns LMIReturnValue object containing
LMIInstance as a result.

	Parameters:	
	properties (dictionary) – initial properties with corresponding
values

	qualifiers (dictionary) – initial qualifiers

	property_list (list) – list of properties, which should be present
in LMIInstance object

Usage: See Creating a new instance.

	
doc(self_wr, *args, **kwargs)

	Prints out pretty verbose message with documentation for the class. If
the LMIShell is run in a interactive mode, the output will be
redirected to a pager set by environment variable PAGER. If
there is not PAGER set, less or more will be used as a
fall-back.

	
fetch(*args, **kwargs)

	Manually fetches a wrapped wbem.CIMClass object.

	Parameters:	full_fetch (bool) – True, if wbem.CIMClass should
include qualifiers and class origin. Default value is False.

	Raises:	CIMError, ConnectionError

Usage: See Fetching a class.

	
first_instance(inst_filter=None, client_filtering=False, **kwargs)

	Returns the first LMIInstance of the corresponding class.

	Parameters:	
	inst_filter (dictionary) – filter values, where the key corresponds
to the key of wbem.CIMInstance; value contains the
filtering value.

	client_filtering (bool) – if True, client-side filtering will be
performed, otherwise the filtering will be done by a CIMOM. Default
value is False.

	kwargs (dictionary) – deprecated keyword arguments

	Key or key – filtering key, see above

	Value or value – filtering value, see above

	Returns:	first LMIInstance object

Usage: See Get Instances and
Filtering.

	
first_instance_name(inst_filter=None, **kwargs)

	Returns the first LMIInstanceName of the corresponding
class.

	Parameters:	
	inst_filter (dictionary) – filter values, where the key corresponds
to the primary key of wbem.CIMInstanceName; value
contains the filtering value

	kwargs (dictionary) – deprecated keyword arguments

	Key or key (string) – filtering key, see above

	Value or value – filtering value, see above

	Returns:	first LMIInstanceName object

Usage: See Get Instance Names and
Filtering.

	
instance_names(self_wr, *args, **kwargs)

	Returns a LMIReturnValue containing a list of LMIInstanceNames.

	Parameters:	
	inst_filter (dictionary) – filter values. The key corresponds to
the primary key of the wbem.CIMInstanceName; value
contains the filtering value

	kwargs (dictionary) – deprecated keyword arguments

	Key or key (string) – filtering key, see above

	Value or value – filtering value, see above

	Returns:	LMIReturnValue object with rval set to a
list of LMIInstanceName objects

Usage: See Get Instance Names and
Filtering.

	
instances(self_wr, *args, **kwargs)

	Returns a list of objects of LMIInstance.

	Parameters:	
	inst_filter (dictionary) – filter values, where the key corresponds
to the key of wbem.CIMInstance; value contains the
filtering value

	client_filtering (bool) – if True, client-side filtering will be
performed, otherwise the filtering will be done by a CIMOM. Default
value is False.

	kwargs (dictionary) – deprecated keyword arguments

	Key or key (string) – filtering key, see above

	Value or value – filtering value, see above

	Returns:	list of LMIInstance objects

Usage: See Get Instances and
Filtering.

	
is_fetched(full_fetch=False)

	Returns True, if wbem.CIMClass has been fetched.

	Parameters:	full_fetch (bool) – defines, if qualifiers are also included

	
methods(self_wr, *args, **kwargs)

	

	Returns:	list of strings of wbem.CIMClass methods.

Usage: See Class Methods.
Note: When caching is turned off, this method may consume some
time.

	
namespace

	

	Returns:	namespace name

	Return type:	string

	
new_instance_name(keybindings)

	
	Create new LMIInstanceName object by passing all the

	keys/values of the object.

	Parameters:	keybindings (dictionary) – primary keys of instance name with
corresponding values

	Returns:	new LMIInstanceName object

Usage: See New Instance Name.

	
print_methods(self_wr, *args, **kwargs)

	Prints out the list of wbem.CIMClass methods.

Usage: See Class Methods.

	
print_properties(self_wr, *args, **kwargs)

	Prints out the list of wbem.CIMClass properties.

Usage: See Class Properties.

	
print_valuemap_properties(self_wr, *args, **kwargs)

	Prints out the list of string of constant names.

Usage: Get ValueMap properties.

	
properties(self_wr, *args, **kwargs)

	

	Returns:	list of strings of the wbem.CIMClass properties

Usage: See Class Properties.

	
valuemap_properties(self_wr, *args, **kwargs)

	

	Returns:	list of strings of the constant names

Usage: Get ValueMap properties.

	
wrapped_object

	

	Returns:	wrapped wbem.CIMClass object

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMICompleter

	
class lmi.shell.LMICompleter.LMICompleter(namespace=None)

	This LMIShell completer, which is used in the interactive mode, provides
tab-completion for user friendliness.

	Parameters:	namespace (dictionary) – dictionary, where to perform a completion. If
unspecified, the default namespace where completions are performed is
__main__ (technically, __main__.__dict__).

	
attr_matches(text)

	

	Parameters:	text (string) – expression to complete

	Returns:	list of attributes of a given expression; if the expression
is instance of LMI wrapper class, its important
properties/attributes/ methods/parameters will be added too

	Return type:	list of strings

	
complete(text, state)

	

	Parameters:	
	text (string) – string to be completed.

	state – order number of the completion, see rlcompleter

	Returns:	completed string

	
global_matches(text)

	

	Parameters:	text (string) – expression to complete

	Returns:	list of all keywords, built-in functions and names

	Return type:	list of strings

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIConnection

	
class lmi.shell.LMIConnection.LMIConnection(uri, username='', password='', interactive=False, use_cache=True, key_file=None, cert_file=None, verify_server_cert=True)

	Class representing a connection object. Each desired connection to separate
CIMOM should have its own connection object created. This class provides an
entry point to the namespace/classes/instances/methods hierarchy present in
the LMIShell.

	Parameters:	
	uri (string) – URI of the CIMOM

	username (string) – account, under which, the CIM calls will be
performed

	password (string) – user’s password

	interactive (bool) – flag indicating, if the LMIShell client is running
in the interactive mode; default value is False.

	use_cache (bool) – flag indicating, if the LMIShell client should use
cache for CIMClass objects. This saves lot’s of communication, if there
are EnumerateInstances() and EnumerateClasses() intrinsic
methods often issued. Default value is True.

	key_file (string) – path to x509 key file; default value is None

	cert_file (string) – path to x509 cert file; default value is None

	verify_server_cert (bool) – flag indicating, whether a server side
certificate needs to be verified, if SSL used; default value is True

NOTE: If interactive is set to True, LMIShell will:

	prompt for username and password, if missing and connection via
Unix socket can not be established.

	use pager for the output of: LMIInstance.doc(),
LMIClass.doc(), LMIInstance.tomof() and
LMIMethod.tomof()

	
clear_cache()

	Clears the cache.

	
client

	

	Returns:	CIMOM client

	Return type:	LMICIMXMLClient or LMIWSMANClient

	
connect()

	Connects to CIMOM and verifies credentials by performing a “dummy”
request.

	Returns:	LMIReturnValue object with rval set to True, if
the user was properly authenticated; False otherwise. In case of
any error, rval is set to False and errorstr contains appropriate
error string.

	Return type:	LMIReturnValue

	
disconnect()

	Disconnects from CIMOM.

	
get_namespace(namespace)

	

	Parameters:	namespace (string) – namespace path (eg. root/cimv2)

	Returns:	LMINamespace object

	Raises:	LMINamespaceNotFound

	
hostname

	

	Returns:	hostname of CIMOM

	Return type:	string

	
is_wsman()

	Returns True, if the connection is made with WSMAN CIMOM; False
otherwise.

	
namespaces

	

	Returns:	list of all available namespaces

Usage: Available namespaces.

	
print_namespaces()

	Prints out all available namespaces.

	
print_subscribed_indications()

	Prints out all the subscribed indications.

	
root

	

	Returns:	LMINamespaceRoot object for root namespace

	
subscribe_indication(**kwargs)

	Subscribes to an indication. Indication is formed by 3 objects, where 2
of them (filter and handler) can be provided, if the LMIShell should
not create those 2 by itself.

NOTE: Currently the call registers atexit hook, which
auto-deletes all subscribed indications by the LMIShell.

	Parameters:	kwargs (dictionary) – parameters for the indication subscription

	Filter (LMIInstance) – if provided, the
LMIInstance object will be used instead of creating
a new one;
optional

	Handler (LMIInstance) – if provided, the
LMIInstance object will be used instead of creating
a new one; optional

	Query (string) – string containing a query for the
indications filtering

	QueryLanguage (string) – query language; eg. WQL, or
DMTF:CQL. This parameter is optional, default value is
DMTF:CQL.

	Name (string) – indication name

	CreationNamespace (string) – creation namespace. This
parameter is optional, default value is root/interop.

	SubscriptionCreationClassName (string) – subscription
object class name. This parameter is optional, default value is
CIM_IndicationSubscription.

	Permanent (bool) – whether to preserve the created
subscription on LMIShell’s quit. Default value is False.

	FilterCreationClassName (string) – creation class name of
the filter object. This parameter is options, default value is
CIM_IndicationFilter.

	FilterSystemCreationClassName (string) – system creation
class name of the filter object. This parameter is optional,
default value is CIM_ComputerSystem.

	FilterSourceNamespace (string) – local namespace where the
indications originate. This parameter is optional, default value
is root/cimv2.

	HandlerCreationClassName (string) – creation class name of
the handler object. This parameter is optional, default value is
CIM_IndicationHandlerCIMXML.

	HandlerSystemCreationClassName (string) – system creation
name of the handler object. This parameter is optional, default
value is CIM_ComputerSystem.

	Destination (string) – destination URI, where the
indications should be delivered

	Returns:	LMIReturnValue object with rval set to True,
if indication was subscribed; False otherwise. If a error occurs,
errorstr is set to appropriate error string.

	
subscribed_indications()

	

	Returns:	list of all the subscribed indications

	
timeout

	

	Returns:	CIMOM connection timeout for a transaction (milliseconds)

	Return type:	int

	
unsubscribe_all_indications()

	Unsubscribes all the indications. This call ignores Permanent flag,
which may be provided in
LMIConnection.subscribe_indication(), and deletes all the
subscribed indications.

	
unsubscribe_indication(name)

	Unsubscribes an indication.

	Parameters:	name (string) – indication name

	Returns:	LMIReturnValue object with rval set to True,
if unsubscribed; False otherwise

	
uri

	

	Returns:	URI of the CIMOM

	Return type:	string

	
use_cache(active=True)

	Sets a bool flag, which defines, if the LMIShell should use a cache.

	Parameters:	active (bool) – whether the LMIShell’s cache should be used

	
lmi.shell.LMIConnection.connect(uri, username='', password='', interactive=False, use_cache=True, key_file=None, cert_file=None, verify_server_cert=True, prompt_prefix='')

	Creates a connection object with provided URI and credentials.

	Parameters:	
	uri (string) – URI of the CIMOM

	username (string) – account, under which, the CIM calls will be
performed

	password (string) – user’s password

	interactive (bool) – flag indicating, if the LMIShell client is running
in the interactive mode; default value is False.

	use_cache (bool) – flag indicating, if the LMIShell client should use
cache for wbem.CIMClass objects. This saves lot’s of
communication, if there are EnumerateInstances() and
EnumerateClasses() intrinsic methods often issued. Default value
is True.

	key_file (string) – path to x509 key file; default value is None

	cert_file (string) – path to x509 cert file; default value is None

	verify_server_cert (bool) – flag indicating, whether a server side
certificate needs to be verified, if SSL used; default value is True.

	prompt_prefix (string) – username and password prompt prefix in case
the user is asked for credentials. Default value is empty string.

	Returns:	LMIConnection object or None, if LMIShell does not
use exceptions

	Raises:	ConnectionError

NOTE: If interactive is set to True, LMIShell will:

	prompt for username and password, if missing and connection via
Unix socket can not be established.

	use pager for the output of: LMIInstance.doc(),
LMIClass.doc(), LMIInstance.tomof() and
LMIMethod.tomof()

Usage: Establish a connection.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIConsole

	
class lmi.shell.LMIConsole.LMIConsole(cwd_first_in_path=False)

	Class representing an interactive console.

	
clear_history()

	Clears the current history.

	
interact(locals=None)

	Starts the interactive mode.

	Parameters:	locals (dictionary) – locals

	
interpret(script_name, script_argv, locals=None, interactive=False)

	Interprets a specified script within additional provided locals.
There are LMIConsole.DEFAULT_LOCALS present.

	Parameters:	
	script_name (string) – script name

	script_argv (list) – script CLI arguments

	locals (dictionary) – dictionary with locals

	interactive (bool) – tells LMIShell, if the script should be
treated as if it was run in interactive mode

	Returns:	exit code of the script

	Return type:	int

	
load_history()

	Loads the shell’s history from the history file.

	
save_history()

	Saves current history of commands into the history file. If the length
of history exceeds a maximum history file length, the history will be
truncated.

	
set_verify_server_certificate(verify_server_cert=True)

	Turns on or off server side certificate verification, if SSL used.

	Parameters:	verify_server_cert (bool) – – flag which tells, whether a server
side certificate needs to be verified, if SSL used

	
setup_completer()

	Initializes tab-completer.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIConstantValues

	
class lmi.shell.LMIConstantValues.LMIConstantValues(cim_obj, cast_type)

	Abstract class for constant value objects.

	Parameters:	
	cim_obj – this object is either of type
wbem.CIMParameter, wbem.CIMProperty or
wbem.CIMMethod. Construction of this object requires to
have a member _cast_type to properly cast CIM object. When
constructing derived objects, make sure, that the mentioned member is
present before calling this constructor.

	cast_type – parameter/property cast type

	
print_values()

	Prints all available constant names.

Usage: Get ValueMap properties.

	
value(value_name)

	

	Parameters:	value_name (string) – constant name

	Returns:	constant value

Usage: Get ValueMap property value.

	
value_name(value)

	

	Parameters:	value (int) – numeric constant value

	Returns:	constant value

	Return type:	string

Usage: Get ValueMap property value name.

	
values()

	

	Returns:	list of all available constant values

	
values_dict()

	

	Returns:	dictionary of constants’ names and values

	
class lmi.shell.LMIConstantValues.LMIConstantValuesMethodReturnType(cim_method)

	Derived class used for constant values of wbem.CIMMethod.

	Parameters:	cim_method (CIMMethod) – wbem.CIMMethod object

	
class lmi.shell.LMIConstantValues.LMIConstantValuesParamProp(cim_property)

	Derived class used for constant values of wbem.CIMProperty and
wbem.CIMParameter.

	Parameters:	cim_property – wbem.CIMProperty or
wbem.CIMParameter object. Both objects have necessary
member type which is needed for proper casting.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIDecorators

	
class lmi.shell.LMIDecorators.lmi_class_fetch_lazy(full_fetch=False)

	Decorator for LMIClass, which first fetches a wrapped
wbem.CIMClass object and then executes a wrapped method.

	Parameters:	full_fetch (bool) – True, if wbem.CIMClass should include
qualifiers and class origin. Default value is False.

	
class lmi.shell.LMIDecorators.lmi_instance_name_fetch_lazy(full_fetch=False)

	Decorator for LMIInstanceName, which first fetches a wrapped
wbem.CIMInstance object and then executes a wrapped method.

	Parameters:	full_fetch (bool) – True, if wbem.CIMClass should include
qualifiers and class origin. Default value is False.

	
class lmi.shell.LMIDecorators.lmi_possibly_deleted(expr_ret, Self=False, *expr_ret_args, **expr_ret_kwargs)

	Decorator, which returns None, if provided test expression is True.

	Parameters:	
	expr_ret – callable or return value used, if expr_test fails

	expr_ret_args – expr_ret position arguments

	expr_ret_kwargs – expr_ret keyword arguments

	Self (bool) – flag, which specifies, if to pass self variable to
the expr_ret, if expr_test failed

Example of usage:

class Foo:
 def __init__(self, deleted):
 self._deleted = deleted

 @lmi_possibly_deleted(lambda obj: obj._member, lambda: False)
 def some_method(self):
 print "some_method called"
 return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

	
class lmi.shell.LMIDecorators.lmi_process_cim_exceptions(rval=None, error_callable=<function return_lmi_rval at 0x7f3034c74d70>)

	Decorator used for CIM-XML exception processing.

	Parameters:	
	rval – rval passed to LMIReturnValue.__init__()

	error_callable – callable used for processing
wbem.CIMError and ConnectionError

NOTE: callables need to take 2 arguments: return value and error
string.

	
class lmi.shell.LMIDecorators.lmi_process_cim_exceptions_rval(rval=None)

	Decorator used for CIM-XML exception processing.

	Parameters:	rval – return value of a decorated method in case of exception

	
class lmi.shell.LMIDecorators.lmi_process_wsman_exceptions(rval=None, error_callable=<function return_lmi_rval at 0x7f3034c74d70>)

	Decorator used for wsman exception processing.

	Parameters:	
	rval – rval passed to LMIReturnValue.__init__()

	error_callable – callable used for processing
wbem.CIMError and ConnectionError

NOTE: callables need to take 2 arguments: return value and error
string.

	
class lmi.shell.LMIDecorators.lmi_process_wsman_exceptions_rval(rval=None)

	Decorator used for wsman exception processing.

	Parameters:	rval – return value of a decorated method in case of exception

	
class lmi.shell.LMIDecorators.lmi_return_expr_if_fail(expr_test, expr_ret, Self=False, *expr_ret_args, **expr_ret_kwargs)

	Decorator, which calls a specified expression and returns its return value
instead of calling the decorated method, if provided test expression is
False; otherwise a method is called.

	Parameters:	
	expr_test – expression which determines, if to execute a return value
expression

	expr_ret – expression, which is called, if the expr_test returns
False

	expr_ret_args – expr_ret position arguments

	expr_ret_kwargs – expr_ret keyword arguments

	Self (bool) – flag, which specifies, if to pass self variable to
the expr_ret, if expr_test failed

Example of usage:

class Foo:
 def __init__(self, member):
 self._member = member

 def failed(self):
 print "expression failed"
 return False

 # NOTE: the self parameter to the method call needs to be passed
 # via expr_ret_args, therefore, there is a dummy lambda obj: obj,
 # which is basically self variable.
 @lmi_return_expr_if_fail(lambda obj: obj._member, failed,
 lambda obj: obj)
 def some_method(self):
 print "some_method called"
 return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

	
class lmi.shell.LMIDecorators.lmi_return_if_fail(expr_test)

	Decorator, which returns None and no method call is performed, if provided
test expression is False; otherwise a method is called.

	Parameters:	expr_test – if the expression expr_test returns True, a method is
called

Example of usage:

class Foo:
 def __init__(self, member):
 self._member = member

 @lmi_return_if_fail(lambda obj: obj._member)
 def some_method(self):
 print "some_method called"
 return True

f = Foo(None)
f.some_method() == None

f = Foo(True)
f.some_method() == True

	
class lmi.shell.LMIDecorators.lmi_return_val_if_fail(expr_test, rval)

	Decorator, which returns a specified value and no method call is performed,
if provided test expression is False; otherwise a method is called.

	Parameters:	
	expr_test – if the expression returns False, a method call is called

	rval – return value of the method, if the object attribute as
expression failed

Example of usage:

class Foo:
 def __init__(self, member):
 self._member = member

 @lmi_return_val_if_fail(lambda obj: obj._member, False)
 def some_method(self):
 print "some_method called"
 return True

f = Foo(None)
f.some_method() == False

f = Foo(True)
f.some_method() == True

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIExceptions

	
exception lmi.shell.LMIExceptions.CIMError(*args)

	LMIShell’s exception for CIM errors.

	
exception lmi.shell.LMIExceptions.ConnectionError(*args)

	LMIShell’s exception for Connection errors.

	
exception lmi.shell.LMIExceptions.LMIClassNotFound(namespace, class_name)

	Raised, when trying to access missing class in LMINamespace.

	Parameters:	
	namespace (string) – namespace name

	classname (string) – class name, which was not found in namespace

	
exception lmi.shell.LMIExceptions.LMIDeletedObjectError

	Raised, when there is an attempt to access properties on deleted
LMIInstance object.

	
exception lmi.shell.LMIExceptions.LMIFilterError

	Raised, when a filter error occurs, mostly when filter object is missing.

	
exception lmi.shell.LMIExceptions.LMIHandlerNamePatternError

	Raised when the pattern string does not contain minimum replaceable
characters.

	
exception lmi.shell.LMIExceptions.LMIIndicationError

	Raised, if an error occurs while subscribing to/removing an indication.

	
exception lmi.shell.LMIExceptions.LMIIndicationListenerError

	Raised, if there is an error while starting/stopping indication listener.

	
exception lmi.shell.LMIExceptions.LMIMethodCallError

	Raised, when an error occurs within method call.

	
exception lmi.shell.LMIExceptions.LMINamespaceNotFound(namespace, *args)

	Raised, when trying to access not existing namespace from connection or
namespace object.

	Parameters:	
	namespace (string) – namespace which was not found

	args – other positional arguments

	
exception lmi.shell.LMIExceptions.LMINoPagerError

	Raised, when there is no default pager like less or more.

	
exception lmi.shell.LMIExceptions.LMINotSupported

	Raised, when non-WSMAN method is about to be called.

	
exception lmi.shell.LMIExceptions.LMISynchroMethodCallError

	Raised, when an error occurs within synchronized method call.

	
exception lmi.shell.LMIExceptions.LMISynchroMethodCallFilterError

	Raised, when the LMIShell can not find necessary static filter for
synchronous method call.

	
exception lmi.shell.LMIExceptions.LMIUnknownParameterError

	Raised, when there is a method call issued and unknown method parameter is
provided.

	
exception lmi.shell.LMIExceptions.LMIUnknownPropertyError

	Raised, when there is an attempt to create instance with unknown property
provided.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIFormatter

	
class lmi.shell.LMIFormatter.LMIClassFormatter(cim_class)

	Class formatter is used to print out wbem.CIMClass
representation.

	Parameters:	cim_class (CIMClass) – object to print out

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>)

	Formats out wbem.CIMClass object.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
format_property(prop, indent, width, f)

	Prints out a property of wbem.CIMClass.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
class lmi.shell.LMIFormatter.LMIFormatter

	Abstract class for derived subclasses.

	
fancy_format(interactive)

	Formats a block of text. If the LMIShell is running in interactive
mode, pager will be used, otherwise the output will be written to
standard output.

	Parameters:	interactive (bool) – defines, if to use pager

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>)

	Formats a block of text and prints it to the output stream.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
class lmi.shell.LMIFormatter.LMIInstanceFormatter(cim_instance)

	Instance formatter is used to print out wbem.CIMInstance
representation.

	Parameters:	cim_instance (CIMInstance) – object to print out

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>)

	Prints out :py:class`CIMInstance` object.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
format_property(prop, indent, width, f)

	Prints out a property of wbem.CIMInstance.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
class lmi.shell.LMIFormatter.LMIMethodFormatter(cim_method)

	Method formatter is used to print out wbem.CIMMethod
representation.

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>)

	Prints out :py:class`CIMMethod` object.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
format_method(method, indent, width, f)

	Prints out a method of wbem.CIMClass.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
format_parameter(param, indent, width, f)

	Prints out a parameter of wbem.CIMMethod.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
format_qualifier(qualif, indent, width, f)

	Prints out a parameter of wbem.CIMMethod.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
class lmi.shell.LMIFormatter.LMIMofFormatter(obj)

	MOF formatter is used to print out MOF representation of a CIM object.

	Parameters:	obj – object, which has tomof() method

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>)

	Formats a MOF object and prints it to the output stream.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	
class lmi.shell.LMIFormatter.LMITextFormatter(text)

	Text formatter class. Used when printing a block of text to output stream.

	Parameters:	text (string) – text to be formatted

	
format(indent=0, width=80, f=<open file '<stdout>', mode 'w' at 0x7f303bd79150>, separator=True)

	Formats a block of text and prints it to the output stream.

	Parameters:	
	indent (int) – number of spaces to indent the text block

	width (int) – total text block width

	f – output stream

	kwargs (dictionary) – supported keyword arguments

	separator (bool) – if True, there will be a new line appended after
the formatted text; default value is True

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIHelper

	
class lmi.shell.LMIHelper.LMIHelper

	LMI Helper class, which overrides python help.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIIndicationListener

	
class lmi.shell.LMIIndicationListener.LMIIndicationListener(hostname, port, certfile=None, keyfile=None, trust_store=None)

	Class representing indication listener, which provides a unified API for
the server startup and shutdown and for registering an indication handler.

	Parameters:	
	hostname (str) – bind hostname

	port (int) – TCP port, where the server should listen for incoming
messages

	certfile (str) – path to certificate file, if SSL used

	keyfile (str) – path to key file, if SSL used

	trust_store (str) – path to trust store

	
add_handler(handler_name_pattern, handler, *args, **kwargs)

	Registers a handler into the indication listener. Returns a string,
which is used for the indication recognition, when a message arrives.

	Parameters:	
	handler_name_pattern (string) – string, which may contain set of
“X” characters at the end of the string. The “X” characters
will be replaced by random characters and the whole string will
form a unique string.

	handler – callable, which will be executed, when a indication is
received

	args (tuple) – positional arguments for the handler

	kwargs (dictionary) – keyword arguments for the handler

	Returns:	handler unique name

	Return type:	string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIInstanceName

	
class lmi.shell.LMIInstanceName.LMIInstanceName(conn, cim_instance_name)

	LMI wrapper class representing wbem.CIMInstanceName.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_instance_name (CIMInstanceName) – wrapped object

	
associator_names(self_wr, *args, **kwargs)

	Returns a list of associated LMIInstanceName with this
object.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	Returns:	list of associated LMIInstanceName objects

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Associated Instance Names.

	
associators(self_wr, *args, **kwargs)

	Returns a list of associated LMIInstance objects with this
instance.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter.

	IncludeQualifiers (bool) – bool flag indicating, if all qualifiers
for each object (including qualifiers on the object and on any
returned properties) shall be included as <QUALIFIER> elements
in the response.

	IncludeClassOrigin (bool) – bool flag indicating, if the
CLASSORIGIN attribute shall be present on all appropriate
elements in each returned object.

	PropertyList (list) – if not None, the members of the array define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If
PropertyList is an empty list, no properties are included in each
returned object. If it is None, no additional filtering is
defined.

	Returns:	list of associated LMIInstance objects

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Associated Instances.

	
classname

	

	Returns:	class name

	Return type:	string

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty string.
If the shell uses exceptions, LMIDeletedObjectError will be
raised.

	
copy()

	

	Returns:	copy of itself

	
delete(self_wr, *args, **kwargs)

	Deletes the instance defined by this object path from the CIMOM.

	Returns:	True, if the instance is deleted; False otherwise

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return True. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Instance Names deletion.

	
first_associator(self_wr, *args, **kwargs)

	Returns the first associated LMIInstance with this object.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter.

	IncludeQualifiers (bool) – bool flag indicating, if all qualifiers
for each object (including qualifiers on the object and on any
returned properties) shall be included as <QUALIFIER> elements
in the response.

	IncludeClassOrigin (bool) – bool flag indicating, if the
CLASSORIGIN attribute shall be present on all appropriate
elements in each returned object.

	PropertyList (list) – if not None, the members of the array define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If it is None, no additional filtering is defined.

	Returns:	first associated LMIInstance

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Associated Instances.

	
first_associator_name(self_wr, *args, **kwargs)

	Returns the first associated LMIInstanceName with this
object.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	Returns:	first associated LMIInstanceName object

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Associated Instance Names.

	
first_reference(self_wr, *args, **kwargs)

	Returns the first association LMIInstance with this
object.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter.

	IncludeQualifiers (bool) – flag indicating, if all qualifiers for
each object (including qualifiers on the object and on any returned
properties) shall be included as <QUALIFIER> elements in the
response.

	IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN
attribute shall be present on all appropriate elements in each
returned object.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If PropertyList is None, no additional filtering is
defined.

	Returns:	first association LMIInstance object

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Association Instances.

	
first_reference_name(self_wr, *args, **kwargs)

	Returns the first association LMIInstanceName with this
object.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	Returns:	first association LMIInstanceName object

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Association Instance Names.

	
hostname

	

	Returns:	host name

	Return type:	string

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty string.
If the shell uses exceptions, LMIDeletedObjectError will be
raised.

	
is_deleted

	

	Returns:	True, if the instance was deleted from the CIMOM; False
otherwise

	
key_properties(self_wr, *args, **kwargs)

	

	Returns:	list of strings of key properties

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Key properties.

	
key_properties_dict(self_wr, *args, **kwargs)

	

	Returns:	dictionary with key properties and corresponding values

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty
dictionary. If the shell uses exceptions,
LMIDeletedObjectError will be raised.

	
key_property_value(self_wr, *args, **kwargs)

	

	Parameters:	prop_name (string) – key property name

	Returns:	key property value

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	
methods(self_wr, *args, **kwargs)

	Returns a list of wbem.CIMInstance methods’ names.

	Returns:	list of wbem.CIMInstance methods’ names

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Instance Methods.

	
namespace

	

	Returns:	namespace name

	Return type:	string

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty string.
If the shell uses exceptions, LMIDeletedObjectError will be
raised.

	
print_key_properties(self_wr, *args, **kwargs)

	Prints out the list of key properties.

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Key properties.

	
print_methods(self_wr, *args, **kwargs)

	Prints out the list of wbem.CIMInstance methods’ names.

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Instance Methods.

	
reference_names(self_wr, *args, **kwargs)

	Returns a list of association LMIInstanceName objects with
this object.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	Returns:	list of association LMIInstanceName objects

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Association Instance Names.

	
references(self_wr, *args, **kwargs)

	Returns a list of association LMIInstance objects with
this object.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter.

	IncludeQualifiers (bool) – flag indicating, if all qualifiers for
each object (including qualifiers on the object and on any returned
properties) shall be included as <QUALIFIER> elements in the
response.

	IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN
attribute shall be present on all appropriate elements in each
returned object.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If PropertyList is None, no additional filtering is
defined.

	Returns:	list of association LMIInstance objects

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return an empty list. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

Usage: Association Instances.

	
to_instance(self_wr, *args, **kwargs)

	Creates a new LMIInstance object from
LMIInstanceName.

	Returns:	LMIInstance object if the object was retrieved
successfully; None otherwise.

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

Usage: Conversion to a LMIInstance.

	
wrapped_object

	

	Returns:	wrapped wbem.CIMInstanceName object

	Raises:	LMIDeletedObjectError

NOTE: If the method LMIInstanceName.delete() was called,
this method will not execute its code and will return None. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIInstance

	
class lmi.shell.LMIInstance.LMIInstance(conn, lmi_class, cim_instance)

	LMI wrapper class representing wbem.CIMInstance.

	Parameters:	
	conn (LMIConnection) – connection object

	lmi_class (LMIClass) – wrapped creation class of the instance

	cim_instance (CIMInstance) – wrapped object

	
associator_names(self_wr, *args, **kwargs)

	Returns a list of associated LMIInstanceName with this
object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	Returns:	list of associated LMIInstanceName objects

	Raises:	LMIDeletedObjectError

Usage: Associated Instance Names.

	
associators(self_wr, *args, **kwargs)

	Returns a list of associated LMIInstance objects with this
instance.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter.

	IncludeQualifiers (bool) – bool flag indicating, if all qualifiers
for each object (including qualifiers on the object and on any
returned properties) shall be included as <QUALIFIER> elements
in the response.

	IncludeClassOrigin (bool) – bool flag indicating, if the
CLASSORIGIN attribute shall be present on all appropriate
elements in each returned object.

	PropertyList (list) – if not None, the members of the array define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If
PropertyList is an empty list, no properties are included in each
returned object. If it is None, no additional filtering is
defined.

	Returns:	list of associated LMIInstance objects

	Raises:	LMIDeletedObjectError

Usage: Associated Instances.

	
classname

	Property returning a string of a class name.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty string. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

	Returns:	class name

	Return type:	string

	Raises:	LMIDeletedObjectError

	
copy()

	

	Returns:	copy of itself

	
delete(self_wr, *args, **kwargs)

	Deletes this instance from the CIMOM.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Returns:	True, if the instance is deleted; False otherwise

	Raises:	LMIDeletedObjectError

Usage: Instance deletion.

	
doc(self_wr, *args, **kwargs)

	Prints out pretty verbose message with documentation for the instance.
If the LMIShell is run in a interactive mode, the output will be
redirected to a pager set by environment variable PAGER. If
there is not PAGER set, less or more will be used as a
fall-back.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Raises:	LMIDeletedObjectError

	
first_associator(self_wr, *args, **kwargs)

	Returns the first associated LMIInstance with this object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter.

	IncludeQualifiers (bool) – bool flag indicating, if all qualifiers
for each object (including qualifiers on the object and on any
returned properties) shall be included as <QUALIFIER> elements
in the response.

	IncludeClassOrigin (bool) – bool flag indicating, if the
CLASSORIGIN attribute shall be present on all appropriate
elements in each returned object.

	PropertyList (list) – if not None, the members of the array define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If it is None, no additional filtering is defined.

	Returns:	first associated LMIInstance

	Raises:	LMIDeletedObjectError

Usage: Associated Instances.

	
first_associator_name(self_wr, *args, **kwargs)

	Returns the first associated LMIInstanceName with this
object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	Returns:	first associated LMIInstanceName object

	Raises:	LMIDeletedObjectError

Usage: Associated Instance Names.

	
first_reference(self_wr, *args, **kwargs)

	Returns the first association LMIInstance with this object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter.

	IncludeQualifiers (bool) – flag indicating, if all qualifiers for
each object (including qualifiers on the object and on any returned
properties) shall be included as <QUALIFIER> elements in the
response.

	IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN
attribute shall be present on all appropriate elements in each
returned object.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If PropertyList is None, no additional filtering is
defined.

	Returns:	first association LMIInstance object

	Raises:	LMIDeletedObjectError

Usage: Association Instances.

	
first_reference_name(self_wr, *args, **kwargs)

	Returns the first association LMIInstanceName with this
object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	Returns:	first association LMIInstanceName object

	Raises:	LMIDeletedObjectError

Usage: Association Instance Names.

	
is_deleted

	

	Returns:	True, if the instance was deleted from the CIMOM; False
otherwise

	
methods(self_wr, *args, **kwargs)

	Returns a list of wbem.CIMInstance methods’ names.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Returns:	list of wbem.CIMInstance methods’ names

	Raises:	LMIDeletedObjectError

Usage: Instance Methods.

	
namespace

	Property retuning a string of a namespace name.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty string. If
the shell uses exceptions, LMIDeletedObjectError will be
raised.

	Returns:	namespace name

	Return type:	string

	Raises:	LMIDeletedObjectError

	
path

	Property returning a LMIInstanceName object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Returns:	LMIInstanceName object

	Raises:	LMIDeletedObjectError

	
print_methods(self_wr, *args, **kwargs)

	Prints out the list of wbem.CIMInstance methods’ names.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Raises:	LMIDeletedObjectError

Usage: Instance Methods.

	
print_properties(self_wr, *args, **kwargs)

	Prints out the list of wbem.CIMInstance properties.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Raises:	LMIDeletedObjectError

Usage: Instance Properties.

	
properties(self_wr, *args, **kwargs)

	Returns a list of wbem.CIMInstance properties.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Returns:	list of wbem.CIMInstance properties

	Return type:	list

	Raises:	LMIDeletedObjectError

Usage: Instance Properties.

	
properties_dict(self_wr, *args, **kwargs)

	Returns dictionary containing property name and value pairs.
This method may consume significant memory amount when called.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty dictionary.
If the shell uses exceptions, LMIDeletedObjectError will be
raised.

	Returns:	dictionary of wbem.CIMInstance properties

	Raises:	LMIDeletedObjectError

	
property_value(self_wr, *args, **kwargs)

	Returns a wbem.CIMInstance property value.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	prop_name (string) – wbem.CIMInstance property name

	Raises:	LMIDeletedObjectError

	
push(self_wr, *args, **kwargs)

	Pushes the modified object to the CIMOM.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return
LMIReturnValue object containing False as a return value
with proper error string set. If the shell uses exceptions,
LMIDeletedObjectError will be raised.

	Returns:	LMIReturnValue object with rval set to True, if
modified; False otherwise

	Raises:	LMIDeletedObjectError

Usage: Instance Properties.

	
reference_names(self_wr, *args, **kwargs)

	Returns a list of association LMIInstanceName objects with
this object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	Returns:	list of association LMIInstanceName objects

	Raises:	LMIDeletedObjectError

Usage: Association Instance Names.

	
references(self_wr, *args, **kwargs)

	Returns a list of association LMIInstance objects with this
object.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return an empty list. If the
shell uses exceptions, LMIDeletedObjectError will be raised.

	Parameters:	
	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter.

	IncludeQualifiers (bool) – flag indicating, if all qualifiers for
each object (including qualifiers on the object and on any returned
properties) shall be included as <QUALIFIER> elements in the
response.

	IncludeClassOrigin (bool) – flag indicating, if the CLASSORIGIN
attribute shall be present on all appropriate elements in each
returned object.

	PropertyList (list) – if not None, the members of the list define
one or more property names. Each returned object shall not include
elements for any properties missing from this list. If PropertyList
is an empty list, no properties are included in each returned
object. If PropertyList is None, no additional filtering is
defined.

	Returns:	list of association LMIInstance objects

	Raises:	LMIDeletedObjectError

Usage: Association Instances.

	
refresh(self_wr, *args, **kwargs)

	Retrieves a new wbem.CIMInstance object. Basically
refreshes the object properties. Returns LMIReturnValue
with rval set to 0, if the wrapped wbem.CIMInstance object
was refreshed; otherwise rval is set to -1.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return
LMIReturnValue object containing -1 as a return value with
proper error string set. If the shell uses exceptions,
LMIDeletedObjectError will be raised.

	Returns:	LMIReturnValue object with rval set to 0, if
refreshed; -1 otherwise

	Raises:	LMIDeletedObjectError

Usage: Instance refreshing.

	
tomof(self_wr, *args, **kwargs)

	Prints out a message with MOF representation of
wbem.CIMMethod. If the LMIShell is run in a interactive
mode, the output will be redirected to a pager set by environment
variable PAGER. If there is not PAGER set, less or
more will be used as a fall-back.

NOTE: If the method LMIInstance.delete() was called, this
method will not execute its code and will return None. If the shell
uses exceptions, LMIDeletedObjectError will be raised.

	Raises:	LMIDeletedObjectError

	
wrapped_object

	

	Returns:	wrapped wbem.CIMInstance object

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIJob

	
lmi.shell.LMIJob.lmi_is_job_completed(job)

	Helper function, which returns bool flag, if the job is in completed state.

	Parameters:	job – LMIInstance or wbem.CIMInstance
representing a job

	
lmi.shell.LMIJob.lmi_is_job_exception(job)

	Helper function, which returns bool flag, if the job is in the exception
state.

	Parameters:	job – LMIInstance or wbem.CIMInstance
representing a job

	
lmi.shell.LMIJob.lmi_is_job_finished(job)

	Helper function, which returns bool flag, if the job is in finished state.

	Parameters:	job – LMIInstance or wbem.CIMInstance
representing a job

	
lmi.shell.LMIJob.lmi_is_job_killed(job)

	Helper function, which returns bool flag, if the job is killed.

	Parameters:	job – LMIInstance or wbem.CIMInstance
representing a job

	
lmi.shell.LMIJob.lmi_is_job_terminated(job)

	Helper function, which returns bool flag, if the job is in terminated
state.

	Parameters:	job – LMIInstance or wbem.CIMInstance
representing a job

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIMethod

	
class lmi.shell.LMIMethod.LMIMethod(conn, lmi_instance, method_name)

	LMI wrapper class representing wbem.CIMMethod.

	Parameters:	
	conn (LMIConnection) – connection object

	lmi_instance (LMIInstance(Name)) – LMIInstance or
LMIInstanceName object, on which the method call will be
issued

	method_name (string) – method name

	
doc()

	Prints out pretty verbose message with documentation for the class. If
the LMIShell is run in a interactive mode, the output will be
redirected to a pager set by environment variable PAGER. If
there is not PAGER set, less or more will be used as a
fall-back.

	
parameters()

	

	Returns:	list of strings of wbem.CIMMethod‘s parameters

	
print_parameters()

	Prints out wbem.CIMMethod‘s parameters.

	
print_valuemap_parameters()

	Prints out the list of strings of constant names.

	
return_type

	

	Returns:	string of the method call’s return type

	
tomof()

	Prints out a message with MOF representation of
wbem.CIMMethod. If the LMIShell is run in a interactive
mode, the output will be redirected to a pager set by environment
variable PAGER. If there is not PAGER set, less or
more will be used as a fall-back.

	
valuemap_parameters()

	

	Returns:	list of strings of the constant names

	
wrapped_object

	

	Returns:	wrapped wbem.CIMmethod object

	
class lmi.shell.LMIMethod.LMIMethodSignalHelper

	Helper class which takes care of signal (de)registration and handling.

	
callback_attach(cb_name, cb)

	Registers a callback, which will be called when a SIGINT or SIGTERM
is caught.

	Parameters:	
	cb_name (string) – callback name

	cb – callable object, which takes zero arguments

	
callback_detach(cb_name)

	Removes a callback from the callback dictionary.

	Parameters:	cb_name (string) – callback name

	
signal_attach()

	Registers SIGINT and SIGTERM signals to local handler in which, the
flags for each signal are modified, if such signal is caught.

	
signal_detach()

	Unregisters SIGINT and SIGTERM handler and removes all the attached
callbacks.

	
signal_handled()

	

	Returns:	True, if any of SIGINT or SIGTERM has been caught; False otherwise

	
signal_handler(signo, frame)

	Signal handler, which is called, when SIGINT and SIGTERM are sent
to the LMIShell.

	Parameters:	
	signo (int) – signal number

	frame – – stack frame

	
class lmi.shell.LMIMethod.LMISignalHelperBase

	Base signal handling class.

	
static signal(signo, handler)

	Calls signal() for signo, handler and returns the old signal handler.
If signo is list of signals, the signal() call is applied for each
signo. If handler is also list, each signal from signo will be handled
by corresponding handler. In such case, tuple of previous handlers will
be returned.

	
static signal_core(signo, handler)

	Wrapper method for signal.signal(). In case of ValueError, it returns
None, old signal handler otherwise. If handler is None, default signal
handler is set for such signal.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMINamespace

	
class lmi.shell.LMINamespace.LMINamespace(conn, name)

	LMI class representing CIM namespace.

	Parameters:	
	conn (LMIConnection) – connection object

	name (string) – namespace name

	
classes()

	Returns a list of class names.

	Parameters:	
	filter_key (string) – substring of a class name

	exact_match (bool) – tells, if to search for exact match or
substring

	Returns:	list of class names

Usage: Available classes.

	
cql(query)

	Executes a CQL query and returns a list of LMIInstance
objects.

	Parameters:	query (string) – CQL query to execute

	Returns:	LMIReturnValue object with rval set to a
list of LMIInstance objects

Usage: Queries.

	
get_class(classname)

	Returns LMIClass.

	Parameters:	classname (string) – class name of new LMIClass

	Raises:	LMIClassNotFound

	
name

	

	Returns:	namespace name

	Return type:	string

	
print_classes()

	Prints out a list of classes.

	Parameters:	
	filter_key (string) – substring of a class name

	exact_match (bool) – tells, if to search for exact match, or to
search for a matching substring

Usage: Available classes.

	
wql(query)

	Executes a WQL query and returns a list of LMIInstance
objects.

	Parameters:	query (string) – WQL query to execute

	Returns:	LMIReturnValue object with rval set to a
list of LMIInstance objects

Usage: Queries.

	
class lmi.shell.LMINamespace.LMINamespaceRoot(conn)

	Derived class for root namespace. Object of this class is accessible from
LMIConnection object as a hierarchy entry.

	Parameters:	conn (LMIConnection) – connection object

	
namespaces

	

	Returns:	list of strings with available namespaces

Usage: Available namespaces.

	
print_namespaces()

	Prints out all available namespaces accessible via the namespace
root.

Usage: Available namespaces.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIObjectFactory

	
class lmi.shell.LMIObjectFactory.LMIObjectFactory

	Object factory class. Used to avoid circular import dependencies between
several LMI classes. The class implements a singleton design pattern.

Example of usage:

LMIObjectFactory().register(SomeClass)
some_obj = LMIObjectFactory().SomeClass(*args, **kwargs)

	
register(reg_class)

	Registers a class into the factory.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIReturnValue

	
class lmi.shell.LMIReturnValue.LMIReturnValue

	Class representing a return value, which holds 3 main types of attributes:

	Parameters:	
	rval – return value

	rparams (dictionary) – returned parameters of e.g. method call

	errorstr (string) – error string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellCache

	
class lmi.shell.LMIShellCache.LMIClassCacheEntry(cim_class, full_fetch)

	Class used for storing wbem.CIMClass in
LMIShellCache.

	Parameters:	
	cim_class (CIMClass) – wbem.CIMClass to cache

	full_fetch (bool) – True, if class is cached with qualifiers

	
class lmi.shell.LMIShellCache.LMIShellCache(active=True, classname_dict=None, class_dict=None, class_superclass_dict=None)

	Class representing a LMIShell cache.

	Parameters:	
	active (bool) – specifies, if the cache is active

	classname_list (list) – list of strings of cached class names

	class_dict (dictionary) – cached wbem.CIMClass objects,
where the key is the class name and value is CIMClass object

	class_superclass_dict (dictionary) – dictionary, where the key is
namespace and value is dictionary of classname:superclass

	
active

	

	Returns:	True, if the cache is active; False otherwise

	
add_class(cim_class, namespace='root/cimv2', full_fetch=False)

	Stores a new wbem.CIMClass object into the cache.

	Parameters:	
	cim_class (CIMClass) – wbem.CIMClass object

	namespace (string) – namespace storing cached classes

	
add_superclass(classname, superclass, namespace)

	Stores a new pair classname : superclassname into the cache.

	Parameters:	
	classname (string) – class name to be stored

	superclass (string) – super class name to be stored

	namespace (string) – namespace name of the classname

	
clear()

	Clears the cache.

	
get_class(classname, namespace='root/cimv2')

	

	Parameters:	
	classname (string) – cached class name

	namespace (string) – namespace storing cached classes

	Returns:	cache object, if proper class name provided, None otherwise

	Return type:	LMIClassCacheEntry

	
get_classes(namespace='root/cimv2')

	

	Parameters:	namespace (string) – namespace storing cached classes

	Returns:	list of cached class names or None, if no cached
classes is stored

	
get_superclass(classname, namespace)

	

	Parameters:	
	classname (string) – cached class name

	namespace (string) – namespace name

	Returns:	cached superclass to the given class name

	Return type:	string

	
has_superclass(classname, namespace)

	

	Parameters:	
	classname (string) – cached class name

	namespace (string) – namespace name

	Returns:	True, if the cache contains superclass to the given class
name; False otherwise

	
set_classes(classname_list, namespace='root/cimv2')

	Stores a new class names’ list.

	Parameters:	namespace (string) – namespace storing cached classes

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellClient

	
class lmi.shell.LMIShellClient.LMIShellClient(uri, username='', password='', interactive=False, use_cache=True, key_file=None, cert_file=None, verify_server_cert=True)

	LMIShellClient overrides few methods due to caching purposes.

	Parameters:	
	uri (string) – URI of the CIMOM

	username (string) – account, under which, the CIM calls will be
performed

	password (string) – user’s password

	interactive (bool) – flag indicating, if the LMIShell client is running
in the interactive mode; default value is False.

	use_cache (bool) – flag indicating, if the LMIShell client should use
cache for CIMClass objects. This saves a lot’s of
communication, if there is often the
LMIShellClient.get_class_names() or
LMIShellClient.attr.get_class() call issued.

	key_file (string) – path to x509 key file; default value is None

	cert_file (string) – path to x509 cert file; default value is None

	verify_server_cert (bool) – indicates, whether a server side
certificate needs to be verified, if SSL used; default value is True

NOTE: If interactive is set to True, LMIShell will:

	prompt for username and password, if missing and connection via
Unix socket can not be established.

	use pager for the output of: LMIInstance.doc(),
LMIClass.doc(), LMIInstance.tomof() and
LMIMethod.tomof()

	
cache

	

	Returns:	LMIShell’s cache

	Return type:	LMIShellCache

	
get_class(classname, namespace=None, LocalOnly=True, IncludeQualifiers=True, IncludeClassOrigin=False, PropertyList=None, full_fetch=False)

	Returns a wbem.CIMClass object.

	Parameters:	
	classname (string) – class name

	namespace (string) – – namespace name, from which the
wbem.CIMClass should be retrieved; if None, default
namespace will be used (NOTE: see wbem)

	LocalOnly (bool) – indicates, if only local members should be
present in the returned wbem.CIMClass; any CIM elements
(properties, methods, and qualifiers), except those added or
overridden in the class as specified in the classname input
parameter, shall not be included in the returned class.

	IncludeQualifiers (bool) – indicates, if qualifiers for the class
(including qualifiers on the class and on any returned properties,
methods, or method parameters) shall be included in the response.

	IncludeClassOrigin (bool) – indicates, if the CLASSORIGIN
attribute shall be present on all appropriate elements in the
returned class.

	PropertyList (list) – if present and not None, the members of the
list define one or more property names. The returned class shall
not include elements for properties missing from this list. Note
that if LocalOnly is specified as True, it acts as an additional
filter on the set of properties returned. For example, if property
A is included in the PropertyList but LocalOnly is set to True and
A is not local to the requested class, it is not included in the
response. If the PropertyList input parameter is an empty list, no
properties are included in the response. If the PropertyList input
parameter is None, no additional filtering is defined.

	Returns:	LMIReturnValue object with rval set to
wbem.CIMClass, if no error occurs; otherwise rval is
set to none and errorstr to appropriate error string

	Raises:	CIMError, ConnectionError

	
get_class_names(namespace=None, ClassName=None, DeepInheritance=False)

	Returns a list of class names.

	Parameters:	
	namespace (string) – namespace, from which the class names list
should be retrieved; if None, default namespace will be used
(NOTE: see wbem)

	ClassName (string) – defines the class that is the basis for the
enumeration. If the ClassName input parameter is absent, this
implies that the names of all classes.

	DeepInheritance (bool) – if not present, of False, only the names
of immediate child subclasses are returned, otherwise the names of
all subclasses of the specified class should be returned.

	Returns:	LMIReturnValue object with rval set to a
list of strings containing class names, if no error occurs;
otherwise rval is set to None and errorstr contains an
appropriate error string

	Raises:	CIMError, ConnectionError

	
get_superclass(classname, namespace=None)

	Returns string of a superclass to given class, if such superclass
exists, None otherwise.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace name

	Returns:	superclass name to a given classname or None

	Raises:	CIMError, ConnectionError

	
interactive

	

	Returns:	flag, if the LMIShell is run in the interactive mode

	Return type:	bool

	
use_cache

	

	Returns:	flag, which tells, if the LMIShell should use a cache

	Return type:	bool

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellConfig

	
class lmi.shell.LMIShellConfig.LMIShellConfig

	Class representing the shell’s configuration. The class is responsible for
loading the configuration from the file and provides a unified API to
access these settings.

Constructs a LMIShellConfig object and loads the configuration
from the file. If there is no such file, the shell’s configuration
properties are set to default values. Configuration file uses python
syntax. If there is a syntax error in the configuration file, the
properties are set to default values, as well.

	
cert_file

	Property returning a file name containing x509 certificate. This
is used for LMIIndicationListener.

	Returns:	x509 certificate file name

	Return type:	string

	
history_file

	Property returning a string containing the shell’s history file.

	Returns:	history file

	Return type:	string

	
history_length

	Property returning a number with the shell’s history file length.

	Returns:	history file length

	Return type:	int

	
key_file

	Property returning a file name containing x509 certificate private key.
This is used for LMIIndicationListener.

	Returns:	x509 certificate private key

	Return type:	string

	
use_cache

	Property returning a bool flag, if the shell should use cache for class
retrieval.

	Returns:	flag, if the shell should use a cache

	Return type:	bool

	
use_exceptions

	Property returning a bool flag, if the shell should throw the
exceptions away, or if they should be propagated further.

	Returns:	flag, if the shell should use exceptions, or throw them away

	Return type:	bool

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellLogger

	
class lmi.shell.LMIShellLogger.LMIShellLogger(name, level=0)

	LMIShell’s logger with queueing capability.

	
critical(msg, *args, **kwargs)

	Log a message with severity ‘CRITICAL’.

	
debug(msg, *args, **kwargs)

	Log a message with severity ‘DEBUG’.

	
error(msg, *args, **kwargs)

	Log a message with severity ‘ERROR’.

	
exception(msg, *args, **kwargs)

	Log a message with severity ‘ERROR’ also with exception information.

	
info(msg, *args, **kwargs)

	Log a message with severity ‘INFO’.

	
processQueue()

	Logs all enabled log records stored in internal queue.

	
setLevel(level)

	Sets a logging level of this handler. If there are any log records
stored in internal queue, they are also handled.

	Parameters:	level (int) – logging level

	
warning(msg, *args, **kwargs)

	Log a message with severity ‘WARNING’.

	
lmi.shell.LMIShellLogger.lmi_get_logger()

	Returns LMIShell’s logger.

	Returns:	logger

	
lmi.shell.LMIShellLogger.lmi_init_logger()

	Initializes LMIShell’s logging.

	
lmi.shell.LMIShellLogger.lmi_setup_logger(log_options)

	Sets logging level.

	Parameters:	log_options (int) – level defined in LMIShellOptions

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellOptions

	
class lmi.shell.LMIShellOptions.LMIShellOptionParser(prog=None, usage=None, description=None, epilog=None, version=None, parents=, []formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True)

	Helper class for CLI option parsing.

	
error(msg)

	Prints help message, error message and exits with erro code 2.

	
class lmi.shell.LMIShellOptions.LMIShellOptions(argv)

	Class representing a LMIShell command line options. In the constructor, all
command line options before a script name are passed to the LMIShell. First
position argument belongs to the script and the rest of command line
options is passed to the script run under the LMIShell.

	Parameters:	argv (list) – CLI arguments

	
cwd_first_in_path

	

	Returns:	True, if CWD should be prepended in sys.path; False if
appended

	
interact

	

	Returns:	flag, which indicates, if the LMIShell should enter an
interactive mode, after executing a provided script. The behavior
is similar to python interpreter

	Return type:	bool

	
interactive

	

	Returns:	flag, which tells if the LMIShell should be initially run in
the interactive mode

	Return type:	bool

	
log

	

	Returns:	log level

	Return type:	int

Log level can be one of the following:

	_LOG_DEFAULT

	_LOG_VERBOSE

	_LOG_MORE_VERBOSE

	_LOG_QUIET

	
script_argv

	

	Returns:	list of command line arguments of the interpreted script

	
script_name

	

	Returns:	script name, which is about to be run under the LMIShell

	Return type:	string

	
verify_server_cert

	

	Returns:	flag, which indicates, if LMIShell should verify server side
certificate, if SSL used

	Return type:	bool

	
class lmi.shell.LMIShellOptions.LMIShellOptionsHelpWithVersionFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Helper class used for help message formatting.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIShellVersion

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMISubscription

	
class lmi.shell.LMISubscription.LMISubscription(client, cim_filter, cim_handler, cim_subscription, permanent)

	Class holding information about a indication subscription.

	Parameters:	
	client (LMIShellClient) – client object used for CIMOM communication

	cim_filter (tuple) – contains filter object and bool indicator,
if the filter object was created temporarily

	cim_handler (tuple) – contains handler object and bool indicator,
if the handler object was created temporarily

	cim_subscription – subscription object

	permanent (bool) – indicates, if the indication should be deleted on
the LMIShell’s quit

	
delete()

	Cleans up the indication subscription.

First it deletes subscription object. If
LMISubscription._cim_filter_tpl contains a flag, that the
filter object was created temporarily, it will be deleted by this call.
If LMISubscription._cim_handler_tlp contains an flag, that
the handler object was created temporarily, it will be deleted as well.

This is called from LMIConnection object, which holds an
internal list of all subscribed indications by the LMIShell (if not
created by hand).

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIUtil

	
class lmi.shell.LMIUtil.LMIPassByRef(val)

	Helper class used for passing a value by reference. It uses the advantage
of python, where all the dictionaries are passed by reference.

	Parameters:	val – value, which will be passed by reference

Example of usage:

by_ref = LMIPassByRef(some_value)
by_ref.value == some_value

	
value

	

	Returns:	value passed by reference.

	
class lmi.shell.LMIUtil.LMIUseExceptionsHelper

	Singleton helper class used for storing a bool flag, which defines,
if the LMIShell should propagate exceptions or dump them.

	
use_exceptions

	

	Returns:	whether the LMIShell should propagate the exceptions, or
throw them away

	Return type:	bool

	
lmi.shell.LMIUtil.lmi_associators(assoc_classes)

	Helper function to speed up associator traversal. Returns a list of tuples,
where each tuple contains LMIInstance objects, which are in
association.

	Parameters:	assoc_classes (list) – list of LMIClass objects, for which
the associations will be returned

	Returns:	list of tuples of LMIInstance objects in association

	
lmi.shell.LMIUtil.lmi_cast_to_cim(t, value)

	Casts the value to CIM type.

	Parameters:	
	t (string) – string of CIM type

	value – variable to cast

	Returns:	cast value in wbem type

	
lmi.shell.LMIUtil.lmi_cast_to_lmi(t, value)

	Casts the value to LMI (python) type.

	Parameters:	
	t (string) – string of CIM type

	value – variable to cast

	Returns:	cast value in python native type

	
lmi.shell.LMIUtil.lmi_get_use_exceptions()

	

	Returns:	whether the LMIShell should use the exceptions, or throw them
away

	Return type:	bool

	
lmi.shell.LMIUtil.lmi_instance_to_path(instance)

	Helper function, which returns wbem.CIMInstanceName extracted
out of input instance.

	Parameters:	instance – object, which can be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	Returns:	extracteed wbem.CIMInstanceName object

	Raises:	TypeError

	
lmi.shell.LMIUtil.lmi_is_localhost(uri)

	Helper function, which returns True, if URI points to localhost.

	Parameters:	uri (str) – URI to check

	
lmi.shell.LMIUtil.lmi_isinstance(lmi_obj, lmi_class)

	Function returns True if lmi_obj is an instance of a
lmi_class, False otherwise. When passed LMIInstance,
LMIInstanceName as lmi_obj and lmi_class is of
LMIClass type, function can tell, if such lmi_obj is
direct instance of LMIClass, or it’s super class.

If lmi_obj and lmi_class is not instance of mentioned
classes, an exception will be raised.

	Parameters:	
	lmi_obj – instance of LMIInstance or
LMIInstanceName which is checked, if such instance is
instance of the lmi_class

	lmi_class (LMIClass) – instance of LMIClass object

	Returns:	whether lmi_obj is instance of lmi_class

	Return type:	bool

	Raises:	TypeError

	
lmi.shell.LMIUtil.lmi_parse_uri(uri)

	Parses URI into scheme, hostname, port, username and password.

	
lmi.shell.LMIUtil.lmi_raise_or_dump_exception(e=None)

	Function which either raises an exception, or throws it away.

	Parameters:	e (Exception) – exception, which will be either raised or thrown away

	
lmi.shell.LMIUtil.lmi_set_use_exceptions(use=True)

	Sets a global flag indicating, if the LMIShell should use the exceptions,
or throw them away.

	Parameters:	use (bool) – specifies, whether the LMIShell should use the exceptions

	
lmi.shell.LMIUtil.lmi_transform_to_cim_param(t, value)

	Helper function for method calls, which transforms input object into
wbem.CIMInstanceName object. Members if lists, dictionaries and
tuples are transformed as well. The function does not cast numeric types.

	Parameters:	
	t (string) – string of CIM type

	value – object to be transformed to wbem type.

	Returns:	transformed LMIShell’s object into wbem one

	
lmi.shell.LMIUtil.lmi_transform_to_lmi(conn, value)

	Transforms returned values from a method call into LMI wrapped objects.
Returns transformed input, where wbem.CIMInstance and
wbem.CIMInstanceName are wrapped into LMI wrapper classes and
primitive types are cast to python native types.

	Parameters:	
	conn (LMIConnection) – connection object

	value – object to be transformed into python type from
wbem one

	Returns:	transformed py:wbem object into LMIShell one

	
lmi.shell.LMIUtil.lmi_wrap_cim_class(conn, cim_class_name, cim_namespace_name)

	Helper function, which returns wrapped wbem.CIMClass into
LMIClass.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_class_name (string) – string containing wbem.CIMClass
name

	cim_namespace_name (string) – string containing
wbem.CIMNamespace name, or None, if the namespace is not
known

	Returns:	wrapped wbem.CIMClass into LMIClass

	
lmi.shell.LMIUtil.lmi_wrap_cim_instance(conn, cim_instance, cim_class_name, cim_namespace_name)

	Helper function, which returns wrapped wbem.CIMInstance into
LMIInstance.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_instance (CIMInstance) – wbem.CIMInstance object to be
wrapped

	cim_class_name (string) – wbem.CIMClass name

	cim_namespace_name (string) – wbem.CIMNamespace name, or
None, if the namespace is not known

	Returns:	wrapped wbem.CIMInstance into
LMIInstance

	
lmi.shell.LMIUtil.lmi_wrap_cim_instance_name(conn, cim_instance_name)

	Helper function, which returns wrapped wbem.CIMInstanceName
into LMIInstanceName.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_instance_name (CIMInstanceName) – wbem.CIMInstanceName
object to be wrapped

	Returns:	wrapped wbem.CIMInstanceName into
LMIInstanceName

	
lmi.shell.LMIUtil.lmi_wrap_cim_method(conn, cim_method_name, lmi_instance)

	Helper function, which returns wrapped wbem.CIMMethod into
LMIMethod.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_method_name (string) – method name

	lmi_instance (LMIInstance) – object, on which the method call will be
issued

	Returns:	wrapped wbem.CIMMethod into LMIMethod

	
lmi.shell.LMIUtil.lmi_wrap_cim_namespace(conn, cim_namespace_name)

	Helper function, which returns wrapped CIM namespace in
LMINamespace.

	Parameters:	
	conn (LMIConnection) – connection object

	cim_namespace_name (string) – CIM namespace name

	Returns:	wrapped CIM namespace into LMINamespace

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMIShell API reference

LMIWSMANClient

	
class lmi.shell.LMIWSMANClient.LMIWSMANClient(uri, username='', password='', interactive=False, verify_server_cert=True, key_file=None, cert_file=None)

	WS-MAN client.

	Parameters:	
	uri (string) – URI of the CIMOM

	username (string) – account, under which, the CIM calls will be
performed

	password (string) – user’s password

	verify_server_cert (bool) – indicates, whether a server side
certificate needs to be verified, if SSL used; default value is True

	key_file (string) – path to x509 key file; default value is None

	cert_file (string) – path to x509 cert file; default value is None

	
association(instance, relationship, result_cls, AssocClass=None, ResultClass=None, Role=None, ResultRole=None, limit=-1)

	Enumerates association instance (names).

	Parameters:	
	instance – object, for which the association objects will be
enumerated. The object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	relationship – LMIWSMANClient.ASSOC_ASSOCIATORS or
LMIWSMANClient.ASSOC_REFERENCES

	result_cls – LMIWSMANClient.RES_INSTANCE or
LMIWSMANClient.RES_INSTANCE_NAME

	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	limit (int) – enumeration limit

	Returns:	list of association objects

	
call_method(*args, **kwargs)

	Executes a method within a given instance.

	Parameters:	
	instance – object, on which the method will be executed. The
object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	method (string) – string containing a method name

	params (dictionary) – parameters passed to the method call

	Returns:	LMIReturnValue object with rval set to return
value of the method call, rparams set to returned parameters from
the method call, if no error occurs; otherwise rval is set to -1
and errorstr to appropriate error string

	Raises:	CIMError

	
connect()

	Compatibility method present due to LMICIMXMLClient.

	
create_instance(*args, **kwargs)

	Not supported.

	
delete_instance(*args, **kwargs)

	Not supported.

	
disconnect()

	Compatibility method present due to LMICIMXMLClient.

	
dummy()

	Sends a “dummy” request to verify credentials.

	Returns:	LMIReturnValue with rval set to True, if
provided credentials are OK; False otherwise. If LMIShell uses
exceptions, CIMError will be raised.

	Raises:	CIMError

	
enumerate(result_cls, classname, namespace=None, inst_filter=None, limit=-1, **kwargs)

	Enumerates instance (names).

	Parameters:	
	result_cls (int) – either LMIWSMANClient.RES_INSTANCE
or LMIWSMANClient.RES_INSTANCE_NAME

	classname (str) – class name to enumerate

	namespace (str) – namespace where the class is located

	inst_filter (dict) – dictionary containing keys and values for the
filter

	limit (int) – enumeration limit

	kwargs – keyword arguments used for inst_filter

	Return type:	list containing wbem.CIMInstance of
wbem.CIMInstanceName

	Raises:	CIMError

	
enumerate_iter(classname, namespace, filt, options=None, limit=-1)

	Enumerates instance (names).

	Parameters:	
	filt (pywsman.Filter) – filter for enumeration

	options (pywsman.ClientOptions) – options for enumeration

	limit (int) – enumeration limit

	Return type:	list containing wbem.CIMInstance of
wbem.CIMInstanceName

	Raises:	CIMError

	
enumerate_iter_with_uri(uri, filt, options=None, limit=-1)

	Enumerates instance (names).

	Parameters:	
	uri (str) – URI of the resource

	filt (pywsman.Filter) – filter for enumeration

	options (pywsman.ClientOptions) – options for enumeration

	limit (int) – enumeration limit

	Return type:	list containing wbem.CIMInstance of
wbem.CIMInstanceName

	Raises:	CIMError

	
exec_query(*args, **kwargs)

	Executes a query and returns a list of wbem.CIMInstance
objects.

	Parameters:	
	query_lang (string) – query language

	query (string) – query to execute

	namespace (string) – target namespace for the query

	Returns:	LMIReturnValue object with rval set to list
of wbem.CIMInstance objects, if no error occurs;
otherwise rval is set to None and errorstr is set to
corresponding error string

	Raises:	CIMError

	
get_associator_names(*args, **kwargs)

	Returns a list of associated wbem.CIMInstanceName objects
with an input instance.

	Parameters:	
	instance – for this object the list of associated
wbem.CIMInstanceName will be returned. The object needs
to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of names by mandating that each
returned name identify an object that shall be associated to the
source object through an instance of this class or one of its
subclasses.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be either an instance of this class
(or one of its subclasses) or be this class (or one of its
subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of names by mandating that each returned name identify
an object that shall be associated to the source object through an
association in which the source object plays the specified role.
That is, the name of the property in the association class that
refers to the source object shall match the value of this
parameter.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of names by mandating that each returned name
identify an object that shall be associated to the source object
through an association in which the named returned object plays the
specified role. That is, the name of the property in the
association class that refers to the returned object shall match
the value of this parameter.

	limit (int) – enumeration limit

	Returns:	list of associated wbem.CIMInstanceName objects
with an input instance, if no error occurs; otherwise en empty list
is returned

	Raises:	CIMError

	
get_associators(*args, **kwargs)

	Returns a list of associated wbem.CIMInstance objects with
an input instance.

	Parameters:	
	instance – for this object the list of associated
wbem.CIMInstance objects will be returned. The object
needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	AssocClass (string) – valid CIM association class name. It acts as
a filter on the returned set of objects by mandating that each
returned object shall be associated to the source object through an
instance of this class or one of its subclasses. Default value is
None.

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be either an instance of this class (or one of its
subclasses) or be this class (or one of its subclasses). Default
value is None.

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall be associated with the source object through an association
in which the source object plays the specified role. That is, the
name of the property in the association class that refers to the
source object shall match the value of this parameter. Default
value is None.

	ResultRole (string) – valid property name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be associated to the source object through an association in
which the returned object plays the specified role. That is, the
name of the property in the association class that refers to the
returned object shall match the value of this parameter. Default
value is None.

	IncludeQualifiers – unused

	IncludeClassOrigin – unused

	PropertyList – unused

	limit (int) – enumeration limit

	Returns:	list of associated wbem.CIMInstance objects with
an input instance, if no error occurs; otherwise an empty list is
returned

	Raises:	CIMError

	
get_class(*args, **kwargs)

	Not supported.

	
get_class_names(*args, **kwargs)

	Not supported.

	
get_instance(*args, **kwargs)

	Returns a wbem.CIMInstance object.

	Parameters:	
	instance – path of the object, which is about to be retrieved.
The object needs to be instance of following classes:

	wbem.CIMInstanceName

	wbem.CIMInstance

	LMIInstanceName

	LMIInstance

	LocalOnly – unused

	IncludeQualifiers – unused

	IncludeClassOrigin – unused

	PropertyList – unused

	Returns:	LMIReturnValue object, where rval is set to
wbem.CIMInstance object, if no error occurs; otherwise
errorstr is set to corresponding error string

	Raises:	CIMError

	
get_instance_names(*args, **kwargs)

	Returns a list of wbem.CIMInstanceName objects.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace name, where the instance names live

	inst_filter (dict) – dictionary containing filter values. The
key corresponds to the primary key of the
wbem.CIMInstanceName; value contains the filtering
value.

	limit (int) – enumeration limit

	kwargs (dictionary) – supported keyword arguments (these are
deprecated)

	Key or key (string) – filtering key, see above

	Value or value (string) – filtering value, see above

	Returns:	LMIReturnValue object with rval contains a
list of wbem.CIMInstanceName objects, if no error
occurs; otherwise rval is set to None and errorstr contains
appropriate error string

	Raises:	CIMError

	
get_instances(*args, **kwargs)

	Returns a list of wbem.CIMInstance objects.

	Parameters:	
	classname (string) – class name

	namespace (string) – namespace, where the instances live

	inst_filter (dictionary) – dictionary containing filter values. The
key corresponds to the primary key of the
wbem.CIMInstanceName; value contains the filtering
value.

	client_filtering (bool) – if True, client-side filtering will be
performed, otherwise the filtering will be done by a CIMOM. Default
value is False.

	limit (int) – enumeration limit

	kwargs (dictionary) – supported keyword arguments (these are
deprecated)

	Key or key (string) – filtering key, see above

	Value or value (string) – filtering value, see above

	Returns:	LMIReturnValue object with rval set to a
list of wbem.CIMIntance objects, if no error occurs;
otherwise rval is set to None and errorstr is set to
corresponding error string.

	Raises:	CIMError

	
get_reference_names(*args, **kwargs)

	Returns a list of association wbem.CIMInstanceName objects
with an input instance.

	Parameters:	
	instance – for this object the association
wbem.CIMInstanceName objects will be returned. The
object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of object names by mandating that each returned
Object Name identify an instance of this class (or one of its
subclasses) or this class (or one of its subclasses).

	Role (string) – valid property name. It acts as a filter on the
returned set of object names by mandating that each returned object
name shall identify an object that refers to the target instance
through a property with a name that matches the value of this
parameter.

	limit (int) – enumeration limit

	Returns:	list of association wbem.CIMInstanceName objects
with an input instance, if no error occurs; otherwise an empty list
is returned

	Raises:	CIMError

	
get_references(*args, **kwargs)

	Returns a list of association wbem.CIMInstance objects with
an input instance.

	Parameters:	
	instance – for this object the association
wbem.CIMInstances objects will be returned. The
object needs to be instance of following classes:

	wbem.CIMInstance

	wbem.CIMInstanceName

	LMIInstance

	LMIInstanceName

	ResultClass (string) – valid CIM class name. It acts as a filter on
the returned set of objects by mandating that each returned object
shall be an instance of this class (or one of its subclasses) or
this class (or one of its subclasses). Default value is None.

	Role (string) – valid property name. It acts as a filter on the
returned set of objects by mandating that each returned object
shall refer to the target object through a property with a name
that matches the value of this parameter. Default value is None.

	IncludeQualifiers – unused

	IncludeClassOrigin – unused

	PropertyList – unused

	limit (int) – enumeration limit

	Returns:	list of association wbem.CIMInstance objects with
an input instance, if no error occurs; otherwise an empty list is
returned

	Raises:	CIMError

	
get_superclass(*args, **kwargs)

	Not supported.

	
hostname

	

	Returns:	hostname of CIMOM

	Return type:	string

	
modify_instance(*args, **kwargs)

	Not supported.

	
uri

	

	Returns:	URI of the CIMOM

	Return type:	string

	
username

	

	Returns:	user name as a part of provided credentials

	Return type:	string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

LMI Scripts API reference

This is a generated documentation from OpenLMI Scripts sources. This covers
everything under lmi.scripts namespace.

lmi.scripts.common package provides useful functionality for script
development. Various scripts share this directory in order to provide
command-line interface through LMI metacommand.

Generated from version: 0.10.1

Scripts version: 0.3.0

Contents:

	LMI Scripts common library reference

	Account Script python reference

	Hardware Script python reference

	Journald Script python reference

	Locale Script python reference

	Logical File Script python reference

	Networking Script python reference

	Power Management Script python reference

	Realmd Script python reference

	Service Script python reference

	Service Script python reference

	SSSD Script python reference

	Storage Script python reference

	System Script python reference

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

LMI Scripts common library reference

This library builds on top of LMIShell‘s functionality. It provides various
utilities and wrappers for building command-line interfaces to OpenLMI
Providers.

Generated from version: 0.10.1

Exported members:

Package with client-side python modules and command line utilities.

	
lmi.scripts.common.get_computer_system(ns)

	Obtain an instance of CIM_ComputerSystem or its subclass. Preferred
class name can be configured in configuration file. If such class does
not exist, a base class (CIM_ComputerSystem) is enumerated instead.
First feasible instance is cached and returned.

	Parameters:	ns (lmi.shell.LMINamespace) – Namespace object where to look for computer system class.

	Returns:	Instance of CIM_ComputerSystem.

	Return type:	lmi.shell.LMIInstance.

Submodules:

	command

	command.base

	command.checkresult

	command.endpoint

	command.helper

	command.lister

	command.meta

	command.multiplexer

	command.select

	command.session

	command.show

	command.util

	configuration

	errors

	formatter

	formatter.command

	lmi_logging

	session

	util

	versioncheck

	versioncheck.parser

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command

This subpackage defines base classes and utility functions for declaring
commands. These serve as wrappers for functions in libraries specific to
particular provider.

Tree of these commands build a command line interface for this library.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.base

Module defining base command class for all possible commands of lmi
meta-command.

	
lmi.scripts.common.command.base.DEFAULT_FORMATTER_OPTIONS = {'padding': 0, 'human_friendly': False, 'no_headings': False}

	Default formatting options overriden by options passed onc ommand-line and
set in configuration file.

	
class lmi.scripts.common.command.base.LmiBaseCommand(app, cmd_name, parent=None)

	Abstract base class for all commands handling command line arguments.
Instances of this class are organized in a tree with root element being the
lmi meta-command (if not running in interactive mode). Each such
instance can have more child commands if its
LmiBaseCommand.is_multiplexer() method return True. Each has
one parent command except for the top level one, whose parent
property returns None.

Set of commands is organized in a tree, where each command (except for the
root) has its own parent. is_end_point() method distinguishes
leaves from nodes. The path from root command to the leaf is a sequence of
commands passed to command line.

There is also a special command called selector. Its is_selector()
method returns True. It selects proper command that shall be passed all
the arguments based on expression with profile requirements. It shares its
name and parent with selected child.

If the LmiBaseCommand.has_own_usage() returns True, the parent
command won’t process the whole command line and the remainder will be
passed as a second argument to the LmiBaseCommand.run() method.

	Parameters:	
	app – Main application object.

	cmd_name (string) – Name of command.

	parent (LmiBaseCommand) – Parent command.

	
app

	Return application object.

	
classmethod child_commands()

	Abstract class method returning dictionary of child commands with
structure:

{ "command-name" : cmd_factory, ... }

Dictionary contains just a direct children (commands, which
may immediately follow this particular command on command line).

	
cmd_name

	Name of this subcommand as a single word.

	
cmd_name_parts

	Convenience property calling get_cmd_name_parts() to obtain
command path as a list of all preceding command names.

	Return type:	list

	
format_options

	Compose formatting options. Parent commands are queried for defaults. If
command has no parent, default options will be taken from
DEFAULT_FORMATTER_OPTIONS which are overriden by config
settings.

	Returns:	Arguments passed to formatter factory when formatter is
for current command is constructed.

	Return type:	dictionary

	
get_cmd_name_parts(all_parts=False, demand_own_usage=True, for_docopt=False)

	Get name of this command as a list composed of names of all preceding
commands since the top level one. When in interactive mode, only
commands following the active one will be present.

	Parameters:	
	full (boolean) – Take no heed to the active command or interactive
mode. Return all command names since top level node inclusive. This
is overriden with for_docopt flag.

	demand_own_usage (boolean) – Wether to continue the upward
traversal through command hieararchy past the active command until
the command with its own usage is found. This is the default behaviour.

	for_docopt (boolean) – Docopt parser needs to be given arguments list
without the first item compared to command names in usage string
it receives. Thus this option causes skipping the first item that would
be otherwise included.

	Returns:	Command path. Returned list will always contain at least the
name of this command.

	Return type:	list

	
classmethod get_description()

	Return description for this command. This is usually a first line
of documentation string of a class.

	Return type:	string

	
get_usage(proper=False)

	Get command usage. Return value of this function is used by docopt
parser as usage string. Command tree is traversed upwards until command
with defined usage string is found. End point commands (leaves) require
manually written usage, so the first command in the sequence of parents
with own usage string is obtained and its usage returned. For nodes
missing own usage string this can be generated based on its
subcommands.

	Parameters:	proper (boolean) – Says, whether the usage string written
manually is required or not. It applies only to node (not a leaf)
commands without its own usage string.

	
classmethod has_own_usage()

	

	Returns:	True, if this command has its own usage string, which is
returned by LmiBaseCommand.get_description(). Otherwise
the parent command must be queried.

	Return type:	boolean

	
classmethod is_end_point()

	

	Returns:	True, if this command parses the rest of command line and
can not have any child subcommands.

	Return type:	boolean

	
classmethod is_multiplexer()

	Is this command a multiplexer? Note that only one of
is_end_point(), is_selector() and this method can
evaluate to``True``.

	Returns:	True if this command is not an end-point command and it’s
a multiplexer. It contains one or more subcommands. It consumes the
first argument from command-line arguments and passes the rest to
one of its subcommands.

	Return type:	boolean

	
classmethod is_selector()

	Is this command a selector?

	Returns:	True if this command is a subclass of
lmi.scripts.common.command.select.LmiSelectCommand.

	Return type:	boolean

	
parent

	Return parent command.

	
run(args)

	Handle the command line arguments. If this is not an end point
command, it will pass the unhandled arguments to one of it’s child
commands. So the arguments are processed recursively by the instances
of this class.

	Parameters:	args (list) – Arguments passed to the command line that were
not yet parsed. It’s the contents of sys.argv (if in
non-interactive mode) from the current command on.

	Returns:	Exit code of application. This maybe also be a boolean value
or None. None and True are treated as a success causing
exit code to be 0.

	Return type:	integer

	
session

	

	Returns:	Session object. Session for command and all of its children
may be overriden with a call to set_session_proxy().

	Return type:	lmi.scripts.common.session.Session

	
set_session_proxy(session)

	Allows to override session object. This is useful for especially for
conditional commands (subclasses of
LmiSelectCommand) that devide
connections to groups satisfying particular expression. These groups
are turned into session proxies containing just a subset of connections
in global session object.

	Parameters:	session – Session object.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.checkresult

This module defines LmiCheckResult command class and related utilities.

	
class lmi.scripts.common.command.checkresult.LmiCheckResult(*args, **kwargs)

	Run an associated action and check its result. It implicitly makes no
output if the invocation is successful and expected result matches.

List of additional recognized properties:

	EXPECT :

	Value, that is expected to be returned by invoked associated
function. This can also be a callable taking two arguments:

	options - Dictionary with parsed command line options
returned by docopt.

	result - Return value of associated function.

Using metaclass: CheckResultMetaClass.

	
check_result(options, result)

	Check the returned value of associated function.

	Parameters:	
	options (dictionary) – Dictionary as returned by docopt parser
after running
transform_options().

	result – Any return value that will be compared against what is
expected.

	Returns:	Whether the result is expected value or not. If tuple
is returned, it contains (passed_flag, error_description).

	Return type:	boolean or tuple.

	
take_action(connection, args, kwargs)

	Invoke associated method and check its return value for single host.

	Parameters:	
	args (list) – List of arguments to pass to the associated
function.

	kwargs (dictionary) – Keyword arguments to pass to the associated
function.

	Returns:	Exit code (0 on success).

	Return type:	integer

	
exception lmi.scripts.common.command.checkresult.LmiResultFailed

	Exception raised when associated function returns unexpected result. This
is evaluated by LmiCheckResult.check_result() method.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.endpoint

Defines base command class for all endpoint commands. Those having no children.

	
class lmi.scripts.common.command.endpoint.LmiEndPointCommand(*args, **kwargs)

	Base class for any leaf command.

List of additional recognized properties:

	CALLABLE : tuple

	Associated function. Will be wrapped in
LmiEndPointCommand.execute() method and will be accessible
directly as a cmd.execute.dest property. It may be specified
either as a string in form "<module_name>:<callable>" or as a
reference to callable itself.

	ARG_ARRAY_SUFFIX : str

	String appended to every option parsed by docopt having list as
an associated value. It defaults to empty string. This modification
is applied before calling
LmiEndPointCommand.verify_options() and
LmiEndPointCommand.transform_options().

	FORMATTER : callable

	Default formatter factory for instances of given command. This
factory accepts an output stream as the only parameter and returns
an instance of Formatter.

	Using metaclass:

	meta.EndPointCommandMetaClass.

	
classmethod dest_pos_args_count()

	Number of positional arguments the associated function takes from
command. These arguments are created by the command alone – they do
not belong to options in usage string. Function can take additional
positional arguments that need to be covered by usage string.

	Return type:	integer

	
execute(*args, **kwargs)

	Subclasses must override this method to pass given arguments to
command library function. This function shall be specified in
CALLABLE property.

	
formatter

	Return instance of default formatter.

	Return type:	Formatter

	
formatter_factory()

	Subclasses shall override this method to provide default formatter
factory for printing output.

	Returns:	Subclass of basic formatter.

	
produce_output(data)

	This method can be use to render and print results with default
formatter.

	Parameters:	data – Is an object expected by the
produce_output()
method of formatter.

	
run(args)

	Create options dictionary from input arguments, verify them,
transform them, make positional and keyword arguments out of them and
pass them to process_session().

	Parameters:	args (list) – List of command arguments.

	Returns:	Exit code of application.

	Return type:	integer

	
run_with_args(args, kwargs)

	Process end-point arguments and exit.

	Parameters:	
	args (list) – Positional arguments to pass to associated
function in command library.

	kwargs (dictionary) – Keyword arguments as a dictionary.

	Returns:	Exit code of application.

	Return type:	integer

	
transform_options(options)

	This method can be overriden in subclasses if options shall be somehow
modified before passing them associated function.

Note

Run after verify_options() method.

	Parameters:	options (dictionary) – Dictionary as returned by docopt parser.

	
verify_options(options)

	This method can be overriden in subclasses to check, whether the
options given on command line are valid. If any flaw is discovered, an
LmiInvalidOptions exception shall
be raised. Any returned value is ignored.

Note

This is run before transform_options() method.

	Parameters:	options (dictionary) – Dictionary as returned by docopt parser.

	
lmi.scripts.common.command.endpoint.opt_name_sanitize(opt_name)

	Make a function parameter name out of option name. This replaces any
character not suitable for python identificator with '_' and
make the whole string lowercase.

	Parameters:	opt_name (string) – Option name.

	Returns:	Modified option name.

	Return type:	string

	
lmi.scripts.common.command.endpoint.options_dict2kwargs(options)

	Convert option name from resulting docopt dictionary to a valid python
identificator token used as function argument name.

	Parameters:	options (dictionary) – Dictionary returned by docopt call.

	Returns:	New dictionary with keys passable to function as argument
names.

	Return type:	dictionary

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.helper

Module with convenient function for defining user commands.

	
lmi.scripts.common.command.helper.make_list_command(func, name=None, columns=None, verify_func=None, transform_func=None)

	Create a command subclassed from LmiLister. Please
refer to this class for detailed usage.

	Parameters:	
	func (string or callable) – Contents of CALLABLE property.

	name (string) – Optional name of resulting class. If not given,
it will be made from the name of associated function.

	columns (tuple) – Contents of COLUMNS property.

	verify_func (callable) – Callable overriding
py:meth:~.endpoint.LmiEndPointCommand.verify_options method.

	transform_func (callable) – Callable overriding
transform_options() method.

	Returns:	Subclass of LmiLister.

	Return type:	type

	
lmi.scripts.common.command.helper.register_subcommands(command_name, usage, command_map, fallback_command=None)

	Create a multiplexer command (a node in a tree of commands).

	Parameters:	
	command_name (string) – Name of created command. The same as will
be given on a command line.

	usage (string) – Usage string parseable by docopt.

	command_map (dictionary) – Dictionary of subcommands. Associates
command names to their factories. It’s assigned to COMMANDS
property.

	fallback_command (LmiEndPointCommand) – Command factory used when no command is given
on command line.

	Returns:	Subclass of LmiCommandMultiplexer.

	Return type:	type

	
lmi.scripts.common.command.helper.select_command(command_name, *args, **kwargs)

	Create command selector that loads command whose requirements are met.

Example of invocation:

Hardware = select_command('Hardware',
 ("Openlmi-Hardware >= 0.4.2", "lmi.scripts.hardware.current.Cmd"),
 ("Openlmi-Hardware < 0.4.2" , "lmi.scripts.hardware.pre042.Cmd"),
 default=HwMissing
)

Above example checks remote broker for OpenLMI-Hardware provider. If it is
installed and its version is equal or higher than 0.4.2, command from
current module will be used. For older registered versions command
contained in pre042 module will be loaded. If hardware provider is not
available, HwMissing command will be loaded instead.

See also

Check out the grammer describing language used in these conditions at
lmi.scripts.common.versioncheck.parser.

	Parameters:	
	args – List of pairs (condition, command) that are inspected in
given order until single condition is satisfied. Associated command is
then loaded. Command is either a reference to command class or path to
it given as string. In latter case last dot divides module’s import
path and command name.

	default – This command will be loaded when no condition from args
is satisfied.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.lister

Defines command classes producing tablelike output.

	
class lmi.scripts.common.command.lister.LmiBaseListerCommand(*args, **kwargs)

	Base class for all lister commands.

	
classmethod get_columns()

	

	Returns:	Column names for resulting table. COLUMNS property
will be converted to this class method. If None, the associated
function shall return column names as the first tuple of returned
list. If empty tuple or list, no header shall be printed and associated
function returns just data rows.

	Return type:	list or tuple or None

	
class lmi.scripts.common.command.lister.LmiInstanceLister(*args, **kwargs)

	End point command outputting a table of instances for each host.
Associated function shall return a list of instances. They may be
prepended with column names depending on value of DYNAMIC_PROPERTIES.
Each instance will occupy single row of table with property values being a
content of cells.

List of additional recognized properties is the same as for
LmiShowInstance. There is just one difference. Either
DYNAMIC_PROPERTIES must be True or PROPERTIES must be filled.

Using metaclass: InstanceListerMetaClass.

	
classmethod render(_self, inst)

	Return tuple of (column_names, values) ready for output by
formatter.

	
take_action(connection, args, kwargs)

	Collects results of single host.

	Parameters:	
	connection (lmi.shell.LMIConnection) – Connection to a single host.

	args (list) – Positional arguments for associated function.

	kwargs (dictionary) – Keyword arguments for associated function.

	Returns:	Column names and item list as a pair.

	Return type:	tuple

	
class lmi.scripts.common.command.lister.LmiLister(*args, **kwargs)

	End point command outputting a table for each host. Associated function
shall return a list of rows. Each row is represented as a tuple holding
column values.

List of additional recognized properties:

	COLUMNS : tuple

	Column names. It’s a tuple with name for each column. Each row
shall then contain the same number of items as this tuple. If
omitted, associated function is expected to provide them in the
first row of returned list. It’s translated to get_columns()
class method.

Using metaclass: ListerMetaClass.

	
take_action(connection, args, kwargs)

	Collects results of single host.

	Parameters:	
	connection (lmi.shell.LMIConnection) – Connection to a single host.

	args (list) – Positional arguments for associated function.

	kwargs (dictionary) – Keyword arguments for associated function.

	Returns:	Column names and item list as a pair.

	Return type:	tuple

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.meta

Meta classes simplifying declaration of user commands.

Each command is defined as a class with a set of properties. Some are
mandatory, the others have some default values. Each of them is transformed by
metaclasse to some function, class method or other property depending on
command type and semantic of property. Property itself is removed from
resulting class after being processed by meta class.

	
class lmi.scripts.common.command.meta.CheckResultMetaClass

	Meta class for end-point command “check result”. Additional handled
properties:

	EXPECT :

	Value to compare against the return value. Mandatory property.

EXPECT property is transformed into a
checkresult.LmiCheckResult.check_result() method taking two
arguments (options, result) and returning a boolean.

	
class lmi.scripts.common.command.meta.EndPointCommandMetaClass

	End point command does not have any subcommands. It’s a leaf of
command tree. It wraps some function in command library being
referred to as an associated function. It handles following class
properties:

	CALLABLE : str or callable

	An associated function. Mandatory property.

	OWN_USAGE : bool or str

	Usage string. Optional property.

	ARG_ARRAY_SUFFIX : str

	Suffix added to argument names containing array of values.
Optional property.

	FMT_NO_HEADINGS : bool

	Allows to force printing of table headers on and off for
this command. Default is to print them.

	FMT_HUMAN_FRIENDLY : bool

	Tells formatter to make the output more human friendly. The result
is dependent on the type of formatter used.

	
class lmi.scripts.common.command.meta.InstanceListerMetaClass

	Meta class for instance lister command handling the same properties
as ShowInstanceMetaClass.

	
class lmi.scripts.common.command.meta.ListerMetaClass

	Meta class for end-point lister commands. Handles following class
properties:

	COLUMNS : tuple

	List of column names. Optional property. There are special values
such as:

	None or omitted

	Associated function provides column names in a first row of
returned list or generator.

	empty list, empty tuple or False

	They mean that no headers shall be printed. It is simalar
to using FMT_NO_HEADINGS = True. But in this case all
the rows returned from associated functions are treated as
data.

	
class lmi.scripts.common.command.meta.MultiplexerMetaClass

	Meta class for node command (not an end-point command). It handles
following class properties:

	COMMANDS : dict

	Command names with assigned command classes. Each of them is a
direct subcommands of command with this property. Mandatory
property.

	FALLBACK_COMMAND : LmiEndPointCommand

	Command factory to use in case that no command is passed on command
line.

Formatting options (starting with FMT_ are also accepted, and may used
to set defaults for all subcommands.

	
class lmi.scripts.common.command.meta.SelectMetaClass

	Meta class for select commands with guarded commands. Additional handled
properties:

	SELECT : list

	List of commands guarded with expressions representing requirements
on server’s side that need to be met.

	DEFAULT : str or LmiBaseCommand

	Defines fallback command used in case no condition can is
satisfied.

	
class lmi.scripts.common.command.meta.SessionCommandMetaClass

	Meta class for commands operating upon a session object.
All associated functions take as first argument an namespace abstraction
of type lmi.shell.

Handles following class properties:

	NAMESPACE : str

	CIM namespace abstraction that will be passed to associated
function. Defaults to "root/cimv2". If False, raw
lmi.shell.LMIConnection object will be passed to
associated function.

	
class lmi.scripts.common.command.meta.ShowInstanceMetaClass

	Meta class for end-point show instance commands. Additional handled
properties:

	DYNAMIC_PROPERTIES : bool

	Whether the associated function itself provides list of
properties. Optional property.

	PROPERTIES : tuple

	List of instance properties to print. Optional property.

These are translated in a render(), which
should be marked as abstract in base lister class.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.multiplexer

Defines command class used to nest multiple commands under one.

	
class lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer(app, cmd_name, parent=None)

	Base class for node commands. It consumes just part of command line
arguments and passes the remainder to one of its subcommands.

Example usage:

class MyCommand(LmiCommandMultiplexer):
 '''
 My command description.

 Usage: %(cmd)s mycommand (subcmd1 | subcmd2)
 '''
 COMMANDS = {'subcmd1' : Subcmd1, 'subcmd2' : Subcmd2}

Where Subcmd1 and Subcmd2 are some other LmiBaseCommand
subclasses. Documentation string must be parseable with docopt.

Recognized properties:

	COMMANDS : dictionary

	property will be translated to
LmiCommandMultiplexer.child_commands() class method by
MultiplexerMetaClass.

Using metaclass: meta.MultiplexerMetaClass.

	
classmethod child_commands()

	Abstract class method, that needs to be implemented in subclass.
This is done by associated meta-class, when defining a command with
assigned COMMANDS property.

	Returns:	Dictionary of subcommand names with assigned command
factories.

	Return type:	dictionary

	
classmethod fallback_command()

	This is overriden by MultiplexerMetaClass when
the FALLBACK_COMMAND gets processed.

	Returns:	Command factory invoked for missing command on command line.

	Return type:	LmiEndPointCommand

	
run(args)

	Handle optional parameters, retrieve desired subcommand name and
pass the remainder of arguments to it.

	Parameters:	args (list) – List of arguments with at least subcommand name.

	
run_subcommand(cmd_name, args)

	Pass control to a subcommand identified by given name.

	Parameters:	
	cmd_name (string) – Name of direct subcommand, whose
run() method shall be invoked.

	args (list) – List of arguments for particular subcommand.

	Returns:	Application exit code.

	Return type:	integer

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.select

Defines command class used to choose other commands depending on
profile and class requirements.

	
class lmi.scripts.common.command.select.LmiSelectCommand(app, cmd_name, parent=None)

	Base class for command selectors. It does not process command line
arguments. Thery are passed unchanged to selected command whose
requirements are met. Its doc string is not interpreted in any way.

If there are more hosts, conditions are evaluated per each. They are then
split into groups, each fulfilling particular condition. Associated
commands are then invoked on these groups separately.

Example usage:

class MySelect(LmiSelectCommand):
 SELECT = [
 ('OpenLMI-Hardware >= 0.4.2'
 , 'lmi.scripts.hardware.current.Cmd'),
 ('OpenLMI-Hardware', 'lmi.scripts.hardware.pre042.Cmd')
]
 DEFAULT = MissingHwProviderCmd

Using metaclass: meta.SelectMetaClass.

	
eval_expr(expr, hosts, cache=None)

	Evaluate expression on group of hosts.

	Parameters:	
	expr (string) – Expression to evaluate.

	hosts (list) – Group of hosts that shall be checked.

	cache (dictionary) – Optional cache object speeding up evaluation
by reducing number of queries to broker.

	Returns:	Subset of hosts satisfying expr.

	Return type:	list

	
classmethod get_conditionals()

	Get the expressions with associated commands. This shall be overriden
by a subclass.

	Returns:	Pair of (expressions, default).
Where expressions is a list of pairs (condition, command).
And default is the same as command used in case no
condition is satisfied.

	Return type:	list

	
get_usage(proper=False)

	Try to get usage of any command satisfying some expression.

	Raises:	Same exceptions as select_cmds().

	
run(args)

	Iterate over command factories with associated sessions and
execute them with unchanged args.

	
select_cmds(cache=None)

	Generator of command factories with associated groups of hosts. It
evaluates given expressions on session. In this process all expressions
from get_conditionals() are checked in a row. Host satisfying
some expression is added to group associated with it and is excluded
from processing following expressions.

	Parameters:	cache (dictionary) – Optional cache object speeding up the evaluation
by reducing number of queries to broker.

	Returns:	Pairs in form (command_factory, session_proxy).

	Return type:	generator

	Raises:	
	
	LmiUnsatisfiedDependencies

	if no condition is satisfied for at least one host. Note that
this exception is raised at the end of evaluation. This lets
you choose whether you want to process satisfied hosts - by
processing the generator at once. Or whether you want to be
sure it is satisfied by all of them - you turn the generator
into a list.

	
	LmiNoConnections

	if no successful connection was done.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.session

Defines a base class for all command classes operating upon a
Session object.

	
class lmi.scripts.common.command.session.LmiSessionCommand(*args, **kwargs)

	Base class for end-point commands operating upon a session object.

Using metaclass: SessionCommandMetaClass.

	
classmethod cim_namespace()

	This returns default cim namespace, the connection object will be
nested into before being passed to associated function.
It can be overriden in few ways:

	by setting [CIM] Namespace option in configuration

	by giving --namespace argument on command line to the
lmi meta-command

	by setting NAMESPACE property in declaration of command

Higher number means higher priority.

	
classmethod dest_pos_args_count()

	There is a namespace/connection object passed as the first positional
argument.

	
execute_on_connection(connection, *args, **kwargs)

	Wraps the execute() method with
connection adjustments. Connection object is not usually passed
directly to associated function. Mostly it’s the namespace object that
is expected. This method checks, whether the namespace object is
desired and modifies connection accordingly.

	Parameters:	
	connection (lmi.shell.LMIConnection) – Connection to single host.

	args (list) – Arguments handed over to associated function.

	kwargs (dictionary) – Keyword arguments handed over to associated
function.

	
process_host_result(hostname, success, result)

	Called from process_session() after single host gets
processed. By default this prints obtained result with default
formatter if the execution was successful. Children of this class may
want to override this.

	Parameters:	
	hostname (string) – Name of host involved.

	success (boolean) – Whether the action on host succeeded.

	result – Either the value returned by associated function upon a
successful invocation or an exception.

	
process_session(session, args, kwargs)

	Process each host of given session, call the associated command
function, collect results and print it to standard output.

	Parameters:	
	session (Session) – Session object with set of hosts.

	args (list) – Positional arguments to pass to associated function
in command library.

	kwargs (dictionary) – Keyword arguments as a dictionary.

	Returns:	Exit code of application.

	Return type:	integer

	
process_session_results(session, results)

	Called at the end of process_session()‘s execution. It’s
supposed to do any summary work upon results from all hosts. By default
it just prints errors in a form of list.

	Parameters:	
	session (lmi.scripts.common.session.Session) – Session object.

	results (dictionary) – Dictionary of form:

{ 'hostname' : (success_flag, result), ... }

where result is either an exception or returned value of
associated function, depending on success_flag. See the
process_host_result().

	
take_action(connection, args, kwargs)

	Executes an action on single host and collects results.

	Parameters:	
	connection (lmi.shell.LMIConnection) – Connection to a single host.

	args (list) – Positional arguments for associated function.

	kwargs (dictionary) – Keyword arguments for associated function.

	Returns:	Column names and item list as a pair.

	Return type:	tuple

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.show

Contains command classes producing key-value pairs to output.

	
class lmi.scripts.common.command.show.LmiShowInstance(*args, **kwargs)

	End point command producing a list of properties of particular CIM
instance. Either reduced list of properties to print can be specified, or
the associated function alone can decide, which properties shall be
printed. Associated function is expected to return CIM instance as a
result.

List of additional recognized properties:

	DYNAMIC_PROPERTIES : bool

	A boolean saying, whether the associated function alone shall
specify the list of properties of rendered instance. If True,
the result of function must be a pair:

(props, inst)

Where props is the same value as can be passed to PROPERTIES
property. Defaults to False.

	PROPERTIES : tuple

	May contain list of instance properties, that will be produced in
the same order as output. Each item of list can be either:

	name : str

	Name of property to render.

	pair : tuple

	A tuple (Name, render_func), where former item an
arbitraty name for rendered value and the latter is a
function taking as the only argument particular instance
and returning value to render.

DYNAMIC_PROPERTIES and PROPERTIES are mutually exclusive. If none
is given, all instance properties will be printed.

Using metaclass: ShowInstanceMetaClass.

	
classmethod render(_self, inst)

	Return tuple of (column_names, values) ready for output by
formatter.

	
take_action(connection, args, kwargs)

	Process single connection to a host, render result and return a value
to render.

	Returns:	List of pairs, where the first item is a label and
second a value to render.

	Return type:	list

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

command.util

Utility functions used in command sub-package.

	
lmi.scripts.common.command.util.RE_COMMAND_NAME = <_sre.SRE_Pattern object at 0x7f30388d3468>

	Command name can also be a single or double dash.

	
lmi.scripts.common.command.util.RE_OPT_BRACKET_ARGUMENT = <_sre.SRE_Pattern object at 0x7f303ab87930>

	Regular expression matching bracket argument such as <arg_name>.

	
lmi.scripts.common.command.util.RE_OPT_LONG_OPTION = <_sre.SRE_Pattern object at 0x7f3036fd33d0>

	Regular expression matching long options (prefixed with double dash).

	
lmi.scripts.common.command.util.RE_OPT_SHORT_OPTION = <_sre.SRE_Pattern object at 0x7f3035ffa0e0>

	Regular expression matching showt options. They are one character
long, prefixed with single dash.

	
lmi.scripts.common.command.util.RE_OPT_UPPER_ARGUMENT = <_sre.SRE_Pattern object at 0x7f30367e5620>

	Regular expression matching argument written in upper case such as
ARG_NAME.

	
lmi.scripts.common.command.util.get_module_name(frame_level=2)

	Get a module name of caller from particular outer frame.

	Parameters:	frame_level (integer) – Number of nested frames to skip when searching
for called function scope by inspecting stack upwards. When the result
of this function is applied directly on the definition of function,
it’s value should be 1. When used from inside of some other factory, it
must be increased by 1.

Level 0 returns name of this module. Level 1 returns module name of
caller. Level 2 returns module name of caller’s caller.

	Returns:	Module name.

	Return type:	string

	
lmi.scripts.common.command.util.is_abstract_method(clss, method, missing_is_abstract=False)

	Check, whether the given method is abstract in given class or list of
classes. May be used to check, whether we should override particular
abstract method in a meta-class in case that no non-abstract
implementation is defined.

	Parameters:	
	clss (type or tuple) – Class or list of classes that is
searched for non-abstract implementation of particular method.
If the first class having particular method in this list contain
non-abstract implementation, False is returned.

	method (string) – Name of method to look for.

	missing_is_abstract (boolean) – This is a value returned, when
not such method is defined in a set of given classes.

	Returns:	Are all occurences of given method abstract?

	Return type:	boolean

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

configuration

Module for Configuration class.

	
class lmi.scripts.common.configuration.Configuration(user_config_file_path='~/.lmirc', **kwargs)

	Configuration class specific to software providers.
OpenLMI configuration file should reside in:

/etc/openlmi/scripts/lmi.conf

	Parameters:	user_config_file_path (string) – Path to the user configuration
options.

	
classmethod default_options()

	

	Returns:	Dictionary of default values.

	Return type:	dictionary

	
history_file

	Path to a file with history of interactive mode.

	
history_max_length

	Maximum number of lines kept in history file.

	
human_friendly

	Whether to print human-friendly values.

	
lister_format

	
	Output format used for lister commands. Returns one of

	
	LISTER_FORMAT_CSV

	LISTER_FORMAT_TABLE

	Return type:	integer

	
load()

	Read additional user configuration file if it exists.

	
log_file

	Path to a file, where logging messages shall be written.

	
no_headings

	Whether to print headings of tables.

	
silent

	Whether to suppress all output messages except for errors.

	
trace

	Whether the tracebacks shall be printed upon errors.

	
verbose

	Whether to output more details.

	
verbosity

	Return integer indicating verbosity level of output to console.

	
verify_server_cert

	Return boolean saying, whether the server-side certificate should be
checked.

	
lmi.scripts.common.configuration.DEFAULT_FORMAT_STRING = '%(cseq)s%(levelname_)-8s:%(creset)s %(message)s'

	Default format string to use in stderr handlers.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

errors

Module with predefined exceptions for use in scripts.

	
exception lmi.scripts.common.errors.LmiBadSelectExpression(module_name, class_name, expr)

	Raised, when expression of LmiSelectCommand
could not be evaluated.

	
exception lmi.scripts.common.errors.LmiCommandError(module_name, class_name, msg)

	Generic exception related to command declaration.

	
exception lmi.scripts.common.errors.LmiCommandImportError(cmd_name, cmd_path, reason)

	Exception raised when command can not be imported.

	
exception lmi.scripts.common.errors.LmiCommandInvalidCallable(module_name, class_name, msg)

	Raised, when given callback is not callable.

	
exception lmi.scripts.common.errors.LmiCommandInvalidName(module_name, class_name, cmd_name)

	Raised, when command gets invalid name.

	
exception lmi.scripts.common.errors.LmiCommandInvalidProperty(module_name, class_name, msg)

	Raised, when any command property contains unexpected value.

	
exception lmi.scripts.common.errors.LmiCommandMissingCallable(module_name, class_name)

	Raised, when command declaration is missing callable object.

	
exception lmi.scripts.common.errors.LmiCommandNotFound(cmd_name)

	Raised, when user requests not registered command.

	
exception lmi.scripts.common.errors.LmiError

	The base Lmi scripts error.
All the other exceptions inherit from it.

	
exception lmi.scripts.common.errors.LmiFailed

	Raised, when operation on remote host failes.
It’s supposed to be used especially in command libraries.

	
exception lmi.scripts.common.errors.LmiImportCallableFailed(module_name, class_name, callable_prop)

	Raised, when callable object of command could not be imported.

	
exception lmi.scripts.common.errors.LmiInvalidOptions

	Raised in verify_options()
method if the options given are not valid.

	
exception lmi.scripts.common.errors.LmiNoConnections

	Raised, when no connection to remote hosts could be made.

	
exception lmi.scripts.common.errors.LmiTerminate(exit_code=0)

	Raised to cleanly terminate interavtive shell.

	
exception lmi.scripts.common.errors.LmiUnexpectedResult(command_class, expected, result)

	Raised, when command’s associated function returns something unexpected.

	
exception lmi.scripts.common.errors.LmiUnsatisfiedDependencies(uris)

	Raised when no guarded command in
LmiSelectCommand can be loaded due to
unsatisfied requirements.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

formatter

Subpackage with formatter classes used to render and output results.

Each formatter has a Formatter.produce_output() method taking one
argument which gets rendered and printed to output stream. Each formatter
expects different argument, please refer to doc string of particular class.

	
class lmi.scripts.common.formatter.CsvFormatter(stream, padding=0, no_headings=False)

	Renders data in a csv (Comma-separated values) format.

	This formatter supports following commands:

	
	NewHostCommand

	NewTableCommand

	NewTableHeaderCommand

	
class lmi.scripts.common.formatter.ErrorFormatter(stream, padding=4)

	
	Render error strings for particular host. Supported commands:

	
	NewHostCommand

	
class lmi.scripts.common.formatter.Formatter(stream, padding=0, no_headings=False)

	Base formatter class.

It produces string representation of given argument and prints it.

This formatter supports following commands:

	NewHostCommand.

	Parameters:	
	stream (file) – Output stream.

	padding (integer) – Number of leading spaces to print at each line.

	no_headings (boolean) – If table headings should be omitted.

	
encoding

	Try to determine encoding for output terminal.

	Returns:	Encoding used to encode unicode strings.

	Return type:	string

	
host_counter = None

	counter of hosts printed

	
line_counter = None

	counter of lines producted for current table

	
print_host(hostname)

	Prints header for new host.

	Parameters:	hostname (string) – Hostname to print.

	
print_line(line, *args, **kwargs)

	Prints single line. Output message is prefixed with padding spaces,
formated and printed to output stream.

	Parameters:	
	line (string) – Message to print, it can contain markers for
other arguments to include according to format_spec language.
Please refer to Format Specification Mini-Language in python
documentation.

	args (list) – Positional arguments to format() function of
line argument.

	kwargs (dictionary) – Keyword arguments to format() function.

	
produce_output(data)

	Render and print given data.

Data can be also instance of
FormatterCommand, see
documentation of this class for list of
allowed commands.

This shall be overridden by subclasses.

	Parameters:	data – Any value to print. Subclasses may specify their
requirements for this argument. It can be also am instance of
FormatterCommand.

	
render_value(val)

	Rendering function for single value.

	Parameters:	val – Any value to render.

	Returns:	Value converted to its string representation.

	Return type:	str

	
table_counter = None

	counter of tables produced for current host

	
class lmi.scripts.common.formatter.ListFormatter(stream, padding=0, no_headings=False)

	Base formatter taking care of list of items. It renders input data in a
form of table with mandatory column names at the beginning followed by
items, one occupying single line (row).

	This formatter supports following commands:

	
	NewHostCommand

	NewTableCommand

	NewTableHeaderCommand

The command must be provided as content of one row. This row is then not
printed and the command is executed.

This class should be subclassed to provide nice output.

	
print_header()

	Print table header.

	
print_row(data)

	Print data row. Optionaly print header, if requested.

	Parameters:	data (tuple) – Data to print.

	
print_table_title(title)

	Prints title of next tale.

	Parameters:	title (string) – Title to print.

	
print_text_row(row)

	Print data row without any header.

	Parameters:	row (tuple) – Data to print.

	
produce_output(rows)

	Prints list of rows.

There can be a FormatterCommand instance instead
of a row. See documentation of this class for list of allowed commands.

	Parameters:	rows (list, generator or command.FormatterCommand) – List of rows to print.

	
class lmi.scripts.common.formatter.ShellFormatter(stream, padding=0, no_headings=False)

	Specialization of SingleFormatter having its output executable
as a shell script.

	This formatter supports following commands:

	
	NewHostCommand

	
class lmi.scripts.common.formatter.SingleFormatter(stream, padding=0, no_headings=False)

	Meant to render and print attributes of single object. Attributes are
rendered as a list of assignments of values to variables (attribute names).

	This formatter supports following commands:

	
	NewHostCommand

	
produce_output(data)

	Render and print attributes of single item.

There can be a FormatterCommand instance instead
of a data. See documentation of this class for list of allowed
commands.

	Parameters:	data (tuple or dict) – Is either a pair of property names with list of values or
a dictionary with property names as keys. Using the pair allows to
order the data the way it should be printing. In the latter case
the properties will be sorted by the property names.

	
class lmi.scripts.common.formatter.TableFormatter(stream, padding=0, no_headings=False)

	Print nice human-readable table to terminal.

To print the table nicely aligned, the whole table must be populated first.
Therefore this formatter stores all rows locally and does not print
them until the table is complete. Column sizes are computed afterwards
and the table is printed at once.

	This formatter supports following commands:

	
	NewHostCommand

	NewTableCommand

	NewTableHeaderCommand

The command must be provided as content of one row. This row is then not
printed and the command is executed.

	
print_host(hostname)

	Prints header for new host.

	Parameters:	hostname (string) – Hostname to print.

	
print_row(data)

	Print data row.

	Parameters:	data (tuple) – Data to print.

	
print_table_title(title)

	Prints title of next tale.

	Parameters:	title (string) – Title to print.

	
produce_output(rows)

	Prints list of rows.

There can be FormatterCommand instance instead of
a row. See documentation of this class for list of allowed commands.

	Parameters:	rows (list or generator) – List of rows to print.

	
lmi.scripts.common.formatter.get_terminal_width()

	Get the number of columns of current terminal if attached to it. It
defaults to 79 characters.

	Returns:	Number of columns of attached terminal.

	Return type:	integer

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

formatter.command

Contains command classes used to control formatters from inside of command
execution functions.

	
class lmi.scripts.common.formatter.command.FormatterCommand

	Base class for formatter commands.

	
class lmi.scripts.common.formatter.command.NewHostCommand(hostname)

	Command for formatter to finish current table (if any), print header for
new host and (if there are any data) print table header.

	Parameters:	hostname (string) – Name of host appearing at the front of new table.

	
class lmi.scripts.common.formatter.command.NewTableCommand(title=None)

	Command for formatter to finish current table (if any), print the title
and (if there are any data) print table header.

	Parameters:	title (string) – Optional title for new table.

	
class lmi.scripts.common.formatter.command.NewTableHeaderCommand(columns=None)

	Command for formatter to finish current table (if any), store new table
header and (if there are any data) print the table header.
The table header will be printed in all subsequent tables, until
new instance of this class arrives.

	Parameters:	columns (tuple) – Array of column names.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

lmi_logging

Utilities for logging framework.

	
lmi.scripts.common.lmi_logging.LOG_LEVEL_2_COLOR = {40: 9, 50: 13, 30: 11}

	Dictionary assigning color code to logging level.

	
class lmi.scripts.common.lmi_logging.LevelDispatchingFormatter(formatters, default='%(cseq)s%(levelname_)-8s:%(creset)s %(message)s', datefmt=None)

	Formatter class for logging module. It allows to predefine different format
string used for some level ranges.

	Parameters:	
	formatters (dict) – Mapping of module names to format.
It is a dictionary of following format:

{ max_level1 : format1
, max_level2 : format2
, ... }

format in parameters description can be either string or another
formatter object.

For example if you want to have format3 used for ERROR and CRITICAL
levels, format2 for INFO and format1 for anything else, your
dictionary will look like this:

{ logging.INFO - 1 : format1
, logging.INFO : format2 }

And the default value should have format3 assigned.

	default – Default format to use. This format is used for all levels
higher than the maximum of formatters‘ keys.

	
format(record)

	Interface for logging module.

	
class lmi.scripts.common.lmi_logging.LogRecord(name, level, *args, **kwargs)

	Overrides logging.LogRecord. It adds new attributes:

	levelname_ - Name of level in lowercase.

	
	cseq - Escape sequence for terminal used to set color

	assigned to particular log level.

	
	creset - Escape sequence for terminal used to reset foreground

	color.

These can be used in format strings initializing logging formatters.

Accepts the same arguments as base class.

	
lmi.scripts.common.lmi_logging.get_color_sequence(color_code)

	Computer color sequence for particular color code.

	Returns:	Escape sequence for terminal used to set foreground color.

	Return type:	str

	
lmi.scripts.common.lmi_logging.get_logger(module_name)

	Convenience function for getting callable returning logger for particular
module name. It’s supposed to be used at module’s level to assign its
result to global variable like this:

from lmi.scripts import common

LOG = common.get_logger(__name__)

This can be used in module’s functions and classes like this:

def module_function(param):
 LOG().debug("This is debug statement logging param: %s", param)

Thanks to LOG being a callable, it always returns valid logger object
with current configuration, which may change overtime.

	Parameters:	module_name (string) – Absolute dotted module path.

	Return type:	logging.Logger

	
lmi.scripts.common.lmi_logging.setup_logger(use_colors=True)

	This needs to be called before any logging takes place.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

session

Module for session object representing all connection to remote hosts.

	
class lmi.scripts.common.session.Session(app, hosts, credentials=None, same_credentials=False)

	Session object keeps connection objects to remote hosts. Their are
associated with particular hostnames. It also caches credentials for them.
Connections are made as they are needed. When credentials are missing
for connection to be made, the user is asked to supply them from
standard input.

	Parameters:	
	app – Instance of main application.

	hosts (list) – List of hostname strings.

	credentials (dictionary) – Mapping assigning a pair
(user, password) to each hostname.

	same_credentials (boolean) – Use the same credentials for all
hosts in session. The first credentials given will be used.

	
get_credentials(hostname)

	

	Parameters:	hostname (string) – Name of host to get credentials for.

	Returns:	Pair of (username, password) for given hostname. If no
credentials were given for this host, ('', '') is returned.

	Return type:	tuple

	
get_unconnected()

	

	Returns:	List of hostnames, which do not have associated connection
yet.

	Return type:	list

	
hostnames

	List of hostnames in session.

	Return type:	list

	
class lmi.scripts.common.session.SessionProxy(session, uris)

	Behaves like a session. But it just encapsulates other session object and
provides access to a subset of its items.

	Parameters:	
	session – Session object or even another session proxy.

	uris (list) – Subset of uris in encapsulated session object.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

util

Various utilities for LMI Scripts.

	
class lmi.scripts.common.util.FilteredDict(key_filter, original=None)

	Dictionary-like collection that wraps some other dictionary and provides
limited access to its keys and values. It permits to get, delete and set
items specified in advance.

Note

Please use only the methods overriden. This class does not guarantee
100% API compliance. Not overriden methods won’t work properly.

	Parameters:	
	key_filter (list) – Set of keys that can be get, set or deleted.
For other keys, KeyError will be raised.

	original (dictionary) – Original dictionary containing not only
keys in key_filter but others as well. All modifying operations
operate also on this dictionary. But only those keys in key_filter
can be affected by them.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

versioncheck

Package with utilities for checking availability of profiles or CIM classes.
Version requirements can also be specified.

	
lmi.scripts.common.versioncheck.cmp_profiles(fst, snd)

	Compare two profiles by their version.

	Returns:	
	-1 if the fst profile has lower version than snd

	0 if their versions are equal

	1 otherwise

	Return type:	int

	
lmi.scripts.common.versioncheck.eval_respl(expr, conn, namespace=None, cache=None)

	Evaluate LMIReSpL expression on particular broker.

	Parameters:	
	expr (string) – Expression to evaluate.

	conn – Connection object.

	namespace (string) – Optional CIM namespace where CIM classes will be
searched.

	cache (dictionary) – Optional cache speeding up evaluation.

	Returns:	True if requirements in expression are satisfied.

	Return type:	boolean

	
lmi.scripts.common.versioncheck.get_class_version(conn, name, namespace=None, cache=None)

	Query broker for version of particular CIM class. Version is stored in
Version qualifier of particular CIM class.

	Parameters:	
	conn – Connection object.

	name (string) – Name of class to query.

	namespace (string) – Optional CIM namespace. Defaults to configured namespace.

	cache (dictionary) – Optional cache used to speed up expression prrocessing.

	Returns:	Version of CIM matching class. Empty string if class is registered but
is missing Version qualifier and None if it is not registered.

	Return type:	string

	
lmi.scripts.common.versioncheck.get_profile_version(conn, name, cache=None)

	Get version of registered profile on particular broker. Queries
CIM_RegisteredProfile and CIM_RegisteredSubProfile. The latter
comes in question only when CIM_RegisteredProfile does not yield any
matching result.

	Parameters:	
	conn – Connection object.

	name (string) – Name of the profile which must match value of RegisteredName
property.

	cache (dictionary) – Optional cache where the result will be stored for
later use. This greatly speeds up evaluation of several expressions refering
to same profiles or classes.

	Returns:	Version of matching profile found. If there were more of them,
the highest version will be returned. None will be returned when no matching
profile or subprofile is found.

	Return type:	string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	LMI Scripts common library reference

versioncheck.parser

Parser for mini-language specifying profile and class requirements. We call
the language LMIReSpL (openLMI Requirement Specification Language).

The only thing designed for use outside this module is bnf_parser().

Language is generated by BNF grammer which served as a model for parser.

Formal representation of BNF grammer is following:

expr ::= term [op expr]*
term ::= '!'? req
req ::= profile_cond | clsreq_cond | '(' expr ')'
profile_cond ::= 'profile'? [profile | profile_quot] cond?
clsreq_cond ::= 'class' [clsname | clsname_quot] cond?
profile_quot ::= '"' /\w+[+.a-zA-Z0-9_-]*/ '"'
profile ::= /\w+[+.a-zA-Z_-]*/
clsname_quot ::= '"' clsname '"'
clsname ::= /[a-zA-Z]+_[a-zA-Z][a-zA-Z0-9_]*/
cond ::= cmpop version
cmpop ::= /(<|=|>|!)=|<|>/
version ::= /[0-9]+(\.[0-9]+)*/
op ::= '&' | '|'

String surrounded by quotes is a literal. String enclosed with slashes is a
regular expression. Square brackets encloses a group of words and limit
the scope of some operation (like iteration).

	
class lmi.scripts.common.versioncheck.parser.And(fst, snd)

	Represents logical AND of two expressions. Short-circuit evaluation is
being exploited here.

	Parameters:	
	fst – An object of Term non-terminal.

	snd – An object of Term non-terminal.

	
class lmi.scripts.common.versioncheck.parser.Expr(term)

	Initial non-terminal. Object of this class (or one of its subclasses) is a
result of parsing.

	Parameters:	term – An object of Term non-terminal.

	
lmi.scripts.common.versioncheck.parser.OP_MAP = {'>=': (<built-in function ge>, <built-in function all>), '==': (<built-in function eq>, <built-in function all>), '<=': (<built-in function le>, <built-in function all>), '!=': (<built-in function ne>, <built-in function any>), '<': (<built-in function lt>, <built-in function any>), '>': (<built-in function gt>, <built-in function any>)}

	Dictionary mapping supported comparison operators to a pair. First item is a
function making the comparison and the second can be of two values (all
or any). Former sayes that each part of first version string must be in
relation to corresponding part of second version string in order to satisfy
the condition. The latter causes the comparison to end on first satisfied
part.

	
class lmi.scripts.common.versioncheck.parser.Or(fst, snd)

	Represents logical OR of two expressions. Short-circuit evaluation is being
exploited here.

	Parameters:	
	fst – An object of Term non-terminal.

	snd – An object of Term non-terminal.

	
class lmi.scripts.common.versioncheck.parser.Req

	Represents one of following subexpressions:

	single requirement on particular profile

	single requirement on particular class

	a subexpression

	
class lmi.scripts.common.versioncheck.parser.ReqCond(kind, version_getter, name, cond=None)

	Represents single requirement on particular class or profile.

	Parameters:	
	kind (str) – Name identifying kind of thing this belongs. For example
'class' or 'profile'.

	version_getter (callable) – Is a function called to get version of
either profile or CIM class. It must return corresponding version string
if the profile or class is registered and None otherwise.
Version string is read from RegisteredVersion property of
CIM_RegisteredProfile. If a class is being queried, version
shall be taken from Version qualifier of given class.

	name (str) – Name of profile or CIM class to check for. In case
of a profile, it is compared to RegisteredName property of
CIM_RegisteredProfile. If any instance of this class has matching
name, it’s version will be checked. If no matching instance is found,
instances of CIM_RegisteredSubProfile are queried the same way.
Failing to find it results in False.

	cond (str) – Is a version requirement. Check the grammer above for
cond non-terminal.

	
class lmi.scripts.common.versioncheck.parser.SemanticGroup

	Base class for non-terminals. Just a minimal set of non-terminals is
represented by objects the rest is represented by strings.

All subclasses need to define their own evaluate() method. The
parser builds a tree of these non-terminals with single non-terminal being
a root node. This node’s evaluate method returns a boolean saying whether
the condition is satisfied. Root node is always an object of
Expr.

	
evaluate()

	

	Returns:	True if the sub-condition represented by this non-terminal
is satisfied.

	Return type:	boolean

	
class lmi.scripts.common.versioncheck.parser.Subexpr(expr)

	Represents a subexpression originally enclosed in brackets.

	
class lmi.scripts.common.versioncheck.parser.Term(req, negate)

	Represents possible negation of expression.

	Parameters:	
	req – An object of Req.

	negate (boolean) – Whether the result of children shall be negated.

	
class lmi.scripts.common.versioncheck.parser.TreeBuilder(stack, profile_version_getter, class_version_getter)

	A stack interface for parser. It defines methods modifying the stack with
additional checks.

	
expr(strg, loc, toks)

	Operates upon a stack. It takes either one or two terms there
and makes an expression object out of them. Terms need to be delimited
with logical operator.

	
push_class(strg, loc, toks)

	Handles clsreq_cond non-terminal in one go. It extracts
corresponding tokens and pushes an object of ReqCond to a
stack.

	
push_literal(strg, loc, toks)

	Pushes operators to a stack.

	
push_profile(strg, loc, toks)

	Handles profile_cond non-terminal in one go. It behaves in the same
way as push_profile().

	
subexpr(strg, loc, toks)

	Operates upon a stack. It creates an instance of Subexpr
out of Expr which is enclosed in brackets.

	
term(strg, loc, toks)

	Creates a term out of requirement (req non-terminal).

	
lmi.scripts.common.versioncheck.parser.bnf_parser(stack, profile_version_getter, class_version_getter)

	Builds a parser operating on provided stack.

	Parameters:	
	stack (list) – Stack to operate on. It will contain the resulting
Expr object when the parsing is successfully over -
it will be the only item in the list. It needs to be initially empty.

	profile_version_getter (callable) – Function returning version
of registered profile or None if not present.

	class_version_getter (callable) – Fucntion returning version
of registered class or None if not present.

	Returns:	Parser object.

	Return type:	pyparsing,ParserElement

	
lmi.scripts.common.versioncheck.parser.cmp_version(fst, snd, opsign='<')

	Compare two version specifications. Each version string shall contain
digits delimited with dots. Empty string is also valid version. It will be
replaced with -1.

	Parameters:	
	fst (str) – First version string.

	snd (str) – Second version string.

	opsign (str) – Sign denoting operation to be used. Supported signs
are present in OP_MAP.

	Returns:	True if the relation denoted by particular operation exists
between two operands.

	Return type:	boolean

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Account Script python reference

LMI account provider client library.

This set of functions can create, modify and delete users and groups on
a remote managed system.

	
lmi.scripts.account.add_to_group(ns, group, users)

	Add users to a group.

	Parameters:	
	group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

	users (List (or generator) of LMIInstances or LMIInstanceNames of
LMI_Account.) – Users to add.

	
lmi.scripts.account.create_group(ns, group, reserved=False, gid=None)

	Create a new group on the system.

	Parameters:	
	group (string) – Name of the group.

	reserved (boolean) – Whether the group is a system one (its GID will be
allocated lower than system-defined threshold).

	gid (int) – Required GID. It will be allocated automatically if it’s None.

	Return type:	LMIInstanceName of the created group.

	Returns:	Created group.

	
lmi.scripts.account.create_user(ns, name, gecos=None, home=None, create_home=True, shell=None, uid=None, gid=None, create_group=True, reserved=False, password=None, plain_password=False)

	Create a new user.

	Parameters:	
	name (string) – Name of the user.

	gecos (string) – GECOS information of the new user.

	home (string) – Home directory.

	create_home (boolean) – True, if home directory should be automatically created.

	shell (string) – User’s shell.

	uid (int) – Desired UID. If None, system will allocate a free one.

	gid (int) – Desired GID. If None, system will allocate a free one.

	create_group (boolean) – True, if user’s private group should be created.

	reserved (boolean) – True, if the account is system one, i.e. it’s UID will
be allocated in system account space (below system defined
threshold). (default=False, the account is an user).

	password (string) – User password.

	plain_password (boolean) – True, if the provided password is plain text string,
False if it is already hashed by crypt().

	Return type:	LMIInstanceName

	Returns:	Created used.

	
lmi.scripts.account.delete_group(ns, group)

	Delete a group.

	Parameters:	group (LMIInstance or LMIInstanceName of LMI_Group.) – The group to delete.

	
lmi.scripts.account.delete_user(ns, user, no_delete_group=False, no_delete_home=False, force=False)

	Delete a user.

	Parameters:	
	user (LMIInstance or LMIInstanceName of LMI_Account.) – User to delete.

	no_delete_group (boolean) – True, if the user’s private group should be preserved.
(default = False, the group is deleted).

	no_delete_home (boolean) – True, if user’s home directory should be preserved.
(default = False, home is deleted).

	force (boolean) – True, if the home directory should be remove even though the
user is not owner of the directory. (default = False, do not remove
user’s home if it is owned by someone else).

	
lmi.scripts.account.get_group(ns, groupname)

	Return LMIInstance of the group. This function raises LmiFailed if the user
is not found.

	Parameters:	groupname (string) – Name of the group.

	Return type:	LMIInstance of LMI_Group

	Returns:	The group.

	
lmi.scripts.account.get_user(ns, username)

	Return LMIInstance of the user. This function raises LmiFailed if the user
is not found.

	Parameters:	username (string) – Name of the user.

	Return type:	LMIInstance of LMI_Account

	Returns:	The user.

	
lmi.scripts.account.get_users_in_group(ns, group)

	Yields users in given group.

	Parameters:	group (LMIInstance or LMIInstanceName of LMI_Group.) – The group to inspect.

	Returns:	Generator of LMIInstances of LMI_Account.

	
lmi.scripts.account.is_in_group(group, user)

	Return True if user is in group

	Parameters:	
	group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

	user (LMIInstance or LMIInstanceName of LMI_Account.) – User to check.

	
lmi.scripts.account.list_groups(ns)

	Yield all groups on the system.

	Return type:	generator of LMIInstances.

	
lmi.scripts.account.list_users(ns)

	Yield all users on the system.

	Return type:	generator of LMIInstances.

	
lmi.scripts.account.remove_from_group(ns, group, users)

	Remove users from a group.

	Parameters:	
	group (LMIInstance or LMIInstanceName of LMI_Group.) – The group.

	users (List (or generator) of LMIInstances or LMIInstanceNames of
LMI_Account.) – Users to remove.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Hardware Script python reference

Main interface functions wrapped with lmi commands are:

	get_all_info()

	get_system_info()

	get_motherboard_info()

	get_cpu_info()

	get_memory_info()

	get_disks_info()

All of these accept ns object as the first argument,
an instance of lmi.shell.LMINamespace.

Hardware Module API

LMI hardware provider client library.

	
lmi.scripts.hardware.format_memory_size(size)

	Returns formatted memory size.

	Parameters:	size (Number) – Size in bytes

	Returns:	Formatted size string.

	Return type:	String

	
lmi.scripts.hardware.get_all_info(ns)

	

	Returns:	Tabular data of all available info.

	Return type:	List of tuples

	
lmi.scripts.hardware.get_all_instances(ns, class_name)

	Returns all instances of instance_name.

	Parameters:	instance_name (String) – Instance name

	Returns:	List of instances of instance_name

	Return type:	List of lmi.shell.LMIInstance

	
lmi.scripts.hardware.get_colored_string(msg, color)

	Returns colored message with ANSI escape sequences for terminal.

	Parameters:	
	msg (String) – Message to be colored.

	color (Integer) – Color of the message [GREEN_COLOR, YELLOW_COLOR, RED_COLOR].

	Returns:	Colored message.

	Return type:	String

	
lmi.scripts.hardware.get_cpu_info(ns)

	

	Returns:	Tabular data of processor info.

	Return type:	List of tuples

	
lmi.scripts.hardware.get_hostname(ns)

	

	Returns:	Tabular data of system hostname.

	Return type:	List of tuples

	
lmi.scripts.hardware.get_memory_info(ns)

	

	Returns:	Tabular data of memory info.

	Return type:	List of tuples

	
lmi.scripts.hardware.get_motherboard_info(ns)

	

	Returns:	Tabular data of motherboard info.

	Return type:	List of tuples

	
lmi.scripts.hardware.get_single_instance(ns, class_name)

	Returns single instance of instance_name.

	Parameters:	instance_name (String) – Instance name

	Returns:	Instance of instance_name

	Return type:	lmi.shell.LMIInstance

	
lmi.scripts.hardware.get_system_info(ns)

	

	Returns:	Tabular data of system info, from the LMI_Chassis instance.

	Return type:	List of tuples

	
lmi.scripts.hardware.init_result(ns)

	Returns initialized result list.

	Returns:	Initialized result list.

	Return type:	List

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Journald Script python reference

Journald Module API

	
lmi.scripts.journald.list_messages(ns, reverse=False, tail=False)

	List messages from the journal.

	Parameters:	
	reverse (boolean) – List messages from newest to oldest.

	tail (boolean) – List only the last 50 messages

	
lmi.scripts.journald.log_message(ns, message)

	Logs a new message in the journal.

	Parameters:	message (string) – A message to log.

	
lmi.scripts.journald.watch(ns)

	Sets up a new indication listener and waits for events.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Locale Script python reference

LMI Locale Provider client library.

	
lmi.scripts.locale.get_locale(ns)

	Get locale.

	Return type:	LMIInstance/LMI_Locale

	
lmi.scripts.locale.set_locale(ns, locales, values)

	Set given locale variables with new values.

	Parameters:	
	locales (list) – List of locale variable names to be set.

	values (list) – List of new values for locale variables.

	
lmi.scripts.locale.set_vc_keyboard(ns, keymap, keymap_toggle, convert)

	Set the key mapping on the virtual console.

	Parameters:	
	keymap (string) – Requested keyboard mapping for the
virtual console.

	keymap_toggle (string) – Requested toggle keyboard
mapping for the virtual console.

	convert (bool) – Whether also X11 keyboard should be set
to the nearest X11 keyboard setting for the chosen
console keyboard setting.

	
lmi.scripts.locale.set_x11_keymap(ns, layouts, model, variant, options, convert)

	Set the default key mapping of the X11 server.

	Parameters:	
	layouts (string) – Requested X11 keyboard mappings.

	model (string) – Requested X11 keyboard model.

	variant (string) – Requested X11 keyboard variant.

	options (string) – Requested X11 keyboard options.

	convert (bool) – Whether also console keyboard should be set
to the nearest console keyboard setting for the chosen
X11 keyboard setting.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Logical File Script python reference

Logicalfile management functions.

	
lmi.scripts.logicalfile.logicalfile.get_directory_instance(ns, directory)

	Retrieve LMIInstance of a directory.

	Parameters:	directory (string) – Full path to the directory.

	Return type:	LMIInstance

	
lmi.scripts.logicalfile.logicalfile.get_directory_name_properties(ns, directory)

	Retrieve object path of a directory.

	Parameters:	directory (string) – Full path to the directory.

	Return type:	LMIInstanceName

	
lmi.scripts.logicalfile.logicalfile.get_file_identification(file_instance)

	Retrieve file identification.

	Parameters:	file_instance (LMIInstance) – The file’s instance object.

	Return type:	string

	
lmi.scripts.logicalfile.logicalfile.lf_createdir(ns, directory)

	Create a directory.

The parent directory must exist.

	Parameters:	directory (string) – Full path to the directory.

	
lmi.scripts.logicalfile.logicalfile.lf_deletedir(ns, directory)

	Delete a directory.

The directory must be empty.

	Parameters:	directory (string) – Full path to the directory.

	
lmi.scripts.logicalfile.logicalfile.lf_list(ns, directory, depth=None)

	List all files in a directory.

If depth is positive, directory is walked recursively up to the given depth.

	Parameters:	
	directory (string) – Full path to the directory.

	depth (integer) – Maximum depth to be recursed to.

	
lmi.scripts.logicalfile.logicalfile.lf_show(ns, target)

	Show detailed information about the target.

Target can be either a file or a directory.

	Parameters:	target (string) – Full path to the target.

	
lmi.scripts.logicalfile.logicalfile.walk_cim_directory(directory, depth=0)

	Retrieve all files in a directory.

If depth is positive, directory is walked recursively up to the given depth.
Files and directories are yielded as they are encountered.
This function does not return, it is a generator.

	Parameters:	
	directory (string) – Full path to the directory.

	depth (integer) – Maximum depth to be recursed to.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Networking Script python reference

Main interface functions wrapped with lmi commands are:

	get_device_by_name()

	get_setting_by_caption()

	list_devices()

	list_settings()

	get_mac()

	get_ip_addresses()

	get_default_gateways()

	get_dns_servers()

	get_available_settings()

	get_active_settings()

	get_setting_type()

	get_setting_ip4_method()

	get_setting_ip6_method()

	get_sub_setting()

	get_applicable_devices()

	activate()

	deactivate()

	create_setting()

	delete_setting()

	add_ip_address()

	remove_ip_address()

	replace_ip_address()

All of these accept ns object as the first argument.
It is an instance of lmi.shell.LMINamespace.

Networking Module API

LMI networking provider client library.

	
lmi.scripts.networking.SETTING_IP_METHOD_DHCP = 4

	IP configuration obtained from DHCP server

	
lmi.scripts.networking.SETTING_IP_METHOD_DHCPv6 = 7

	IP configuration obtained from DHCPv6 server

	
lmi.scripts.networking.SETTING_IP_METHOD_DISABLED = 0

	Disabled IP configuration

	
lmi.scripts.networking.SETTING_IP_METHOD_STATELESS = 9

	Stateless IPv6 configuration

	
lmi.scripts.networking.SETTING_IP_METHOD_STATIC = 3

	Static IP address configuration

	
lmi.scripts.networking.SETTING_TYPE_BOND_MASTER = 4

	Configuration for bond master

	
lmi.scripts.networking.SETTING_TYPE_BOND_SLAVE = 40

	Configuration for bond slave

	
lmi.scripts.networking.SETTING_TYPE_BRIDGE_MASTER = 5

	Configuration for bridge master

	
lmi.scripts.networking.SETTING_TYPE_BRIDGE_SLAVE = 50

	Configuration for bridge slave

	
lmi.scripts.networking.SETTING_TYPE_ETHERNET = 1

	Configuration for ethernet

	
lmi.scripts.networking.SETTING_TYPE_UNKNOWN = 0

	Unknown type of setting

	
lmi.scripts.networking.activate(ns, setting, device=None)

	Activate network setting on given device

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – Setting to be activated.

	device (LMI_IPNetworkConnection or None) – Device to activate the setting on or None for autodetection

	
lmi.scripts.networking.add_dns_server(ns, setting, address)

	Add a dns server to the given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	
lmi.scripts.networking.add_ip_address(ns, setting, address, prefix, gateway=None)

	Add an IP address to the given static setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	prefix (int) – network prefix.

	gateway (str or None) – default gateway or None

	
lmi.scripts.networking.add_static_route(ns, setting, address, prefix, metric=None, next_hop=None)

	Add a static route to the given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	prefix (int) – network prefix.

	metric – metric for the route or None

	next_hop (str or None) – IPv4 or IPv6 address for the next hop of the route or None

	
lmi.scripts.networking.create_setting(ns, caption, device, type, ipv4method, ipv6method)

	Create new network setting.

	Parameters:	
	caption (str) – Caption for the new setting.

	device (LMI_IPNetworkConnection) – Device for which the setting will be.

	type (SETTING_TYPE_* constant) – Type of the setting.

	ipv4method (SETTING_IP_METHOD_* constant) – Method for obtaining IPv4 address.

	ipv4method – Method for obtaining IPv6 address.

	
lmi.scripts.networking.deactivate(ns, setting, device=None)

	Deactivate network setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – Setting to deactivate.

	device (LMI_IPNetworkConnection or None) – Device to deactivate the setting on

	
lmi.scripts.networking.delete_setting(ns, setting)

	Delete existing network setting.

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting.

	
lmi.scripts.networking.enslave(ns, master_setting, device)

	Create slave setting of the master_setting with given device.

	Parameters:	
	master_setting (LMI_IPAssignmentSettingData) – Master setting to use

	device (LMI_IPNetworkConnection) – Device to enslave

	
lmi.scripts.networking.get_active_settings(ns, device)

	Get a list of settings that are currently active on the device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	Settings that are active on the device

	Return type:	list of LMI_IPAssignmentSettingData

	
lmi.scripts.networking.get_applicable_devices(ns, setting)

	Get list of network devices that this setting can be applied to.

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	devices that the setting can be applied to

	Return type:	list of LMI_IPNetworkConnection

	
lmi.scripts.networking.get_available_settings(ns, device)

	Get a list of settings that can be applied to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	Settings applicable to the device

	Return type:	list of LMI_IPAssignmentSettingData

	
lmi.scripts.networking.get_default_gateways(ns, device)

	Get a list of default gateways assigned to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	Default gateways assigned to the device

	Return type:	list of str

	
lmi.scripts.networking.get_device_by_name(ns, device_name)

	Get instance of LMI_IPNetworkConnection class by the device name.

	Parameters:	device_name (str) – Name of the device.

	Returns:	LMI_IPNetworkConnection representing the device.

	Return type:	LMI_IPNetworkConnection or None if not found

	
lmi.scripts.networking.get_dns_servers(ns, device)

	Get a list of DNS servers assigned to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	DNS servers assigned to the device

	Return type:	list of str

	
lmi.scripts.networking.get_ip_addresses(ns, device)

	Get a list of IP addresses assigned to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	IP addresses with subnet masks (IPv4) or prefixes (IPv6) that is assigned to the device.

	Return type:	list of tuple (IPAddress, SubnetMask/Prefix)

	
lmi.scripts.networking.get_ipv4_addresses(ns, device)

	Get a list of IPv4 addresses assigned to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	IPv4 addresses with subnet masks that is assigned to the device.

	Return type:	list of tuple (IPAddress, SubnetMask)

	
lmi.scripts.networking.get_ipv6_addresses(ns, device)

	Get a list of IPv6 addresses assigned to given device

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	IPv6 addresses with prefixes that is assigned to the device.

	Return type:	list of tuple (IPAddress, Prefix)

	
lmi.scripts.networking.get_mac(ns, device)

	Get a MAC address for given device.

	Parameters:	device (LMI_IPNetworkConnection) – network device

	Returns:	MAC address of given device or 00:00:00:00:00:00 when no MAC is found.

	Return type:	str

	
lmi.scripts.networking.get_setting_by_caption(ns, caption)

	Get instance of LMI_IPAssignmentSettingData class by the caption.

	Parameters:	caption (str) – Caption of the setting.

	Returns:	LMI_IPAssignmentSettingData representing the setting.

	Return type:	LMI_IPAssignmentSettingData or None if not found

	
lmi.scripts.networking.get_setting_ip4_method(ns, setting)

	Get method of obtaining IPv4 configuration on given setting

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	IPv4 method

	Return type:	SETTING_IP_METHOD_* constant

	
lmi.scripts.networking.get_setting_ip6_method(ns, setting)

	Get method of obtaining IPv6 configuration on given setting

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	IPv6 method

	Return type:	SETTING_IP_METHOD_* constant

	
lmi.scripts.networking.get_setting_type(ns, setting)

	Get type of the setting

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	type of setting

	Return type:	SETTING_TYPE_* constant

	
lmi.scripts.networking.get_static_routes(ns, setting)

	Return list of static routes for given setting

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	list of static routes

	Return type:	list of LMI_IPRouteSettingData

	
lmi.scripts.networking.get_sub_setting(ns, setting)

	Get list of detailed configuration setting for each part of the setting.

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Returns:	detailed setting

	Return type:	list of LMI_IPAssignmentSettingData subclasses

	
lmi.scripts.networking.is_setting_active(ns, setting)

	Return true if the setting is currently active

	Parameters:	setting (LMI_IPAssignmentSettingData) – network setting

	Retval True:	setting is currently active

	Retval False:	setting is not currently active

	Return type:	bool

	
lmi.scripts.networking.list_devices(ns, device_names=None)

	Get a list of network devices.

	Parameters:	device_name (list of str) – List of device names that will be used as filter for devices.

	Returns:	List of instances of LMI_IPNetworkConnection

	Return type:	list of LMI_IPNetworkConnection

	
lmi.scripts.networking.list_settings(ns, captions=None)

	Get a list of network settings.

	Parameters:	captions (list of str) – List of setting captions that will be used as filter for settings.

	Returns:	Settings that matches given captions

	Return type:	list of LMI_IPAssignmentSettingData

	
lmi.scripts.networking.remove_dns_server(ns, setting, address)

	Remove dns server from given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	
lmi.scripts.networking.remove_ip_address(ns, setting, address)

	Remove the IP address from given static setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	
lmi.scripts.networking.remove_static_route(ns, setting, address)

	Remove static route to the given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	
lmi.scripts.networking.replace_dns_server(ns, setting, address)

	Remove all dns servers and add given dns server to the given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	
lmi.scripts.networking.replace_ip_address(ns, setting, address, prefix, gateway=None)

	Remove all IP addresses from given static setting and add new IP address.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	prefix (int) – network prefix.

	gateway (str or None) – default gateway or None

	
lmi.scripts.networking.replace_static_route(ns, setting, address, prefix, metric=None, next_hop=None)

	Remove all static routes and add given static route to the given setting.

	Parameters:	
	setting (LMI_IPAssignmentSettingData) – network setting.

	address (str) – IPv4 or IPv6 address.

	prefix (int) – network prefix.

	metric – metric for the route or None

	next_hop (str or None) – IPv4 or IPv6 address for the next hop of the route or None

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Power Management Script python reference

Main interface functions wrapped with lmi commands are:

	list_power_states()

	switch_power_state()

All of these accept ns object as the first argument.
It is an instance of lmi.shell.LMINamespace.

Power Management Module API

LMI power management provider client library.

	
lmi.scripts.powermanagement.POWER_STATE_HIBERNATE = 7

	Hibernate the system.

	
lmi.scripts.powermanagement.POWER_STATE_POWEROFF = 12

	Turn off the system.

	
lmi.scripts.powermanagement.POWER_STATE_POWEROFF_FORCE = 8

	Turn off the system without shutting down services first.

	
lmi.scripts.powermanagement.POWER_STATE_REBOOT = 15

	Reboot the system.

	
lmi.scripts.powermanagement.POWER_STATE_REBOOT_FORCE = 5

	Reboot the system without shutting down services first.

	
lmi.scripts.powermanagement.POWER_STATE_SUSPEND = 4

	Suspend the system.

	
lmi.scripts.powermanagement.list_power_states(ns)

	Get list of available power states.

	Returns:	list of power states

	Return type:	list of POWER_STATE_* constants

	
lmi.scripts.powermanagement.switch_power_state(ns, state)

	Switch system power state.

	Parameters:	state (POWER_STATE_* constant) – Requested power state.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Realmd Script python reference

Realmd Module API

LMI realmd provider client library.

	
lmi.scripts.realmd.join(ns, domain, user, _password=None)

	Join the domain.

	Parameters:	
	domain (string) – The domain to be joined.

	user (string) – User name to authenticate with

	password (string) – The authentication password

	
lmi.scripts.realmd.leave(ns, domain, user, _password=None)

	Leave the domain.

	Parameters:	
	domain (string) – The domain to be left.

	user (string) – User name to authenticate with

	password (string) – The authentication password

	
lmi.scripts.realmd.show(ns)

	Show the joined domain.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Service Script python reference

LMI service provider client library.

	
lmi.scripts.service.enable_service(ns, service, enable=True)

	Enable or disable service.

	Parameters:	
	service (string or lmi.shell.LMIInstanceName) – Service name or instance.

	enable (boolean) – Whether the service should be enabled or
disabled. Enabled service is started on system boot.

	
lmi.scripts.service.get_enabled_string(ns, service)

	Return human friendly string for enabled state.

	Parameters:	service – Either a service instance of its name.

	Returns:	Status description. One of: { Yes, No, Static }.
Where Static represents a service that can not be enabled or
disabled, and are run only if something depends on them. It lacks
[Install] section.

	Return type:	string

	
lmi.scripts.service.get_service(ns, service)

	Return lmi.shell.LMIInstance object matching the given
service name.

	Parameters:	service (string) – Service name.

	
lmi.scripts.service.get_status_string(ns, service)

	Return human friendly status description.

	Parameters:	service – Either a service instance or its name.

	Returns:	Status description. One of
{ OK, Running, Stopped - OK, Stopped - Error }.

	Return type:	string

	
lmi.scripts.service.invoke_on_service(ns, method, service, description)

	Invoke parameter-less method on given service.

	Parameters:	
	method (string) – Name of method of LMI_Service to invoke.

	service (string or lmi.shell.LMIInstanceName) – Name of service or an instance to operate upon.

	description (string) – Description of what has been done with
service. This is used just for logging.

	Returns:	Success flag.

	Return type:	boolean

	
lmi.scripts.service.list_services(ns, kind='enabled')

	List services. Yields service instances.

	Parameters:	kind (string) – What kind of services to list. Possible options are:

	‘enabled’ - list only enabled services

	‘disabled’ - list only disabled services

	‘all’ - list all services

	Returns:	Instances of LMI_Service.

	Return type:	generator over lmi.shell.LMIInstance.

	
lmi.scripts.service.reload_service(ns, service, force=False, just_try=False)

	Reload service.

	Parameters:	
	service (string or lmi.shell.LMIInstanceName) – Service name or instance.

	force (boolean) – Whether the service should be restarted if the
reload can no be done.

	just_try (boolean) – This applies only when force is True.
If True, only the the running service will be restarted. Nothing
is done for stopped service.

	
lmi.scripts.service.restart_service(ns, service, just_try=False)

	Restart service.

	Parameters:	
	service (string or lmi.shell.LMIInstanceName) – Service name or instance.

	just_try (boolean) – When False, the service will be started even
if it is not running. Otherwise only running service will be
restarted.

	
lmi.scripts.service.start_service(ns, service)

	Start service.

	Parameters:	service (string or lmi.shell.LMIInstanceName) – Service name.

	
lmi.scripts.service.stop_service(ns, service)

	Stop service.

	Parameters:	service (string or lmi.shell.LMIInstanceName) – Service name or instance.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Service Script python reference

LMI software provider client library.

Package specification

Referred to as pkg_spec. Is a string identifying set of packages.
It constitutes at least of package name. Each additional detail narrows the
the possible set of matchin packages. The most complete specifications are
nevra and envra.

Follows the list of all possible specifications:

	<name>

	<name>.<arch>

	<name>-<version>-<release>.<arch> (nvra)

	<name>-<epoch>:<version>-<release>.<arch> (nevra)

	<epoch>:<name>-<version>-<release>.<arch> (envra)

Regular expressions

These may be used check, whether the given
pkg_spec
is valid and allows to get all the interesting parts out of it.

	
lmi.scripts.software.RE_NA

	Regular expression matching package specified as <name>.<arch>.

	
lmi.scripts.software.RE_NEVRA

	Regular expression matching package specified as:

<name>-<epoch>:<version>-<release>.<arch>

The epoch part is optional. So it can be used also to match nvra
string.

	
lmi.scripts.software.RE_ENVRA

	Regular expression matching package specified as:

<epoch>:<name>-<version>-<release>.<arch>

Functions

	
lmi.scripts.software.FILE_TYPES = ('Unknown', 'File', 'Directory', 'Symlink', 'FIFO', 'Character Device', 'Block Device')

	Array of file type names.

	
lmi.scripts.software.find_package(ns, allow_duplicates=False, exact_match=True, **kwargs)

	Yields just a limited set of packages matching particular filter.
Keyword arguments are used to specify this filter, which can contain
following keys:

	name :

	Package name.

	epoch :

	package’s epoch

	version :

	version of package

	release :

	release of package

	arch :

	requested architecture of package

	nevra :

	string containing all previous keys in following notation:

<name>-<epoch>:<version>-<release>.<arch>

	envra :

	similar to nevra, the notation is different:

<epoch>:<name>-<version>-<release>.<arch>

	repoid :

	repository identification string, where package must be
available

	pkg_spec :

	Package specification string. See Package specification.

	Parameters:	
	allow_duplicates (boolean) – Whether the output shall contain
multiple versions of the same packages identified with
<name>.<architecture>.

	exact_match (boolean) – Whether the name key shall be tested for
exact match. If False it will be tested for inclusion.

	Returns:	Instance names of LMI_SoftwareIdentity.

	Return type:	generator over lmi.shell.LmiInstanceName

	
lmi.scripts.software.get_package_nevra(package)

	Get a nevra from an instance of LMI_SoftwareIdentity.

	Parameters:	package (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance or instance name of
LMI_SoftwareIdentity representing package to install.

	Returns:	Nevra string of particular package.

	Return type:	string

	
lmi.scripts.software.get_repository(ns, repoid)

	Return an instance of repository identified by its identification string.

	Parameters:	repoid (string) – Identification string of repository.

	Returns:	Instance of LMI_SoftwareIdentityResource.

	Return type:	lmi.shell.LMIInstance

	
lmi.scripts.software.install_from_uri(ns, uri, force=False, update=False)

	Install package from URI on remote system.

	Parameters:	
	uri (string) – Identifier of RPM package available via http, https,
or ftp service.

	force (boolean) – Whether the installation shall be done even if
installing the same (reinstalling) or older version than already
installed.

	update (boolean) – Whether this is an update. Update fails if
package is not already installed on system.

	
lmi.scripts.software.install_package(ns, package, force=False, update=False)

	Install package on system.

	Parameters:	
	package (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance or instance name of LMI_SoftwareIdentity
representing package to install.

	force (boolean) – Whether the installation shall be done even if
installing the same (reinstalling) or older version than already
installed.

	update (boolean) – Whether this is an update. Update fails if
package is not already installed on system.

	Returns:	Software identity installed on remote system.
It’s an instance LMI_SoftwareIdentity.

	Return type:	lmi.shell.LMIInstance

	
lmi.scripts.software.list_available_packages(ns, allow_installed=False, allow_duplicates=False, repoid=None)

	Yields instances of LMI_SoftwareIdentity representing available packages.

	Parameters:	
	allow_installed (boolean) – Whether to include available packages
that are installed.

	allow_duplicates (boolean) – Whether to include duplicates packages
(those having same name and architecture). Otherwise only the newest
packages available for each (name, architecture) pair will be contained
in result.

	repoid (string) – Repository identification string. This will filter
available packages just for those provided by this repository.

	Return type:	generator

	
lmi.scripts.software.list_installed_packages(ns)

	Yields instances of LMI_SoftwareIdentity representing installed packages.

	Return type:	generator

	
lmi.scripts.software.list_package_files(ns, package, file_type=None)

	Get a list of files belonging to particular installed RPM package. Yields
instances of LMI_SoftwareIdentityFileCheck.

	Parameters:	
	package (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance or instance name of LMI_SoftwareIdentity.

	file_type (string, integer or None) – Either an index to FILE_TYPES array or one of:
{ "all", "file", "directory", "symlink", "fifo", "device" }.

	Returns:	Instances of LMI_SoftwareIdentityFileCheck.

	Return type:	generator over lmi.shell.LMIInstance

	
lmi.scripts.software.list_repositories(ns, enabled=True)

	Yields instances of LMI_SoftwareIdentityResource representing software
repositories.

	Parameters:	enabled (boolean or None) – Whether to list only enabled repositories. If False
only disabled repositories shall be listed. If None, all
repositories shall be listed.

	Returns:	Instances of LMI_SoftwareIdentityResource

	Return type:	generator over lmi.shell.LMIInstance

	
lmi.scripts.software.pkg_spec_to_filter(pkg_spec)

	Converts package specification to a set of keys, that can be used to
query package properties.

	Parameters:	pkg_spec (string) – Package specification (see
Package specification). Only keys given in this string will
appear in resulting dictionary.

	Returns:	Dictionary with possible keys being a subset of
following: {'name', 'epoch', 'version', 'release', 'arch'}.
Values are non-empty parts of pkg_spec string.

	Return type:	dictionary

	
lmi.scripts.software.remove_package(ns, package)

	Uninstall given package from system.

	Raises:	LmiFailed` will be raised on failure.

	Parameters:	package (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance or instance name of
LMI_SoftwareIdentity representing package to remove.

	
lmi.scripts.software.render_failed_flags(failed_flags)

	Make one liner string representing failed flags list of file that did not
pass the verification.

	Parameters:	failed_flags (list) – Value of FailedFlags property
of some LMI_SoftwareIdentityFileCheck.

	Returns:	Verification string with format matching the output of rpm -V
command.

	Return type:	string

	
lmi.scripts.software.set_repository_enabled(ns, repository, enable=True)

	Enable or disable repository.

	Parameters:	
	repository (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance of LMI_SoftwareIdentityResource.

	enable (boolean) – New value of EnabledState property.

	Returns:	Previous value of repository’s EnabledState.

	Return type:	boolean

	
lmi.scripts.software.verify_package(ns, package)

	Returns the instances of LMI_SoftwareIdentityFileCheck representing
files, that did not pass the verification.

	Parameters:	package (lmi.shell.LMIInstance
or lmi.shell.LMIInstanceName) – Instance or instance name of
LMI_SoftwareIdentity representing package to verify.

	Returns:	List of instances of LMI_SoftwareIdentityFileCheck
with non-empty FailedFlags property.

	Return type:	list

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

SSSD Script python reference

LMI SSSD provider client library.

This set of functions can list and manage SSSD’s responders and domains.

	
lmi.scripts.sssd.debug_level(level)

	Return hexadecimal representation of debug level.

	Parameters:	level (int) – Debug level.

	Return type:	string

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

Storage Script python reference

	Common functions

	Partitioning

	LUKS Management

	Logical Volume Management

	MD RAID

	Filesystems and data formats

	Printing

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

Common functions

Common storage functionality.

	
lmi.scripts.storage.common.escape_cql(s)

	Escape potentially unsafe string for CQL.

It is generally not possible to do anything really harmful in CQL
(there is no DELETE nor DROP TABLE), but just to be nice,
all strings passed to CQL should escape backslash ‘’ and double quote
‘”’.

	Parameters:	s (string) – String to escape.

	Return type:	string

	
lmi.scripts.storage.common.get_children(ns, obj, deep=False)

	Return list of all children of given LMIInstance.

For example:

	If obj is LMIInstance/LMI_VGStoragePool (=Volume Group), it returns
all its Logical Volumes (=LMIInstance/LMI_LVStorageExtent).

	If obj is LMIInstance/LMI_StorageExtent of a disk, it returns
all its partitions (=LMIInstance/CIM_GenericDiskPartition).

	If obj is LMIInstance/LMI_DiskPartition and the partition is
Physical Volume of a Volume Group,, it returns the pool
(LMIInstance/LMI_VGStoragePool).

	Parameters:	
	obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool
or string) – Object to find children of.

	deep (Boolean) – Whether all children of the object should be returned or only
immediate ones.

	
lmi.scripts.storage.common.get_devices(ns, devices=None)

	Returns list of block devices.
If no devices are given, all block devices on the system are returned.

This functions just converts list of strings to list of appropriate
LMIInstances.

	Parameters:	devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list.

	Return type:	list of LMIInstance/CIM_StorageExtent.

	
lmi.scripts.storage.common.get_parents(ns, obj, deep=False)

	Return list of all parents of given LMIInstance.

For example:

	If obj is LMIInstance/LMI_LVStorageExtent (=Logical Volume), it
returns LMIInstance/LMI_VGStoragePool (=Volume Group).

	If obj is LMIInstance/LMI_VGStoragePool (=Volume Group), it returns
all its Physical Volumes (=LMIInstance/CIM_StorageExtent).

	Parameters:	
	obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool
or string) – Object to find parents of.

	deep (Boolean) – Whether all parents of the object should be returned or only
immediate ones.

	
lmi.scripts.storage.common.size2str(size, human_friendly)

	Convert size (in bytes) to string.

	Parameters:	
	size (int) – Size of something in bytes.

	human_friendly (bool) – If True, the returned string is returned in
human-friendly units (KB, MB, ...).

	Return type:	string

	
lmi.scripts.storage.common.str2device(ns, device)

	Convert string with name of device to LMIInstance of the device.
If LMIInstance is provided, nothing is done and the instance is just
returned. If string is given, appropriate LMIInstance is looked up and
returned.
This functions throws an error when the device cannot be found.

The main purpose of this function is to convert parameters in functions,
where both string and LMIInstance is allowed.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string with name of device) – Device to convert.

	Return type:	LMIInstance/CIM_StorageExtent

	
lmi.scripts.storage.common.str2obj(ns, obj)

	Convert string with name of device or volume group to LMIInstance of the
device or the volume group.

If LMIInstance is provided, nothing is done and the instance is just
returned. If string is given, appropriate LMIInstance is looked up and
returned.
This functions throws an error when the device or volume group
cannot be found.

The main purpose of this function is to convert parameters in functions,
where both string and LMIInstance is allowed.

	Parameters:	obj (LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool
or string with name of device or pool) – Object to convert.

	Return type:	LMIInstance/CIM_StorageExtent or LMIInstance/LMI_VGStoragePool

	
lmi.scripts.storage.common.str2size(size, additional_unit_size=None, additional_unit_suffix=None)

	Convert string from human-friendly size to bytes.
The string is expected to be integer number, optionally with on of these
suffixes:

	k, K - kilobytes, 1024 bytes,

	m, M - megabytes, 1024 * 1024 bytes,

	g, G - gigabytes, 1024 * 1024 * 1024 bytes,

	t, T - terabytes, 1024 * 1024 * 1024 * 1024 bytes,

	Parameters:	
	size (string) – The size to convert.

	additional_unit_size (int) – Additional unit size for
additional_unit_suffix, e.g. 4 * 1024*1024 for extent size.

	additional_unit_suffix (string) – Additional suffix, e.g. ‘E’ for extents.

	Return type:	int

	
lmi.scripts.storage.common.str2vg(ns, vg)

	Convert string with name of volume group to LMIInstance of the
LMI_VGStoragePool.

If LMIInstance is provided, nothing is done and the instance is just
returned. If string is provided, appropriate LMIInstance is looked up and
returned.

This functions throws an error when the device cannot be found.

The main purpose of this function is to convert parameters in functions,
where both string and LMIInstance is allowed.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – VG to retrieve.

	Return type:	LMIInstance/LMI_VGStoragePool

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

Partitioning

Partition management functions.

	
lmi.scripts.storage.partition.create_partition(ns, device, size=None, partition_type=None)

	Create new partition on given device.

	Parameters:	
	device (LMIInstance/CIM_StorageExtent or string) – Device which should be partitioned.

	size (int) – Size of the device, in blocks. See device’s BlockSize
to get it. If no size is provided, the largest possible partition
is created.

	partition_type (int) – Requested partition type.
See PARTITION_TYPE_xxx variables. If no type is given, extended partition
will be automatically created as 4th partition on MS-DOS style partition
table with a logical partition with requested size on it.

	Return type:	LMIInstance/CIM_GenericDiskPartition.

	
lmi.scripts.storage.partition.create_partition_table(ns, device, table_type)

	Create new partition table on a device. The device must be empty, i.e.
must not have any partitions on it.

	Parameters:	
	device (LMIInstance/CIM_StorageExtent) – Device where the partition table should be created.

	table_type (int) – Requested partition table type. See
PARTITION_TABLE_TYPE_xxx variables.

	
lmi.scripts.storage.partition.delete_partition(ns, partition)

	Remove given partition

	Parameters:	partition (LMIInstance/CIM_GenericDiskPartition) – Partition to delete.

	
lmi.scripts.storage.partition.get_disk_partition_table(ns, device)

	Returns LMI_DiskPartitionTableCapabilities representing partition table
on given disk.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device which should be examined.

	Return type:	LMIInstance/LMI_DiskPartitionConfigurationCapabilities.

	
lmi.scripts.storage.partition.get_disk_partitions(ns, disk)

	Return list of partitions on the device (not necessarily disk).

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device which should be partitioned.

	Return type:	List of LMIInstance/CIM_GenericDiskPartition.

	
lmi.scripts.storage.partition.get_largest_partition_size(ns, device)

	Returns size of the largest free region (in blocks), which can accommodate
a partition on given device.
There must be partition table present on this device.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device which should be examined.

	Return type:	int

	
lmi.scripts.storage.partition.get_partition_disk(ns, partition)

	Return a device on which is located the given partition.

	Parameters:	partition (LMIInstance/CIM_GenericDiskPartition or string) – Partition to examine.

	Return type:	LMIInstance/CIM_StorageExtent.

	
lmi.scripts.storage.partition.get_partition_tables(ns, devices=None)

	Returns list of partition tables on given devices.
If no devices are given, all partitions on all devices are returned.

	Parameters:	devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list partition tables on.

	Return type:	List of tuples (LMIInstance/CIM_StorageExtent,
LMIInstance/LMI_DiskPartitionConfigurationCapabilities).

	
lmi.scripts.storage.partition.get_partitions(ns, devices=None)

	Retrieve list of partitions on given devices.
If no devices are given, all partitions on all devices are returned.

	Parameters:	devices (List of LMIInstance/CIM_StorageExtent or list of string) – Devices to list partitions on.

	Return type:	List of LMIInstance/CIM_GenericPartition.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

LUKS Management

LUKS management functions.

	
lmi.scripts.storage.luks.add_luks_passphrase(ns, fmt, passphrase, new_passphrase)

	Adds new password to LUKS format. Each format can have up to 8 separate
passwords and any of them can be used to open(decrypt) the format.

Any existing passphrase must be provided to add a new one. This proves
the caller is authorized to add new passphrase (because it already knows
one) and also this ‘old’ passphrase is used to retrieve encryption keys.
This ‘old’ passphrase is not removed nor replaced when adding new
passphrase!

	Parameters:	
	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to modify.

	passphrase (string) – Existing LUKS passphrase.

	new_passphrase (string) – New passphrase to add to the format.

	
lmi.scripts.storage.luks.close_luks(ns, fmt)

	Closes clear-text block device previously opened by open_luks().

	Parameters:	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to close.

	
lmi.scripts.storage.luks.create_luks(ns, device, passphrase)

	Format given device with LUKS encryption format. All data on the device
will be deleted! Encryption key and algorithm will be chosen automatically.

	Parameters:	
	device (LMIInstance/CIM_StorageExtent or string) – Device to format with LUKS data

	passphrase (string) – Password to open the encrypted data. This is not the
encryption key.

	Return type:	LMIInstance/LMI_EncryptionFormat

	
lmi.scripts.storage.luks.delete_luks_passphrase(ns, fmt, passphrase)

	Delete passphrase from LUKS format.

	Parameters:	
	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to modify.

	passphrase (string) – The passphrase to remove

	
lmi.scripts.storage.luks.get_luks_device(ns, fmt)

	Return clear-text device for given LUKS format. The format must be already
opened by open_luks().

	Parameters:	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to inspect.

	Return type:	LMIInstance/LMI_LUKSStorageExtent

	Returns:	Block device with clear-text data or None, if the LUKS format is
not open.

	
lmi.scripts.storage.luks.get_luks_list(ns)

	Retrieve list of all encrypted devices.

	Return type:	list of LMIInstance/LMI_EncryptionFormat.

	
lmi.scripts.storage.luks.get_passphrase_count(ns, fmt)

	Each LUKS format can have up to 8 passphrases. Any of these passphrases can
be used to decrypt the format and create clear-text device.

This function returns number of passphrases in given LUKS format.

	Parameters:	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to inspect.

	Return type:	int

	Returns:	Number of used passphrases.

	
lmi.scripts.storage.luks.open_luks(ns, fmt, name, passphrase)

	Open encrypted LUKS format and expose it as a clear-text block device.

	Parameters:	
	fmt (LMIInstance/LMI_EncryptionFormat or string) – The LUKS format to open.

	name (string) – Requested name of the clear-text block device. It will be
available as /dev/mapper/<name>.

	passphrase (string) – Password to open the encrypted data.

	Return type:	LMIInstance/LMI_LUKSStorageExtent

	Returns:	The block device with clear-text data.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

Logical Volume Management

LVM management functions.

	
lmi.scripts.storage.lvm.create_lv(ns, vg, name, size)

	Create new Logical Volume on given Volume Group.

	Parameters:	
	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to allocate the volume from.

	name (string) – Name of the logical volume.

	size (int) – Size of the logical volume in bytes.

	Return type:	LMIInstance/LMI_LVStorageExtent

	
lmi.scripts.storage.lvm.create_vg(ns, devices, name, extent_size=None)

	Create new Volume Group from given devices.

	Parameters:	
	device – Devices to add to the Volume Group.

	name (string) – Name of the Volume gGoup.

	extent_size (int) – Extent size in bytes.

	Return type:	LMIInstance/LMI_VGStoragePool

	
lmi.scripts.storage.lvm.delete_lv(ns, lv)

	Destroy given Logical Volume.

	Parameters:	lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to destroy.

	
lmi.scripts.storage.lvm.delete_vg(ns, vg)

	Destroy given Volume Group.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to delete.

	
lmi.scripts.storage.lvm.get_lv_vg(ns, lv)

	Return Volume Group of given Logical Volume.

	Parameters:	lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to examine.

	Return type:	LMIInstance/LMI_VGStoragePool

	
lmi.scripts.storage.lvm.get_lvs(ns, vgs=None)

	Retrieve list of all logical volumes allocated from given volume groups.

If no volume groups are provided, all logical volumes on the system
are returned.

	Parameters:	vgs (list of LMIInstance/LMI_VGStoragePool or list of strings) – Volume Groups to examine.

	Return type:	list of LMIInstance/LMI_LVStorageExtent.

	
lmi.scripts.storage.lvm.get_tp_vgs(ns, tp)

	Return Volume Groups of given Thin Pool.

Alias for get_vg_tps.

	
lmi.scripts.storage.lvm.get_tps(ns)

	Retrieve list of all thin pools on the system.

	Return type:	list of LMIInstance/LMI_VGStoragePool

	
lmi.scripts.storage.lvm.get_vg_lvs(ns, vg)

	Return list of Logical Volumes on given Volume Group.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

	Return type:	list of LMIInstance/LMI_LVStorageExtent

	
lmi.scripts.storage.lvm.get_vg_pvs(ns, vg)

	Return Physical Volumes of given Volume Group.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

	Return type:	list of LMIInstance/CIM_StorageExtent

	
lmi.scripts.storage.lvm.get_vg_tps(ns, vg)

	Return Thin Pools of given Volume Group.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to examine.

	Return type:	list of LMIInstance/CIM_StoragePool

	
lmi.scripts.storage.lvm.get_vgs(ns)

	Retrieve list of all volume groups on the system.

	Return type:	list of LMIInstance/LMI_VGStoragePool

	
lmi.scripts.storage.lvm.modify_vg(ns, vg, add_pvs=None, remove_pvs=None)

	Modify given Volume Group.

Add ‘add_pvs’ devices as Physical Volumes of the group.
Remove ‘remove_pvs’ devices from the Volume Group.

	Parameters:	
	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to delete.

	add_pvs (List of LMIInstances/LMI_VGStoragePools or strings) – List of new devices to be added as Physical Volumes of the
VG.

	remove_pvs (List of LMIInstances/LMI_VGStoragePools or strings) – List of Physical Volume to be removed from the VG.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

MD RAID

MD RAID management functions.

	
lmi.scripts.storage.raid.create_raid(ns, devices, level, name=None)

	Create new MD RAID device.

	Parameters:	
	device – Devices to add to the RAID.

	level (int) – RAID level.

	name (string) – RAID name.

	Return type:	LMIInstance/LMI_MDRAIDStorageExtent

	
lmi.scripts.storage.raid.delete_raid(ns, raid)

	Destroy given RAID device

	Parameters:	raid (LMIInstance/LMI_MDRAIDStorageExtent) – MD RAID to destroy.

	
lmi.scripts.storage.raid.get_raid_members(ns, raid)

	Return member devices of the RAID.

	Parameters:	raid (LMIInstance/LMI_MDRAIDStorageExtent) – MD RAID to examine.

	Return type:	List of LMIInstance/CIM_StorageExtent

	
lmi.scripts.storage.raid.get_raids(ns)

	Retrieve list of all MD RAIDs on the system.

	Return type:	list of LMIInstance/LMI_MDRAIDStorageExtent.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

Filesystems and data formats

Filesystem management functions.

	
lmi.scripts.storage.fs.create_fs(ns, devices, fs, label=None)

	Format given devices with a filesystem.
If multiple devices are provided, the format will span over all these
devices (currently supported only for btrfs).

	Parameters:	
	devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to format.

	fs (string) – Requested filesystem type (case-insensitive).

	label (string) – The filesystem label.

	Return type:	LMIInstance/CIM_LocalFileSystem

	
lmi.scripts.storage.fs.delete_format(ns, fmt)

	Remove given filesystem or data format from all devices, where it resides.

	Parameters:	fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat) – Format to delete.

	
lmi.scripts.storage.fs.get_device_format_label(ns, device)

	Return short text description of the format, ready for printing.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device to describe.

	Return type:	string

	
lmi.scripts.storage.fs.get_format_label(_ns, fmt)

	Return short text description of the format, ready for printing.

	Parameters:	fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat) – Format to describe.

	Return type:	string

	
lmi.scripts.storage.fs.get_format_on_device(ns, device, format_type=3)

	Return filesystem or data format, which is on given device.

	Parameters:	
	device (LMIInstance/CIM_StorageExtent or string) – Device to to examine.

	format_type (int) – Type of format to find.

	FORMAT_ALL - return either CIM_LocalFileSystem or LMI_DataFormat.

	
	FORMAT_FS - return only CIM_LocalFileSystem or None, if there is no

	filesystem on the device.

	
	FORMAT_DATA - return only LMI_DataFormat or None, if there is no

	data format on the device.

	Return type:	LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat

	
lmi.scripts.storage.fs.get_formats(ns, devices=None, format_type=3, nodevfs=False)

	Retrieve list of filesystems on given devices.
If no devices are given, all formats on all devices are returned.

	Parameters:	
	devices (list of LMIInstance/CIM_StorageExtent or list of strings) – Devices to list formats on.

	format_type (int) – Type of formats to find.

	FORMAT_ALL - return either CIM_LocalFileSystem or LMI_DataFormat.

	
	FORMAT_FS - return only CIM_LocalFileSystem or None, if there is no

	filesystem on the device.

	
	FORMAT_DATA - return only LMI_DataFormat or None, if there is no

	data format on the device.

	nodevfs (bool) – Whether non-device filesystems like tmpfs, cgroup, procfs
etc. should be returned.

	Return type:	list of LMIInstance/CIM_LocalFileSystem or
LMIInstance/LMI_DataFormat

	
lmi.scripts.storage.fs.str2format(ns, fmt)

	Convert string with name of device to LMIInstance of the format on the
device.

If LMIInstance is provided, nothing is done and the instance is just
returned. If a string is given, appropriate LMIInstance is looked up and
returned.

This functions throws an error when the device cannot be found.

	Parameters:	fmt (LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat or
string) – The format.

	Retval:	LMIInstance/CIM_LocalFileSystem or LMIInstance/LMI_DataFormat

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

 	Storage Script python reference

Printing

Functions to display information about block devices.

	
lmi.scripts.storage.show.device_show(ns, device, human_friendly)

	Print extended information about the device.

	Parameters:	
	part – Device to show.

	human_friendly (bool) – If True, the device sizes are shown in human-friendly
units (KB, MB, ...).

	
lmi.scripts.storage.show.device_show_data(ns, device, human_friendly)

	Display description of data on the device.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device to show.

	
lmi.scripts.storage.show.device_show_device(ns, device, human_friendly)

	Print basic information about storage device, common to all device types.

	Parameters:	device (LMIInstance/CIM_StorageExtent or string) – Device to show.

	
lmi.scripts.storage.show.format_show(ns, fmt, human_friendly)

	Display description of data on the device.

	Parameters:	fmt (LMIInstance/LMI_DataFormat or string) – Format to show.

	
lmi.scripts.storage.show.fs_show(ns, fmt, human_friendly)

	Display description of filesystem on the device.

	Parameters:	fmt (LMIInstance/CIM_LocalFileSystem or string) – Filesystem to show.

	
lmi.scripts.storage.show.lv_show(ns, lv, human_friendly)

	Print extended information about the Logical Volume.

	Parameters:	lv (LMIInstance/LMI_LVStorageExtent or string) – Logical Volume to show.

	
lmi.scripts.storage.show.partition_show(ns, part, human_friendly)

	Print extended information about the partition.

	Parameters:	part (LMIInstance/CIM_GenericDiskPartition or string) – Partition to show.

	
lmi.scripts.storage.show.partition_table_show(ns, disk, human_friendly)

	Print extended information about the partition table on given disk.

	Parameters:	disk (LMIInstance/CIM_StorageExtent or string) – Device with partition table to show.

	
lmi.scripts.storage.show.raid_show(ns, r, human_friendly)

	Print extended information about the RAID.

	Parameters:	r (LMIInstance/LMI_MDRAIDStorageExtent or string) – RAID to show.

	
lmi.scripts.storage.show.tlv_show(ns, tlv, human_friendly)

	Print extended information about the Thin Logical Volume.

	Parameters:	tlv (LMIInstance/LMI_LVStorageExtent or string) – Thin Logical Volume to show.

	
lmi.scripts.storage.show.vg_show(ns, vg, human_friendly)

	Print extended information about the Volume Group.

	Parameters:	vg (LMIInstance/LMI_VGStoragePool or string) – Volume Group to show.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI Tools documentation

 	OpenLMI Tools API reference

 	LMI Scripts API reference

System Script python reference

Main interface function wrapped with lmi command is:

	get_system_info()

It accepts ns object as the first argument,
an instance of lmi.shell.LMINamespace.

System Module API

LMI system client library.

	
lmi.scripts.system.format_memory_size(size)

	Returns formatted memory size.

	Parameters:	size (Number) – Size in bytes

	Returns:	Formatted size string.

	Return type:	String

	
lmi.scripts.system.get_all_instances(ns, class_name)

	Returns all instances of instance_name.

	Parameters:	instance_name (String) – Instance name

	Returns:	List of instances of instance_name

	Return type:	List of lmi.shell.LMIInstance

	
lmi.scripts.system.get_hostname(ns)

	

	Returns:	Tabular data of system hostname.

	Return type:	List of tuples

	
lmi.scripts.system.get_hwinfo(ns)

	

	Returns:	Tabular data of system hw info.

	Return type:	List of tuples

	
lmi.scripts.system.get_networkinfo(ns)

	

	Returns:	Tabular data of networking status.

	Return type:	List of tuples

	
lmi.scripts.system.get_osinfo(ns)

	

	Returns:	Tabular data of system OS info.

	Return type:	List of tuples

	
lmi.scripts.system.get_servicesinfo(ns)

	

	Returns:	Tabular data of some system services.

	Return type:	List of tuples

	
lmi.scripts.system.get_single_instance(ns, class_name)

	Returns single instance of instance_name.

	Parameters:	instance_name (String) – Instance name

	Returns:	Instance of instance_name

	Return type:	lmi.shell.LMIInstance

	
lmi.scripts.system.get_system_info(ns)

	

	Returns:	Tabular data of all general system information.

	Return type:	List of tuples

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

OpenLMI server components

On servers (= managed systems), OpenLMI leverages WBEM infrastructure we already
have in Linux and only adds the missing pieces: providers.

See our overview [http://www.openlmi.org/node/1785] for details what is
a provider and how the whole CIM+WBEM infrastructure is supposed to work.

Table of contents:

	Usage & Troubleshooting
	Installation

	Configuration files

	Logging

	Account Provider
	DMTF profile

	Usage

	Fan Provider
	DMTF profiles

	Usage

	Hardware Provider
	DMTF profiles

	Usage

	Journald Provider
	Caveats

	Usage

	Locale Provider
	Usage

	LogicalFile Provider
	Usage

	Configuration

	Power Management
	Usage

	Realmd Provider
	Usage

	SELinux Provider
	Introduction

	Usage

	Service Provider
	Usage

	Software Provider
	Introduction

	DMTF profiles

	Configuration

	Usage

	SSSD Provider

	Storage Provider
	SMI-S profiles

	Storage API concept

	Usage

	Configuration

	Networking Provider
	Networking API concepts

	Usage

OpenLMI Classes:

	CIM classes
	Class reference

	Inheritance tree

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Usage & Troubleshooting

Installation

Fedora, Red Hat Enterprise Linux & derived Linux distributions

In Fedora Linux, one just needs to install OpenLMI packages:

$ yum install openlmi-networking openlmi-storage <any other providers>

From source code

Please refer to README of individual providers, either in git
or in released tarballs.

Configuration files

/etc/openlmi/openlmi.conf is OpenLMI master configuration file.

Each provider may introduce additional configuration files, see their
documentation. If a provider uses its own configuration file, the
provider-specific one is parsed first and all missing options are
then read from OpenLMI master configuration file.

Using this approach, administators can set e.g. one namespace for all
providers in /etc/openlmi/openlmi.conf and different log levels
for some providers in their configuration files.

File format

Configuration files has simple .ini syntax, with # or ; used for
comments.

Default configuration:

[CIM]
Namespace=root/cimv2
SystemClassName=PG_ComputerSystem

[Log]
Level=ERROR
Stderr=false

	Section
	Option name
	Default value
	Description

	CIM
	Namespace
	root/cimv2
	Namespace where OpenLMI providers are registered.

	CIM
	SystemClassName
	PG_ComputerSystem
	Name of CIM_ComputerSystem class, which is used to represent
the computer system. It will be used as SystemClassName
property value of various classes. Different cimmoms can
instrument variously named computer systems and some may not
instrument any at all. Sfcb [http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb] is an example of the later, it
needs the sblim-cmpi-base package installed providing the
basic set of providers containing Linux_ComputerSystem. So in
case you run a Sfcb or you preferr to use providers from
sblim-cmpi-base package, you need to change this to
Linux_ComputerSystem.

	Log
	Level
	ERROR
	Chooses which messages are logged, either to CIMOM and (if
configured) to standard error output. Available levels
(sorted by severity) are:

	CRITICAL

	ERROR

	WARNING

	INFO

	DEBUG

	TRACE_WARNING

	TRACE_INFO

	TRACE_VERBOSE

Levels below INFO (= TRACE_WARNING, TRACE_INFO
and DEBUG) are useful mainly for debugging and bug
reporting.

	Log
	Stderr
	False
	Toggles sending of log messages to standard error output of the
CIMOM. Accepts boolean value (see the next section).

Treating boolean values

Options expecting boolean values treat following strings as valid True
values: true, 1, yes and on.
While the following are considered False: false, 0, no and
off.
These words are checked in a case-insensitive way. Any other value isn’t
considered valid [1].

Logging

If logging is enabled, all log messages with level INFO and above are sent to
CIMOM using standard CMPI CMLogMessage function. Consult documentation of
your CIMOM how to enable output of these messages into CIMOM logs.

Messages with TRACE_WARNING and below are sent to CIMOM using CMTraceMessage
and should be visible in CIMOM tracing log. Again, please consult your CIMOM
documentation how to enable tracing logs.

With Stderr configuration option enabled, all logs are sent both to CIMOM
and to the standard error output of the CIMOM.

Logging in Pegasus

When using Pegasus CIMOM, the easiest way is to let Pegasus daemon run in
foreground and send log messages to its standard error output.

Sample /etc/openlmi/openlmi.conf:

[CIM]
Namespace = root/cimv2
SystemClassName = PG_ComputerSystem

[Log]
Level = TRACE_INFO
Stderr = True

Run Pegasus in foreground, i.e. with stderr output sent to terminal:

$ /sbin/cimserver daemon=false
INFO:cimom_entry:get_providers:146 - Provider init.
INFO:TimerManager:_timer_loop:246 - Started Timer thread.
Level 8:cmpi_logging:trace_info:126 - Timer: Checking for expired, now=17634.607226.
Level 8:cmpi_logging:trace_info:126 - Timer: No timers scheduled, waiting forever.
INFO:cimom_entry:init_anaconda:118 - Initializing Anaconda
INFO:JobManager:_worker_main:877 - Started Job thread.

Of course, more advanced logging can be configured in runtime to send provider
logs into trace files, see
Pegasus documentation [http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/TracingUserGuide.pdf]
for details.

Note

OpenLMI providers will start logging only after they are started, i.e.
when they are used for the first time.

	[1]	Default value will be used as a fallback. This applies also to other
non-boolean options in case of invalid value.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Account Provider

OpenLMI Account is CIM provider which manages POSIX accounts.
It allows to create, delete and modify users and groups.

The provider implements DMTF identity profile, for more details read
DMTF profile.

Contents:

	DMTF profile
	Profile adjustment

	Implementation

	Usage
	List users

	List groups

	List group members

	Create user

	Create group

	Delete user

	Delete group

	Add user to group

	Remove user from group

	Modify user

	Indications

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Account Provider

DMTF profile

The provider implements DMTF’s Simple Identity Management Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1034_1.0.1.pdf],
version 1.0.1.

Profile adjustment

The settings classes are not implemented. Necessary settings are done directly
in methods of LMI_AccountManagementService.
LMI_AccountManagementService is
subclass of CIM_SecurityService, because
there is a change in method parameters as follows:

	CreateAccount does
not take EmbeddedInstance as parameter, but a list of parameters.

Implementation

All mandatory classes are implemented.

Classes

Implemented DMTF classes:

	LMI_AccountCapabilities

	LMI_AccountInstanceCreationIndication

	LMI_AccountInstanceDeletionIndication

	LMI_AccountManagementCapabilities

	LMI_AccountManagementServiceCapabilities

	LMI_AccountManagementService

	LMI_AccountManagementServiceSettingData

	LMI_AccountOnSystem

	LMI_Account

	LMI_AccountSettingData

	LMI_AssignedAccountIdentity

	LMI_AssignedGroupIdentity

	LMI_EnabledAccountCapabilities

	LMI_Group

	LMI_HostedAccountManagementService

	LMI_Identity

	LMI_MemberOfGroup

	LMI_OwningGroup

	LMI_ServiceAffectsIdentity

	LMI_SettingsDefineAccountCapabilities

	LMI_SettingsDefineManagementCapabilities

Methods

Implemented:

	CreateAccount

Additional methods:

	CreateGroup

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Account Provider

Usage

General manipulation of users and groups are done with the objects
from following classes:

	LMI_AccountManagementService

	LMI_Account

	LMI_Group

	LMI_MemberOfGroup

	LMI_Identity

	LMI_AccountInstanceCreationIndication

	LMI_AccountInstanceDeletionIndication

Some common use cases are described in the following parts

Note

Examples are written for lmishell version 0.9.

List users

List of users are provided by LMI_Account. Each one object
of this class represents one user on the system. Both system and non-sytem users
are directly in LMI_Account class:

List user by name
print c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
List user by id
print c.root.cimv2.LMI_Account.first_instance({"UserID": "0"})

List groups

Similarly like users, groups are represented by objects
of LMI_Group class:

List group by name
print c.root.cimv2.LMI_Group.first_instance({"Name": "root"})
List group by id
print c.root.cimv2.LMI_Group.first_instance({"InstanceID": "LMI:GID:0"})

List group members

LMI_Identity is class representing users and groups
on the system. Group membership is represented
by LMI_MemberOfGroup association. It associates
LMI_Group and LMI_Identity, where
LMI_Identity is associated
by LMI_AssignedAccountIdentity with
LMI_Account:

Get users from root group
1) Get root group object
root_group = c.root.cimv2.LMI_Group.first_instance({"Name": "root"})
2) Get LMI_Identity objects associated with root group
identities = root_group.associators(
 AssocClass="LMI_MemberOfGroup", ResultClass="LMI_Identity")
3) go through all identites, get LMI_Account associated with identity and print user name
Note: associators returns a list, but there is just one LMI_Account
for i in identities:
 print i.first_associator(
 AssocClass="LMI_AssignedAccountIdentity",
 ResultClass="LMI_Account").Name

Create user

For user creation we have to use
LMI_AccountManagementService. There is
CreateAccount method,
which will create user with descired attributes:

get computer system
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
get service
lams = c.root.cimv2.LMI_AccountManagementService.first_instance()
invoke method, print result
lams.CreateAccount(Name="lmishell-user", System=cs)

Create group

Similarly like creating user, creating groups are don in
LMI_AccountManagementService, using
CreateGroup method:

get computer system
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
get service
lams = c.root.cimv2.LMI_AccountManagementService.first_instance()
invoke method, print result
print lams.CreateGroup(Name="lmishell-group", System=cs)

Delete user

User deletion is done with DeleteUser
method on the desired LMI_Account object.

get the desired user
acci = c.root.cimv2.LMI_Account.first_instance({"Name": "tobedeleted"})
delete the user
acci.DeleteUser()

Note

Previous releases allowed to use DeleteInstance intrinsic method to
delete LMI_Account. This method is now deprecated and
will be removed from future releases of OpenLMI Account. The reason is that
DeleteInstance cannot have parameters; it is equivalent to call
DeleteAccount without specifying parameters.

Delete group

Group deletion is done with DeleteGroup
method on the desired LMI_Group object,

get the desired group
grp = c.root.cimv2.LMI_Group.first_instance({"Name": "tobedeleted"})
delete the group
grp.DeleteGroup()

Note

Previous releases allowed to use DeleteInstance intrinsic method to
delete LMI_Group. This method is now deprecated and
will be removed from future releases of OpenLMI Account. The reason is that
we want to have consistent way to delete user and group.

Add user to group

Adding user to group is done with CreateInstance intrinsic method on the
LMI_MemberOfGroup class, which requires reference
to LMI_Group and LMI_Identity:

We will add root user to pegasus group
get group pegasus
grp = c.root.cimv2.LMI_Group.first_instance_name({"Name": "pegasus"})
get user root
acc = c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
get identity of root user
identity = acc.first_associator_name(
 AssocClass='LMI_AssignedAccountIdentity',
 ResultClass="LMI_Identity")
create instance of LMI_MemberOfGroup with the above references
c.root.cimv2.LMI_MemberOfGroup.create_instance({"Member":identity, "Collection":grp})

Remove user from group

Removing user from group is done with DeleteInstance intrinsic method
on the desired LMI_MemberOfGroup object:

We will remove root user from pegasus group
get group pegasus
grp = c.root.cimv2.LMI_Group.first_instance_name({"Name": "pegasus"})
get user root
acc = c.root.cimv2.LMI_Account.first_instance({"Name": "root"})
get identity of root user
identity = acc.first_associator(
 AssocClass="LMI_AssignedAccountIdentity",
 ResultClass="LMI_Identity")
iterate through all LMI_MemberOfGroup associated with identity and remove the one with our group
for mog in identity.references(ResultClass="LMI_MemberOfGroup"):
 if mog.Collection == grp:
 mog.delete()

Modify user

It is also possible to modify user details and it is done by ModifyInstance
intrinsic method on the desired LMI_Account object:

Change login shell of test user
acci = c.root.cimv2.LMI_Account.first_instance({"Name": "test"})
acci.LoginShell = '/bin/sh'
propagate changes
acci.push()

Indications

OpenLMI Account supports the following indications:

	LMI_AccountInstanceCreationIndication

	LMI_AccountInstanceDeletionIndication

Both indications work only on the following classes:

	LMI_Account

	LMI_Group

	LMI_Identity

Please see LMIShell Indications API reference [http://pythonhosted.org/openlmi-tools/shell/indications.html] for an overview how indications work.

Creation Indication

Client can be notified when instance of class has been created. It is done with
LMI_AccountInstanceCreationIndication. The indication filter query must be in the following form:
SELECT * FROM LMI_AccountInstanceCreationIndication WHERE SOURCEINSTANCE ISA class_name, where class_name is one of the allowed classes.

The following example creates filter, handler and subscription (lmi shell does that in one step), which will notify client when user is created:

Notify when a user is created
c.subscribe_indication(
 Name="account_creation",
 Query='SELECT * FROM LMI_AccountInstanceCreationIndication WHERE SOURCEINSTANCE ISA LMI_Account',
 Destination="http://192.168.122.1:5988" # this is the destination computer, where all the indications will be delivered
)

Deletion Indication

Client can be notified when instance is deleted. The same rules like in Creation Indication applies here:

Notify when a user is deleted
c.subscribe_indication(
 Name="account_deletion",
 Query='SELECT * FROM LMI_AccountInstanceDeletionIndication WHERE SOURCEINSTANCE ISA LMI_Account',
 Destination="http://192.168.122.1:5988" # this is the destination computer, where all the indications will be delivered
)

Note

Both indications use the indication manager and polling.

Creation Indication example

The following code snippet illustrates usage of indication listener and subscription. It is a complete minimal example of user creation. Once a new account is added, simple informational message is printed on the standard output.

#!/usr/bin/lmishell

from lmi.shell import LMIIndicationListener
import socket
import time
import random

def ind_handler(indication, **kwargs):
 print "User '%s' added" % indication["SourceInstance"]["Name"]

c = connect("localhost", "pegasus", "test")

indication_port = random.randint(12000, 13000)
listener = LMIIndicationListener("0.0.0.0", indication_port)
uniquename = listener.add_handler("account_watch-XXXXXXXX", ind_handler)
listener.start()

c.subscribe_indication(
 Name=uniquename,
 Query="select * from LMI_AccountInstanceCreationIndication where SourceInstance isa LMI_Account",
 Destination="http://%s:%d" % (socket.gethostname(), indication_port)
)

try:
 while True:
 time.sleep(0.1)
 pass

except KeyboardInterrupt:
 pass

c.unsubscribe_indication(uniquename)

Note

Press Ctrl+C to terminate the script. Also, remember to change the login credentials! The example picks a random port in the 12000 - 13000 range, no check for port occupancy is made, a conflict on a busy system is possible.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Fan Provider

Contents:

	DMTF profiles
	Fan Profile

	Usage
	Set up

	Examples

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Fan Provider

DMTF profiles

OpenLMI Fan provider implements Fan Profile

Fan Profile

Implemented DMTF version: 1.0.1

Described by DSP1013 [http://www.dmtf.org/sites/default/files/standards/documents/DSP1013_1.0.1.pdf]

It defines the classes used to describe the fans and the possible redundancy
of the fans in a managed system. The document also defines association
classes that describe the relationship of the fan to the fan’s physical
aspects (such as FRU data) to the sensors monitoring the fans, to other
cooling devices, to redundancy status, and to DMTF profile version
information. The information in this specification is intended to be
sufficient for a provider or consumer of this data to identify unambiguously
the classes, properties, methods, and values that are mandatory to be
instantiated and manipulated to represent and manage fans and redundant fans
of managed systems and subsystems that are modeled using the DMTF CIM core
and extended model definitions.

Not implemented features

DMTF profile defines many classes that are not instrumented due to
limitations of low level libraries giving informations about fans.
Here is a list of not implemented classes:

	CIM_ManagedSystemElement

	Models the piece of hardware being cooled by particular fan. It’s
associated with LMI_Fan through CIM_AssociatedColling which
is also not instrumented.

	CIM_RedundancySet

	Represents redundacy of fans belonging to particular computer
system. It’s associated with LMI_Fan through
CIM_MemberOfCollection and CIM_IsSpare associations.
There is no way how to detect whether the fan is spare or not.

Classes that shall be implemented

There are still classes missing implementation and are planned to
be delivered in future versions.

	CIM_SystemDevice

	Associates LMI_Fan to CIM_ComputerSystem.

	CIM_EnabledLogicalElementCapacilities

	Represents the capabilities of associated fan. It’s associated
to LMI_Fan through CIM_ElementCapabilities.

Not implemented optional features

Physical Asset association from LMI_Fan to CIM_PhysicalPackage
through CIM_Realizes association class is not instrumented.
This is an optional feature. It may be implemented later.

Physical Asset is a related profile implemented by OpenLMI Hardware
provider.

Class overview

	Class-name
	Parent_class
	Type

	LMI_Fan
	CIM_Fan
	Plain

	LMI_FanSensor
	CIM_NumericSensor
	Plain

	LMI_FanAssociatedSensor
	CIM_AssociatedSensor
	Association

LMI_Fan

Represents the the fan installed and connected to computer.
One of the most important keys is DeviceID. It’s a
sys path to kernel driver’s abstraction for fan combined with its name.

Typical sys directory for fan looks like this:

/sys/class/hwmon/hwmon1/device/
├── driver -> ../../../bus/platform/drivers/thinkpad_hwmon
├── fan1_input
├── hwmon
│ └── hwmon1
│ ├── device -> ../../../thinkpad_hwmon
│ ├── power
│ │ ├── async
│ │ ├── autosuspend_delay_ms
│ │ ├── control
│ │ ├── runtime_active_kids
│ │ ├── runtime_active_time
│ │ ├── runtime_enabled
│ │ ├── runtime_status
│ │ ├── runtime_suspended_time
│ │ └── runtime_usage
│ ├── subsystem -> ../../../../../class/hwmon
│ └── uevent
├── modalias
├── name
├── power
│ ├── async
│ ├── autosuspend_delay_ms
│ ├── control
│ ├── runtime_active_kids
│ ├── runtime_active_time
│ ├── runtime_enabled
│ ├── runtime_status
│ ├── runtime_suspended_time
│ └── runtime_usage
├── pwm1
├── pwm1_enable
├── subsystem -> ../../../bus/platform
└── uevent

Corresponding DeviceID is /sys/class/hwmon/hwmon1/device/fan1. The fan
name is the prefix of *_input file which gives the current
RPM value.

It has several other interesting properties:

	OtherIdentifyingInfo : string []

	Has the name of chip controlling the fan as the first item.

LMI_FanSensor

Represents a sensor measuring a speed of particular fan. It’s exactly the same
keys and values except for
CreationClassName containg the name
of corresponding class LMI_Fan.

It inherts many methods that are not supported because underlying library does
not offer such functionality. Controlling of fans is very hardware dependent.
Different drivers may provide different ways and possibilities to manage
connected fans.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Fan Provider

Usage

Examples for common use cases listed below are written in lmishell [https://fedorahosted.org/openlmi/wiki/shell].

Set up

OpenLMI Fan provider uses lm-sensors [http://lm-sensors.org/] to find, observe and manage installed
fans. In order to make the fans exposed to it, one operation needs to be done:

sensors-detect

sensors-detect is a script shiped with lm_sensors package in Fedora
which tries to load correct modules for various sensor devices found in system.
It also writes a config used by sensors library which is utilised in this
provider. Please refer to its sensors-detect (8) man-page.

Examples

Listing installed fans

c = connect("host", "user", "pass")
for fan in c.root.cimv2.LMI_Fan.instances():
 print(fan.ElementName)

See also

LMI_Fan

Getting fan’s speed

Current value can be read from CurrentReading
property. It’s measured in revolutions per minute.

c = connect("host", "user", "pass")
for fan in c.root.cimv2.LMI_FanSensor.instances():
 print("%s:\t%s RPM" % (fan.Name, fan.CurrentReading))

See also

LMI_FanSensor

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Hardware Provider

OpenLMI Hardware is CIM provider which can provide hardware information.

The provider is partially implementing DMTF Computer System Profile with
addition of multiple hardware related profiles. For more information see
DMTF profiles.

Contents:

	DMTF profiles
	CPU Profile

	System Memory Profile

	Physical Asset Profile

	Battery Profile

	PCI Device Profile

	Disk Drive Profile

	Usage
	CPU Profile

	System Memory Profile

	Physical Asset Profile

	Battery Profile

	PCI Device Profile

	Disk Drive Profile

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Hardware Provider

DMTF profiles

The provider is partially implementing DMTF’s
Computer System Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1052_1.0.2.pdf],
version 1.0.2, with addition of multiple hardware related profiles. Complete list
of implemented profiles can be found below.

CPU Profile

CPU DMTF Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1022_1.0.1.pdf],
version 1.0.1.

Classes

Implemented DMTF classes:

	LMI_Processor

	LMI_ProcessorCapabilities

	LMI_ProcessorElementCapabilities

	LMI_ProcessorCacheMemory

	LMI_AssociatedProcessorCacheMemory

	LMI_ProcessorChip

	LMI_ProcessorChipRealizes

	LMI_ProcessorChipContainer

	LMI_ProcessorSystemDevice

System Memory Profile

System Memory DMTF Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1026_1.0.1.pdf],
version 1.0.1.

Classes

Implemented DMTF classes:

	LMI_Memory

	LMI_MemoryPhysicalPackage

	LMI_PhysicalMemory

	LMI_PhysicalMemoryRealizes

	LMI_PhysicalMemoryContainer

	LMI_MemorySlot

	LMI_MemorySlotContainer

	LMI_MemoryPhysicalPackageInConnector

	LMI_MemorySystemDevice

Physical Asset Profile

Physical Asset DMTF Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1011_1.0.2.pdf],
version 1.0.2.

Classes

Implemented DMTF classes:

	LMI_Chassis

	LMI_Baseboard

	LMI_BaseboardContainer

	LMI_PointingDevice

	LMI_PortPhysicalConnector

	LMI_PortPhysicalConnectorContainer

	LMI_SystemSlot

	LMI_SystemSlotContainer

	LMI_ChassisComputerSystemPackage

Battery Profile

Battery DMTF Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1030_1.0.0.pdf],
version 1.0.0.

Classes

Implemented DMTF classes:

	LMI_Battery

	LMI_BatteryPhysicalPackage

	LMI_PhysicalBatteryContainer

	LMI_PhysicalBatteryRealizes

	LMI_BatterySystemDevice

PCI Device Profile

PCI Device DMTF Profile [http://www.dmtf.org/sites/default/files/standards/documents/DSP1075_1.0.0.pdf],
version 1.0.0.

Classes

Implemented DMTF classes:

	LMI_PCIDevice

	LMI_PCIDeviceSystemDevice

	LMI_PCIBridge

	LMI_PCIBridgeSystemDevice

Disk Drive Profile

Storage Management Technical Specification, Part 3 Block Devices SNIA Profile [http://www.snia.org/sites/default/files/SMI-Sv1.6r4-Block.book_.pdf],
Clause 11: Disk Drive Lite Subprofile, version 1.6.0, revision 4.

Classes

Implemented DMTF classes:

	LMI_DiskPhysicalPackage

	LMI_DiskPhysicalPackageContainer

	LMI_DiskDrive

	LMI_DiskDriveRealizes

	LMI_DiskDriveSoftwareIdentity

	LMI_DiskDriveElementSoftwareIdentity

	LMI_DiskDriveATAProtocolEndpoint

	LMI_DiskDriveSAPAvailableForElement

	LMI_DiskDriveATAPort

	LMI_DiskDriveDeviceSAPImplementation

	LMI_DiskDriveSystemDevice

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Hardware Provider

Usage

OpenLMI Hardware provider contains hardware information, it does not
implement any methods. List of provided information divided by DMTF profiles
can be found below.

CPU Profile

CPU Profile provides information about CPU and associated cache:

	Processor
	Number of CPUs, cores, threads

	Model

	Clock and FSB speeds

	Data and Address width

	Architecture

	Flags

	Family

	Stepping

	FRU data (Manufacturer, Model, Serial Number, Part Number)

	Processor Cache
	Level

	Size

	Type (Data / Instruction / Unified)

Used Resources

	dmidecode program [from dmidecode package]

	lscpu program [from util-linux package]

	/proc/cpuinfo file

	/sys/devices/system/cpu/* files

System Memory Profile

System Memory Profile provides information about system memory and slots:

	Memory
	Size

	Speed (in both MHz and ns)

	Size of standard memory page

	All supported sizes of huge pages

	Current state of transparent huge pages [Unsupported, Never, Madvise, Always]

	Detection of NUMA layout

	Memory slots + modules
	Number of slots and modules

	In which slots are modules plugged in

	Size of modules

	Speed of modules

	Data and Total width

	Module type and form factor

	FRU data

Used Resources

	dmidecode program [from dmidecode package]

	/proc/meminfo file

	/sys/devices/system/node/* files

	/sys/kernel/mm/hugepages/* files

	/sys/kernel/mm/transparent_hugepage/* files

Physical Asset Profile

Physical Asset Profile provides basic information about physical assets
in system, usually with FRU data, currently for following hardware
(with associations):

	System chassis

	Baseboard (motherboard)

	Chassis ports (USB, LAN, VGA..)

	Chassis slots (Media card slot, Express card slot..)

	Pointing devices on chassis (Touch pad, Track point..)

Used Resources

	dmidecode program [from dmidecode package]

Battery Profile

Battery Profile provides basic information about battery:

	Capacity

	Voltage

	Chemistry

	FRU data

Used Resources

	dmidecode program [from dmidecode package]

PCI Device Profile

PCI Device Profile provides information about PCI devices:

	PCI Devices:
	Bus Number

	Device Number

	Function Number

	PCI Device ID

	PCI Device Name

	Vendor ID

	Vendor Name

	Subsystem ID

	Subsystem Name

	Subsystem Vendor ID

	Subsystem Vendor Name

	Revision ID

	Base Address

	Cache Line Size

	Capabilities

	Class Code

	Command Register

	Device Select Timing

	Interrupt Pin

	Latency Timer

	Expansion ROM Base Address

	PCI Bridges (all of the above, plus):
	Bridge Type

	Primary Bus Number

	Secondary Bus Number

	Subordinate Bus Number

	Secondary Latency Timer

	IO Base

	IO Limit

	Memory Base

	Memory Limit

	Prefetch Memory Base

	Prefetch Memory Limit

Used Resources

	libpci library [from pciutils package, pci/pci.h header file]

Disk Drive Profile

Disk Drive Profile provides information about disk drives:

	Disk Drive:
	Overall S.M.A.R.T. status

	Temperature

	Capacity

	Manufacturer

	Model

	Serial Number

	Firmware version

	Form Factor (disk size: 2.5”, 3.5”..)

	RPM

	Port Type (ATA/SATA/SATA2)

	Max Port Speed

	Current Port Speed

	Disk Type (HDD/SSD)

Used Resources

	lsblk program [from util-linux package]

	smartctl program [from smartmontools package]

	/sys/class/block/*/device/vendor file

	/sys/class/block/*/queue/rotational file

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Journald Provider

OpenLMI Journald is a CIM provider exposing systemd [http://freedesktop.org/wiki/Software/systemd/]
journald log records and basic means of iteration and log writing.

Journald is a daemon working with journals. Journal is a log, a set of log
records, chronologically ordered. Records are structured, able to carry multiple
(custom) data fields. By implementation, journald is able to work with multiple
(separate) journals but we use the mixed way for the moment, which is typical
in production use.

Classes used by the provider were chosen to mimic the sblim-cmpi-syslog provider
set of classes allowing drop-in replacement in production tools. We haven’t been
able to find a profile it conforms to though. There’s a related DMTF profile
DSP1010 “Record Log Profile” [http://www.dmtf.org/sites/default/files/standards/documents/DSP1010_2.0.0.pdf]
which may be subject to extension of this provider in the future.
As a benefit, by using the parent classes (e.g. CIM_LogRecord), one is able
to mix log records from orthodox syslog and journald together.

Provider features

	This is a short list of provider features:

	
	log records reading

	log record iteration using persistent iterators

	new records indication

	writing new log records

For the moment, global journal is used, all journal files are mixed together.

The provider also comes with a test suite covering most of its functionality.

Contents

	Caveats
	Number of LMI_JournalLogRecord instances enumerated limitation

	Iteration and iterators

	New log records writing security concerns

	Potential indications endless loop

	Usage
	Listing a log

	Using WQL query for simple filtering

	Iterating through the log

	Sending new message to log

	Indications

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Journald Provider

Caveats

There are some specifics when working with journald and OpenLMI journald
provider.

Number of LMI_JournalLogRecord instances enumerated limitation

Testing the provider showed up an issue with enumeration of LMI_JournalLogRecord
instances. On the testing machine there was 199583 journal records, which is
simply too much for the CIMOM, exceeding memory and the resulting XML reply
limits.

An artificial limit has been set, currently to 1000 most recent records. This
limit is defined by the JOURNAL_MAX_INSTANCES_NUM define in Journal.h
source file. Please use iterators instead to get access to all records.

Iteration and iterators

Iteration is a different way of getting data through the log records. Comparing
to the usual instance enumeration, this is a sequential-like access with ability
to seek back and forth in the journal. Retrieving individual records might be
slower than direct random access though memory consumption is kept on a low
level.

Please check the LMI_JournalMessageLog class
reference for detailed description of available iterator-related methods.
Implemented iterator methods are PositionToFirstRecord(),
PositionAtRecord(),
GetRecord() and
CancelIteration(). Only relative movement
is supported by the PositionAtRecord() method.

A key element of the iteration process is the iteration identifier that is
typically passed in the methods listed above. Only the PositionToFirstRecord()
method is able to create new iteration identifier without the need of specifying
one.

Iteration identifiers are specific to the provider and are opaque. They’re are
persistent to some extent, surviving unexpected CIMOM runtime cleanup. The only
requirement for persistency to work is the journal record the iterator identifier
previously pointed to to be available at the time the iterator is reused.
I.e. it won’t survive log rotation.

A remark for the LMI_JournalMessageLog.GetRecord()
method: the outgoing RecordData argument carries string data encoded in an array
of uint8 elements as defined by the model. This is quite limiting and also still
very free-form on the other hand. To conform the definition, we put UTF-8 encoded
string split by characters in the array and is up to clients to decode it back
to a readable form.

New log records writing security concerns

The provider has an ability to send new messages to the log. This may be percieved
as a security issue in someone’s eyes as long as you can specify custom message
format that is sent to the log. The only obstacle preventing anyone in sending
spoof messages is the rather weak CIM authentication model.

However, as long as journald is a structured logging system, further information
is stored along every log record. Messages sent through the OpenLMI Journald
provider may be identified by supplemental fields such as _COMM and _EXE,
pointing to a CIMOM that had been running the provider code or even the CODE_FUNC
field, pointing to a specific function that invoked the journald library code.

Potential indications endless loop

Just a note for implementing a system processing the indications. Having no
specific filter for the indication subscription and performing an action
within the indication handler that involves a message being sent to syslog
may result in an endless loop as long such action generates another indication
for the fresh syslog message. Even a CIMOM in certain situations (i.e. debugging
in verbose mode) may generate additional messages while sending an indication
that in turn will generate another one.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Journald Provider

Usage

The OpenLMI Journald provider depends on running journald daemon. See the systemd [http://www.freedesktop.org/software/systemd/man/systemd-journald.service.html]
manual for how to enable the journald service.

Listing a log

This example shows simple enumeration through available LMI_JournalLogRecord
instances in classic syslog-like format:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
for rec in c.root.cimv2.LMI_JournalMessageLog.first_instance().associators():
 print "%s %s %s" % (rec.MessageTimestamp.datetime.ctime(), rec.HostName, rec.DataFormat)

Note

Only a limited number of records are being enumerated and printed out, please
see the Number of LMI_JournalLogRecord instances enumerated limitation remark.

Using WQL query for simple filtering

From its nature LMIShell can only do simple filtering by matching exact property
values. However there’s a posibility of constructing custom CQL or WQL queries
bringing more flexibility in specific test conditions. The result from the query
method call is a list of instances, similar to calling ".associators()" or
".instances()".

The following example uses WQL query to get a list of messages with syslog
severity 3 (error) or higher:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
for rec in c.root.cimv2.wql("SELECT * FROM LMI_JournalLogRecord WHERE SyslogSeverity <= 3"):
 print "[severity %d] %s" % (rec.SyslogSeverity, rec.DataFormat)

Iterating through the log

This example uses iterator methods of the LMI_JournalMessageLog
class to continuously go through the whole journal:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
inst = c.root.cimv2.LMI_JournalMessageLog.first_instance()
r = inst.PositionToFirstRecord()
iter_id = r.rparams['IterationIdentifier']
while True:
 x = inst.GetRecord(IterationIdentifier=iter_id, PositionToNext=True)
 if x.rval != 0:
 break
 print "".join(map(chr, x.rparams['RecordData']))
 iter_id = x.rparams['IterationIdentifier']

Sending new message to log

Simple example that uses LMI_JournalLogRecord.create_instance()
CIM method to send a new message in the log:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
c.root.cimv2.LMI_JournalLogRecord.create_instance({"CreationClassName": "LMI_JournalLogRecord",
 "LogCreationClassName": "LMI_JournalMessageLog",
 "LogName": "Journal",
 "DataFormat": ""})

Indications

The Journald provider comes with a
LMI_JournalLogRecordInstanceCreationIndication
class that can be used to receive indications when new log message is logged in
the journal. This way user is notified about system events.

Please see LMIShell Indications API reference [http://pythonhosted.org/openlmi-tools/shell/indications.html]
for an overview how indications work.

Simple indication listener

The following piece of code sets up a simple indication listener and waits for any new messages.
Press Ctrl+C to end the script.

#!/usr/bin/lmishell

from lmi.shell import LMIIndicationListener
import socket
import time
import random

def ind_handler(indication, **kwargs):
 print indication["SourceInstance"]["DataFormat"]

c = connect("localhost", "pegasus", "test")

indication_port = random.randint(12000, 13000)
ind_filter = c.root.interop.CIM_IndicationFilter.first_instance(
 {"Name": "LMI:LMI_JournalLogRecord:NewErrorMessage"})
listener = LMIIndicationListener("0.0.0.0", indication_port)
uniquename = listener.add_handler("journald_watch-XXXXXXXX", ind_handler)
listener.start()

c.subscribe_indication(
 Name=uniquename,
 Filter=ind_filter,
 Destination="http://%s:%d" % (socket.gethostname(), indication_port)
)

try:
 while True:
 time.sleep(1)
 pass
except KeyboardInterrupt:
 pass

c.unsubscribe_indication(uniquename)

The above script makes use of pre-defined indication filters. There are three
indication filters available by default:

New message event filter

When used in indication subscription this will report all newly logged messages:

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
 SourceInstance ISA LMI_JournalLogRecord

Filter name "LMI:LMI_JournalLogRecord:NewMessage".

New error message event filter

This filter can be used to report all newly logged messages having syslog
severity value less than 4 (“Error”), meaning error messages including more
critical ones:

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
 SourceInstance ISA LMI_JournalLogRecord AND
 SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 4

Filter name "LMI:LMI_JournalLogRecord:NewErrorMessage".

New critical message event filter

Similar to the last one except this omits error messages and only reports
critical, alert and emergency messages (see RFC 5424 [http://tools.ietf.org/html/rfc5424]
for syslog severity mapping):

SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE
 SourceInstance ISA LMI_JournalLogRecord AND "
 SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 3

Filter name "LMI:LMI_JournalLogRecord:NewCriticalMessage".

Custom event filters

Apart from pre-defined indication filters the Journald provider supports custom
filters. This allows user to construct a very detailed filter to satisfy
specific needs. The following excerpt from the last example will make the
script to report any errors coming from the “sudo” command:

c.subscribe_indication(
 Name=uniquename,
 Query="SELECT * FROM LMI_JournalLogRecordInstanceCreationIndication WHERE "
 "SourceInstance ISA LMI_JournalLogRecord AND "
 "SourceInstance.LMI_JournalLogRecord::SyslogSeverity < 4 AND "
 "SourceInstance.LMI_JournalLogRecord::SyslogIdentifier = 'sudo'",
 Destination="http://%s:%d" % (socket.gethostname(), indication_port)
)

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Locale Provider

OpenLMI Locale is CIM provider for managing Linux locale settings (using the
systemd/localed D-Bus interface [http://www.freedesktop.org/wiki/Software/systemd/localed/]).

It allows to set system locale represented by environment variables (LANG,
LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY, LC_MESSAGES, LC_PAPER,
LC_NAME, LC_ADDRESS, LC_TELEPHONE, LC_MEASUREMENT and LC_IDENTIFICATION),
set the default key mapping of the X11 servers (keyboard layouts, model, variant
and options) and the default key mapping for virtual console.

If you set a new system locale with SetLocale() method, all old system locale
settings will be dropped, and the new settings will be saved to disk. It will
also be passed to the system manager, and subsequently started daemons will
inherit the new system locale from it.

Note that already running daemons will not learn about the new system locale.

Also note that setting key mapping with SetVConsoleKeyboard() method instantly
applies the new keymapping to the console, while setting the key mapping of X11
server using SetX11Keyboard() method simply sets a default that may be used by
later sessions.

Contents:

	Usage
	Getting locale settings

	Setting system locale

	Setting default key mapping of the X11 servers

	Setting default key mapping of the virtual console

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Locale Provider

Usage

Some common use cases are described in the following parts.

Getting locale settings

Create connection, get instance (assuming the default namespace ‘root/cimv2’ is used):

c = connect("https://myhost")
optionally create namespace alias
ns = c.root.cimv2
locale = ns.LMI_Locale.first_instance()

Print what you’re interested in:

get LANG setting
print locale.Lang
get X11Layouts
print locale.X11Layouts
get VConsoleKeymap
print locale.VConsoleKeymap

Or print everything:

get all available settings
locale.doc()

Setting system locale

Set LANG and/or set individual locale variables. Lang, LCCType, LCAddress, LCNumeric,
LCTelephone, LCCollate, LCPaper, LCMonetary, LCTime, LCMessages, LCIdentification,
LCName and LCMeasurement properties correspond to likewise named Linux locale
environmental variables:

set LANG (LANG value is used also for all other locale categories by default)
locale.SetLocale(Lang="en_US.UTF-8")
set LANG and set different value for LC_TELEPHONE
note that SetLocale() clears previous setting - if you want to preserve
LANG value, you have to set it again
locale.SetLocale(Lang="en_US.UTF-8",LCTelephone="cs_CZ.UTF-8")

Setting default key mapping of the X11 servers

Set default key mapping for X11 server:

locale.SetX11Keyboard(Layouts="de")

Optionally set keyboard model and variant:

locale.SetX11Keyboard(Layouts="us",Model="dellsk8125",Variant="qwertz")

Set more than one layout and set option for switching between them:

locale.SetX11Keyboard(Layouts="us,cz,de",Options="grp:alt_shift_toggle")

You can set Convert parameter to ‘True’, mapping for virtual console will be set
also then (nearest console keyboard setting for the chosen X11 setting):

locale.SetX11Keyboard(Layouts="us",Convert="True")

Setting default key mapping of the virtual console

Set default key mapping for virtual console:

locale.SetVConsoleKeyboard(Keymap="us")

Again, setting Convert to ‘True’ will set the nearest X11 keyboard setting for
the chosen console setting:

locale.SetVConsoleKeyboard(Keymap="us",Convert="True")

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

LogicalFile Provider

OpenLMI LogicalFile is a CIM provider which provides a way to read information
about files and directories. The provider also allows to traverse the file
hierarchy, create and remove empty directories.

The provider implements a part of the
CIM System schema [http://dmtf.org/standards/cim/schemas] (sections “Local
File Systems” and “Unix System”).

Contents:

	Usage
	Deviations from the schema

	Getting files

	Association classes examples

	Configuration

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	LogicalFile Provider

Usage

There are two basic types of classes in the LogicalFile provider.

CIM_LogicalFile subclasses:

	LMI_FIFOPipeFile

	LMI_UnixDeviceFile

	LMI_UnixDirectory

	LMI_UnixSocket

	LMI_DataFile

	LMI_SymbolicLink

Subclasses derived from CIM_LogicalFile represent basic types of files and their
system independent properties, such as if the file is readable or its
modification time. The classes’ names are self-explanatory. LMI_SymbolicLink represents symbolic link files, LMI_UnixDeviceFile represents unix device files, etc.

The other type of class is LMI_UnixFile. It is used in the
Unix-like environment. Its properties are tied to the system – Linux in our
case. For example, the group id of the owner or the inode number are among those
properties.

To provide ways to connect the file subclasses together, LogicalFile also
defines a few associations.

Association classes:

	LMI_RootDirectory

	LMI_FileIdentity

	LMI_DirectoryContainsFile

LMI_RootDirectory is used to connect the computer
system to its root directory.

LMI_FileIdentity associates the system-independent
CIM_LogicalFile subclasses to their respective
LMI_UnixFile equivalents that are dependent on the
system.

LMI_DirectoryContainsFile serves as a tool to
show contents of a directory. Note that directory is usually just a type of
file.

Deviations from the schema

No classes that represent files have the EnumerateInstances method
implemented. The reason for this is that it would be very resource intensive to
list all the files on the given filesystem. Even more so, for example, all the
symlinks on the filesystem. For that reason, every LogicalFile class
implements only its GetInstance method.

The objectpath of the logical file classes consists of these properties:

	CSCreationClassName

	CSName

	FSCreationClassName

	FSName

	CreationClassName
(LFCreationClassName for
LMI_UnixFile)

	Name (LFName for
LMI_UnixFile)

When getting an instance, it’s usually required that all of the key properties
are specified. However, it is impossible, or at least needlessly complicated, to
know some of them when querying remote machines. For example, if I want to see
information about the file ‘/home/user/myfile’ on a remote computer, I don’t
want to specify the filesystem it resides on or the type of the file.

Therefore, the only mandatory key properties are CSCreationClassName, CSName
and Name (of LFName
in case of LMI_UnixFile). FSName, FSCreationClassName and CreationClassName are ignored. They are correctly filled in
after the instance has been properly returned.

To have an entry point into the Unix filesystems, an association has been
added. It binds the computer system and its root directory. See
LMI_RootDirectory.

LMI_UnixFile has been extended to hold additional
properties. Currently, those are SELinuxCurrentContext and SELinuxExpectedContext. Should there be need for more
additions, this class can be easily extended.

Getting files

All further code assumes that a connection object has been created and the
default namespace (root/cimv2) is used. Also, the system’s instance must have
been acquired.

plain http connections will likely be refused
c = connect('https://myhost')
namespace alias for convenience
ns = c.root.cimv2
system = ns.PG_ComputerSystem.first_instance()

Get an instance of the home directory:

name_dict = {'CSCreationClassName':system.classname,
 'CSName':system.name,
 'CreationClassName':'ignored',
 'FSCreationClassName':'ignored',
 'FSName':'ignored',
 'Name':'/home/jsynacek'}
name = ns.LMI_UnixDirectory.new_instance_name(name_dict)
home = name.to_instance()
print home.Name

Get an instance of a temporary file and see its selinux contexts using the
LMI_FileIdentity:

name_dict = {'CSCreationClassName':system.classname,
 'CSName':system.name,
 'LFCreationClassName':'ignored',
 'FSCreationClassName':'ignored',
 'FSName':'ignored',
 'LFName':'/var/tmp/data_file'}
name = ns.LMI_UnixFile.new_instance_name(name_dict)
unixdata = name.to_instance()
data = unixdata.first_associator(AssocClass='LMI_FileIdentity')
print unixdata.SELinuxCurrentContext
print unixdata.SELinuxExpectedContext
print data.Readable
print data.Writeable
print data.Executable

Get an instance of a symlink and check where it points to:

name_dict = {'CSCreationClassName':system.classname,
 'CSName':system.name,
 'LFCreationClassName':'ignored',
 'FSCreationClassName':'ignored',
 'FSName':'ignored',
 'LFName':'/home/jsynacek/test-link'}
name = ns.LMI_UnixFile.new_instance_name(name_dict)
unixsymlink = name.to_instance()
symlink = unixsymlink.first_associator(AssocClass='LMI_FileIdentity')
print symlink.TargetFile

Association classes examples

List a directory:

files = home.associators(AssocClass='LMI_DirectoryContainsFile')
for f in sorted(files, key=lambda x: x.Name):
 print f.Name

Get the root directory:

root = system.first_associator(AssocClass='LMI_RootDirectory')
print root.Name

Note

For a more complex example of how to use the LogicalFile provider, please
refer to the OpenLMI LogicalFile script [https://github.com/openlmi/openlmi-scripts/tree/master/commands/logicalfile/lmi/scripts/logicalfile].

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	LogicalFile Provider

Configuration

Configuration is stored in /etc/openlmi/logicalfile/logicalfile.conf.

In addition to common configuration options,
this provider can be configured to allow or deny various filesystem operations.
Default configuration:

[LMI_UnixDirectory]
Allow user to create directories. (default = True)
AllowMkdir=True

Allow user to remove empty directories. (default = True)
AllowRmdir=True

[LMI_SymbolicLink]
Allow user to create symbolic links. (default = False)
AllowSymlink=False

Options and their values are self-explanatory.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Power Management

OpenLMI Power Management Provider allows to manage power states of
the managed system. Key functionality is ability to reboot, power off, suspend
and hibernate managed system.

This provider is based on following DMTF [http://dmtf.org] standard:

	DSP1027 - Power State Management Profile [http://dmtf.org/sites/default/files/standards/documents/DSP1027_2.0.0.pdf]

The knowledge of this standard is not necessary, but it can help a lot.

..rubric:: Table of Contents

	Usage
	Enumeration of available power states

	Setting the power state

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Power Management

Usage

Class diagram for Power Management provider.

Base class of this provider is
LMI_PowerManagementService.
This class has method
RequestPowerStateChange
that can be used for changing between power states.

For list of available power states, see property
PowerStatesSupported
of the class
LMI_PowerManagementCapabilities

All example scripts are for lmishell. See it’s documentation [https://fedorahosted.org/openlmi/wiki/shell] on OpenLMI [https://fedorahosted.org/openlmi/]
page.

We also assume that lmishell is connected to the CIMOM and the
connection is stored in connection variable:

connection = connect("server", "username", "password")
ns = connection.root.cimv2

Enumeration of available power states

To see the available power states on given managed system, use following:

capabilities = ns.LMI_PowerManagementCapabilities.first_instance()
for state in capabilities.PowerStatesSupported:
 print ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.value_name(state)

Setting the power state

Let’s say we want to power off the system gracefully:

Check if the power state is available first
capabilities = ns.LMI_PowerManagementCapabilities.first_instance()
if not ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.OffSoftGraceful in capabilities.PowerStatesSupported:
 print "OffSoftGraceful state is not supported"
 return
Get the PowerManagement service
service = ns.LMI_PowerManagementService.first_instance()
Invoke the state change
service.RequestPowerStateChange(PowerState=ns.LMI_PowerManagementCapabilities.PowerStatesSupportedValues.OffSoftGraceful)

Note that the job returned from this function is not much usable because
when system is shutting down, the CIMOM is terminated as well.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Realmd Provider

OpenLMI Realmd is a CIM provider for managing the systems Active Direcory or
Kerberos realms membership through the Realmd system service.

It provides only the basic functionality: join or leave a domain and query the
domain membership.

Contents:

	Usage
	Querying a domain membership

	Joining a domain

	Leaving a domain

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Realmd Provider

Usage

The OpenLMI Realmd provider allows for basic configuration of the managed
systems Active Directory or Kerberos realms membership. It relies on the Realmd
system service.

Querying a domain membership

To verify if the remote machine is part of the domain, it is enough to query the
value of the LMI_RealmdService.Domain property:
If non-NULL it contains the name of the joined domain:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
dom = realmsrv.Domain
if (dom):
 print "Joined to the domain: " + dom
else:
 print "No domain joined."

Joining a domain

The LMI_RealmdService.JoinDomain() method
can be used to join a domain. It takes three mandatory arguments: username and
password for the authentication and the domain name:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
realmsrv.JoinDomain(Password='ZisIzSECRET', User='admin', Domain='AD.EXAMPLE.COM')

Leaving a domain

Similarly to joining a domain the
LMI_RealmdService.LeaveDomain() can be used
to leave the joined domain. It requires the same arguments as the
JoinDomain() method:

#!/usr/bin/lmishell
c = connect("localhost", "pegasus", "test")
realmsrv = c.root.cimv2.LMI_RealmdService.first_instance()
realmsrv.LeaveDomain(Password='ZisIzSECRET', User='admin', Domain='AD.EXAMPLE.COM')

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

SELinux Provider

OpenLMI SELinux is a CIM provider which provides a way to read and set SELinux values,
such as booleans, ports, or file labels.

The provider doesn’t implement any CIM standard schema.

Contents:

	Introduction

	Usage
	SELinux state

	Booleans

	Ports

	File labels

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	SELinux Provider

Introduction

SELinux provider model is displayed in the following figure. Classes with the
blue mark are part of the provider.

SELinux provider model

Basic SELinux entities are represented by LMI_SELinuxElement. It is a basic class from which concrete SELinux items are
derived. All SELinux elements use their InstanceID as a primary
identifier. Concrete cases are describe below.

LMI_SELinuxBoolean represents an SELinux boolean on a
system. Concrete boolean instances are uniquely identified by their InstanceID
in the form of LMI:LMI_SELinuxBoolean:<boolean name>.

LMI_SELinuxPort is a class encompassing multiple
individual network ports, or even their ranges. Its InstanceID is in the form of LMI:LMI_SELinuxPort:<type>:<port name>. Port type can be either TCP or UDP.

To read SELinux file labels, the LMI_UnixFile has to be
used. This class is part of the LogicalFile [http://www.openlmi.org/sites/default/files/doc/admin/openlmi-providers/latest/logicalfile/index.html]
provider.

LMI_SELinuxService is the main class that allows
users to modify SELinux state on the system. The class also provides some basic
information about SELinux. It is connected to the computer system on which the
provider resides by LMI_HostedSELinuxService. All instances of LMI_SELinuxElement are associated with the service via
LMI_SELinuxServiceHasElement.

Every method that is provided by LMI_SELinuxService
returns an LMI_SELinuxJob instance, because the actions
that are executed by those methods are expected to take a long time. Which of
the concrete LMI_SELinuxElement instances are
operated on by a job instance is determined by LMI_AffectedSELinuxJobElement.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	SELinux Provider

Usage

All further code assumes that a connection object has been created and the
default namespace (root/cimv2) is used. Also, the LMI_SELinuxService instance
must have been acquired.

c = connect("https://myhost", "user", "secret")
service = c.root.cimv2.LMI_SELinuxService.first_instance()
system = c.root.cimv2.PG_ComputerSystem.first_instance()

As a convenience helper function for further use, lmi_unixfile_instance_name
is defined. It provides an easy way to get file references for methods that
require an LMI_UnixFile reference as a parameter.

def lmi_unixfile_instance_name(path):
 props = {"CSName":system.name,
 "CSCreationClassName":system.classname,
 "FSCreationClassName":"ignored",
 "FSName":"ignored",
 "LFCreationClassName":"ignored",
 "LFName":path}
 return c.root.cimv2.LMI_UnixFile.new_instance_name(props)

SELinux state

General information about SELinux is available via the service instance:

def state_to_str(state):
 if state == 0: return "Disabled"
 elif state == 1: return "Permissive"
 elif state == 2: return "Enabled"
 else: return "Unknown"

print "Policy version: %s" % service.PolicyVersion
print "Policy type: %s" % service.PolicyType
print "Current state: %s" % state_to_str(service.SELinuxState)
print "Persistent state: %s" % state_to_str(service.SELinuxDefaultState)

Set service state, for example, set the default (persistent) state to Enforcing:

2 == Enforcing
service.SetSELinuxState({"NewState":2,
 "MakeDefault":True})

Booleans

List all booleans and print their current and default values:

booleans = c.root.cimv2.LMI_SELinuxBoolean.instances()
for boolean in booleans:
 print "%-50s (%s, %s)" % (boolean.ElementName, boolean.State, boolean.DefaultState)

To enable the httpd_use_sasl boolean in the current runtime, but not permanently:

target = c.root.cimv2.LMI_SELinuxBoolean.new_instance_name({"InstanceID":"LMI:LMI_SELinuxBoolean:httpd_use_sasl"})
res = service.SetBoolean({"Target":target,
 "Value":True,
 "MakeDefault":False})

Ports

List all ports:

ports = c.root.cimv2.LMI_SELinuxPort.instances()
for port in sorted(ports):
 print "%-30s %-10s %s" % (port.ElementName,
 "tcp" if port.Protocol else "udp",
 ", ".join(port.Ports))

Label the TCP port 8080 with http_port_t:

target = c.root.cimv2.LMI_SELinuxPort.new_instance_name({"InstanceID":"LMI:LMI_SELinuxPort:TCP:http_port_t"})
service.SetPortLabel({"Target":target,
 "PortRange":"8080"})

It is also possible to specify PortRange as an actual range, for example “8080-8090”.

File labels

To see what SELinux context a file holds, the LogicalFile [http://www.openlmi.org/sites/default/files/doc/admin/openlmi-providers/latest/logicalfile/index.html] provider is used:

target = lmi_unixfile_instance_name("/tmp/file")
file = target.to_instance()
print file.SELinuxCurrentContext
print file.SELinuxExpectedContext

Set a file context:

target = lmi_unixfile_instance_name("/root")
service.SetFileLabel({"Target":target,
 "Label":"my_user_u:my_role_r:my_type_t"})

Restore SELinux contexts of all the files in /etc/ recursively:

1 == Restore
target = lmi_unixfile_instance_name("/etc/")
service.RestoreLabels({"Target":target,
 "Action":1,
 "Recursively":True})

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Service Provider

OpenLMI Service is CIM provider for managing Linux system services (using
the systemd D-Bus interface).

It allows to enumerate system services and get their status, start/stop/restart/...
a service and enable/disable a service.

The provider is also able to do event based monitoring of service status
(emit indication event upon service property change).

Contents:

	Usage
	List services

	Start/stop service

	Enable/disable service

	Indications

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Service Provider

Usage

Some common use cases are described in the following parts.

List services

List all services available on managed machine, print whether the service has been
started (TRUE), or stopped (FALSE) and print status string of the service:

for service in c.root.cimv2.LMI_Service.instances():
 print "%s:\t%s" % (service.Name, service.Status)

List only enabled by default services (automatically started on boot). Note that value
of EnabledDefault property is ‘2’ for enabled services (and it’s ‘3’ for disabled services):

service_cls = c.root.cimv2.LMI_Service
for service in service_cls.instances():
 if service.EnabledDefault == service_cls.EnabledDefaultValues.Enabled:
 print service.Name

See available information about the ‘cups’ service:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.doc()

Start/stop service

Start and stop ‘cups’ service, see status:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.StartService()
print cups.Status
cups.StopService()
print cups.Status

Enable/disable service

Disable and enable ‘cups’ service, print EnabledDefault property:

cups = c.root.cimv2.LMI_Service.first_instance({"Name" : "cups.service"})
cups.TurnServiceOff()
print cups.EnabledDefault
cups.TurnServiceOn()
print cups.EnabledDefault

Indications

OpenLMI Service provider is able (using indication manager and polling) to emit indication
event upon service (i. e. LMI_Service instance) property modification
(LMI_ServiceInstanceModificationIndication).

This is useful mainly for being notified when a service has changed state (has been started,
or stopped).

In order to receive indications, create instances of CIM_IndicationFilter (which indications
should be delivered), CIM_IndicationHandler (what to do with those indications) and
CIM_IndicationSubscription (links filter and handler together).

The following example in LMIShell does it all in one step:

c.subscribe_indication(
 Name="service_modification",
 QueryLanguage="DMTF:CQL",
 Query="SELECT * FROM LMI_ServiceInstanceModificationIndication WHERE SOURCEINSTANCE ISA LMI_Service",
 CreationNamespace="root/interop",
 SubscriptionCreationClassName="CIM_IndicationSubscription",
 FilterCreationClassName="CIM_IndicationFilter",
 FilterSystemCreationClassName="CIM_ComputerSystem",
 FilterSourceNamespace="root/cimv2",
 HandlerCreationClassName="CIM_IndicationHandlerCIMXML",
 HandlerSystemCreationClassName="CIM_ComputerSystem",
 Destination="http://localhost:12121"
)

Indications are sent to the location specified in ‘Destination’ argument.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Software Provider

Contents:

	Introduction
	Mapping of objects to CIM classes

	DMTF profiles
	Software Inventory Profile

	Software Update Profile

	Configuration
	Treating boolean values

	Options

	Usage
	Listing installed packages

	Listing repositories

	Listing available packages

	Listing files of package

	Searching for packages

	Package installation

	Package removal

	Package update

	Package verification

	Enable and disable repository

	Supported event filters

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Software Provider

Introduction

OpenLMI Software provider allows to query and manipulate software package
database on remote hosts. They utilize YUM which is a standard package manager for several GNU/Linux
distributions. They provide the subset of its functionality.

RPM database, repositories and the package manager itself are modeled with
CIM classes according to several DMTF profiles described
later. To make a query on database, install, update a
remove some RPM package means to trigger some operation on one or several
CIM classes. This page explains the mapping of mentioned objects to
corresponding classes.

[image: OpenLMI Software class model]
This model shows classes representing various objects taking role in
software management provided by OpenLMI Software provider.

Classes with the blue background belong to Software Inventory Profile.
Classes painted yellow belong to Software Update Profile that builds on
the former one. Classes painted red/pink are extensions not beloning to any
DMTF profile.

Mapping of objects to CIM classes

	RPM package : LMI_SoftwareIdentity

	Is represented by LMI_SoftwareIdentity. It’s identified by a single
key property called
LMI_SoftwareIdentity.InstanceID.
This is a composition of some CIM related prefix with package’s NEVRA
string. It’s the similar string you may see, when listing package with
rpm tool:

$ rpm -qa 'openlmi-*' vim-enhanced
openlmi-python-base-0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-indicationmanager-libs-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-account-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-service-0.3.0_5_gf056906-2.fc21.x86_64
vim-enhanced-7.4.027-2.fc20.x86_64
openlmi-logicalfile-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-storage-0.6.0-2.fc20.noarch
openlmi-python-providers-0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-debuginfo-0.3.0_5_gf056906-2.fc21.x86_64
openlmi-software-0.3.0_5_gf056906-2.fc21.noarch

except for Epoch part, which is omitted by rpm tool but is
required to be present in InstanceID by instrumenting provider.
To get the expected output, the above command needs to be modified:

$ rpm --qf '%{NAME}-%{EPOCH}:%{VERSION}-%{RELEASE}.%{ARCH}\n' -qa 'openlmi-*' | sed 's/(none)/0/'
openlmi-python-base-0:0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-indicationmanager-libs-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-account-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-service-0:0.3.0_5_gf056906-2.fc21.x86_64
vim-enhanced-2:7.4.027-2.fc20.x86_64
openlmi-logicalfile-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-storage-0:0.6.0-2.fc20.noarch
openlmi-python-providers-0:0.3.0_5_gf056906-2.fc21.noarch
openlmi-providers-debuginfo-0:0.3.0_5_gf056906-2.fc21.x86_64
openlmi-software-0:0.3.0_5_gf056906-2.fc21.noarch

Some RPM packages do not define Epoch part, which means its 0 although
rpm returns (none).

When installing, updating or removing package, we operate upon an
instance or object path of this class.

See also

Identifying software identity

	Repository : LMI_SoftwareIdentityResource

	Is represented by LMI_SoftwareIdentityResource. What distinguishes
particular repository from others on the same system is a
LMI_SoftwareIdentityResource.Name
key property. It’s the name of repository written in square brackets in
repository config. Not the configuration file name, not the name
option, but a the name of section. See the example of OpenLMI Nightly
repository:

$ cat /etc/yum.repos.d/openlmi-nightly.repo
[openlmi-nightly]
name=OpenLMI Nightly
baseurl=http://openlmi-rnovacek.rhcloud.com/rpm/rawhide/
gpgcheck=0
enabled = 1

The Name property of corresponding Software Identity Resource will
be openlmi-nightly.

	Installed file : LMI_SoftwareIdentityFileCheck

	Is represented by LMI_SoftwareIdentityFileCheck. Represents a
verification check of particular file installed by RPM package. It contains
attributes being checked, like:

	User ID, Group ID

	Checksum

	Link Target

	File Mode and others

Each is present twice. One property represents the current value of
installed file and the other the value stored in RPM package, that the
file should have. The later properties have Original suffix. So for
example:

	UserID vs
UserIDOriginal

	FileChecksum vs
FileChecksumOriginal

Mentioned attributes are compared when the package verification is done.
Single file can also be easily checked. Either by running
LMI_SoftwareIdentityFileCheck.Invoke()
method on particular object path or by testing the
FailedFlags property for
emptiness. If its empty, the file or directory passed the verification test.

	RPM database : LMI_SystemSoftwareCollection

	Is represented by LMI_SystemSoftwareCollection. Administrator probably
won’t be interested in this class. The
LMI_MemberOfSoftwareCollection
association class associates this collection with available and installed
Software Identities. It can not be enumerated — due to the same reason
as in case of LMI_SoftwareIdentity (see the
explanation in Package searching).

	YUM package manager : LMI_SoftwareInstallationService

	Is represented by LMI_SoftwareInstallationService. Allows to query the
database, install, update, verify and remove RPM packages. All of this can
be achieved by invocations of its methods:

	FindIdentity()

	Allows to query the database for matching packages.

	InstallFromSoftwareIdentity()

	Allows to install, update or remove RPM package represented by an
instance of Software Identity.

	InstallFromURI()

	Allows to install or update RPM package located with particular
URI string.

	VerifyInstalledIdentity().

	Runs a verification check on given Software Identity.

See also

Examples on using above methods:

	Package installation

	Package update

	Package removal

	Package verification

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Software Provider

DMTF profiles

OpenLMI Software providers implement two DMTF profiles:

	Software Inventory Profile

	Software Update Profile

Software Inventory Profile

Implemented DMTF version: 1.0.1

Described by DSP1023 [http://www.dmtf.org/sites/default/files/standards/documents/DSP1023_1.0.1.pdf]

The Software Inventory Profile describes the CIM schema elements required to
provide an inventory of installed BIOS, firmware, drivers, and related
software in a managed system. This profile also describes the CIM schema
elements required to represent the software that can be installed on a
managed system.

Not implemented optional features

This implementation does not support:

	Representing a Software Bundle

	Software bundle is represented by LMI_SoftwareIndentity instance
having "Software Bundle" value present in its Classifications
property. It shall prepresent software groups. It extends the profile
for subclasses of CIM_OrderedComponent.

	Representing Installation Dependencies

	Dependencies between software packages are also unimplemented. This
also extends the profile for subclasses of CIM_OrderedDependency
referencing CIM_SoftwareIdentity instances.

Deviations

Version Comparison

Version comparison is based on different approach than in Software Inventory
Profile where the following properties are present to uniquely specify
package version:

	uint16 MajorVersion

	uint16 MinorVersion

	uint16 RevisionNumber

	uint16 BuildNumber

And also a VersionString property
which is a composition of previous ones separed with dots.

Unfortunately versioning of RPM packages is incompatible with this scheme.
Version of RPM package is composed of following properties:

	uint32 Epoch

	string Version

	string Release

Where Version and Release can contain arbitrary set of characters [1].
These attributes were added to LMI_SoftwareIdentity class and will be
filled for every RPM package. On the other hand MajorVersion,
MinorVersion, RevisionNumber and BuildNumber will not be filled.

This implementetion composes VersionString in following way:

<Epoch>:<Version>-<Release>.<Architecture>

The algorithm for comparing two RPM packages version is following:

	Compare the Epoch (which is a number) of both packages. The one
with higher epoch is newer. If they match, continue to point 2.

	Compare their Version attributes with rpmvercmp [http://fedoraproject.org/wiki/Tools/RPM/VersionComparison] algorithm.
Package with larger Version (according to rpmvercmp [http://fedoraproject.org/wiki/Tools/RPM/VersionComparison]) is newer.
If they match, continue to point 3.

	Compare their Release attributes with rpmvercmp [http://fedoraproject.org/wiki/Tools/RPM/VersionComparison] algorithm.
Package with larger Release string is newer. Otherwise packages
have the same version.

Relationships between Software Identity and Managed Element

are not modeled. RPM package database does not provide such informations
that would allow to associate particular package with a piece of hardware
it relates to.

Querying for packages

Since enumeration of Software Identities is disabled due to a huge
amount of data generated by large package database, the query
execution on them is also disallowed [2]. The only way how to search
for packages is using the method
LMI_SoftwareInstallationService.FindIdentity.

Identifying software identity

InstanceID key property is the one
and only identification string of LMI_SoftwareIdentity instances
representing RPM packages. It’s composed of following strings:

LMI:LMI_SoftwareIdentity:<Name>-<Epoch>:<Version>-<Release>.<Architecture>

Where the prefix "LMI:LMI_SoftwareIdentity:" is compared
case-insensitively. The rest is also known as a NEVRA. When calling
GetInstance() on this class, the "<Epoch>:" part can be omitted in the
InstanceID key property of passed InstanceName in case the epoch is
zero.

Example

Take for example package vim-enhanced installed on Fedora 18:

$ yum info vim-enhanced
Installed Packages
Name : vim-enhanced
Arch : x86_64
Epoch : 2
Version : 7.4.027
Release : 2.fc18
Size : 2.1 M
Repo : installed
From repo : updates-testing

The output has been shortened. This package is represented by
an instance of LMI_SoftwareIdentity with InstanceID equal to:

LMI:LMI_SoftwareIdentity:vim-enhanced-2:7.4.027-2.fc18.x86_64

Profile extensions

List of additional attributes of LMI_SoftwareIdentity:

	version properties mentioned above (version_properties)

	string Architecture - Target machine architecture. Packages
with architecture independent content will have "noarch" value
set.

List of additional attributes of LMI_SoftwareIdentityResource:

	Cost : sint32

	Relative cost of accessing this repository.

	GPGCheck : boolean

	Whether the GPG signature check should be performed.

	TimeOfLastUpdate : datetime

	Time of repository’s last update on server.

Class overview

	Class-name
	Parent_class
	Type

	LMI_SoftwareIdentity
	CIM_SoftwareIdentity
	Plain

	LMI_SystemSoftwareCollection
	CIM_SystemSpecificCollection
	Plain

	LMI_SoftwareIdentityResource
	CIM_SoftwareIdentityResource
	Plain

	LMI_HostedSoftwareCollection
	CIM_HostedCollection
	Association

	LMI_InstalledSoftwareIdentity
	CIM_InstalledSoftwareIdentity
	Association

	LMI_HostedSoftwareIdentityResource
	CIM_HostedAccessPoint
	Association

	LMI_ResourceForSoftwareIdentity
	CIM_SAPAvailableForElement
	Association

	LMI_MemberOfSoftwareCollection
	CIM_MemberOfCollection
	Aggregation

See also

Class model in Introduction where above classes are coloured blue.

Software Update Profile

Implemented DMTF version: 1.0.0

Described by DSP1025 [http://www.dmtf.org/sites/default/files/standards/documents/DSP1025_1.0.0.pdf].

The Software Update Profile describes the classes, associations, properties,
and methods used to support the installation and update of BIOS, firmware,
drivers and related software on a managed element within a managed system.

Implemented optional features

This implementation supports:

	Advertising the Location Information of a Software Identity

	This optional feature provides association of Software Identity to
its resource. In other words each available package is associated to
a corresponding repository defined in configuration files of YUM.
Repositories are represented with
LMI_SoftwareIdentityResource and
are associated to LMI_SoftwareIdentity
via
LMI_ResourceForSoftwareIdentity.

Not implemented features

Following methods are not implemented:

	CIM_SoftwareInstallationService.InstallFromByteStream

	LMI_SoftwareInstallationService.CheckSoftwareIdentity

Profile extensions

RPM package verification

Software Inventory and Softare Update profiles don’t allow for software
verification. That is quite useful and desired operation done on RPM packages.
Following additions has been added to provide such a functionality.

Following classes have been added:

	LMI_SoftwareIdentityFileCheck

	Represents single file contained and installed by RPM package.
It contains properties allowing for comparison of installed file
attributes with those stored in a package database. In case those
attributes do not match, file fails the verification test.

	LMI_SoftwareIdentityChecks

	Associates Software Identity File Check to corresponding
Software Identity.

Following methods have been added:

	LMI_SoftwareInstallationService.VerifyInstalledIdentity

	This allows to run verification test on particular Software Identity
and returns a list of files that failed.

Package searching

On modern Linux distributions we have thousands of software packages
available for installation making it nearly impossible for CIMOM to
enumerate them all because it consumes a lot of resources. That’s why
the EnumerateInstances() and EnumerateInstanceNames() calls have been
disabled Software Identities. As a consequence the ExecQuery() call is prohibited also.

But the ability to search for packages is so important that a fallback
solution has been provided. Method
FindIdentity() has been
added to
LMI_SoftwareInstallationService
allowing to create complex queries on package database.

Class overview

	Class-name
	Parent_class
	Type

	LMI_SoftwareInstallationService
	CIM_SoftwareInstallationService
	Plain

	LMI_SoftwareJob
	LMI_ConcreteJob
	Plain

	LMI_SoftwareInstallationJob
	LMI_SoftwareJob
	Plain

	LMI_SoftwareVerificationJob
	LMI_SoftwareJob
	Association

	LMI_SoftwareMethodResult
	LMI_MethodResult
	Association

	LMI_SoftwareIdentityFileCheck
	CIM_FileSpecification
	Association

	LMI_SoftwareInstallationServiceAffectsElement
	CIM_ServiceAffectsElement
	Association

	LMI_SoftwareIdentityChecks
	
	Aggregation

	LMI_HostedSoftwareInstallationService
	CIM_HostedService
	Plain

	LMI_AffectedSoftwareJobElement
	CIM_AffectedJobElement
	Plain

	LMI_OwningSoftwareJobElement
	LMI_OwningJobElement
	Plain

	LMI_AssociatedSoftwareJobMethodResult
	LMI_AssociatedJobMethodResult
	Plain

See also

Class model in Introduction where above classes are coloured blue.

	[1]	Precisely Release must match following regular expression r"[\\w.+{}]+".
Version allows also tilde character: r"[~\\w.+{}]+".

	[2]	Because internally the query is executed upon the list obtained by
enumeration of instances.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Software Provider

Configuration

There are various options affecting behaviour of OpenLMI Software provider.
All of them can be fine-tuned using two configuration files. The main one is
located at:

/etc/openlmi/software/software.conf

The other one is a global configuration file for all providers in OpenLMI
project and serves as a fallback, for options not specified in the main one.
It’s located in:

/etc/openlmi/openlmi.conf

Since this is a common setup for all OpenLMI providers, administator can
specify options common to all in the global configuration file, while the
values specific for particular provider can be overriden in its main one
(/etc/openlmi/${provider}/${provider}.conf).

Treating boolean values

Options expecting boolean values treat following strings as valid True
values:

	True

	1

	yes

	on

While the following are considered False:

	0

	no

	False

	off

These words are checked in a case-insensitive way. Any other value isn’t
considered valid [1].

Options

Follows a list of valid options with sections enclosed in square brackets.

CIM options

	[CIM] Namespace : defaults to root/cimv2

	Is a CIM namespace, where CIM classes of this provider are
registered.

	[CIM] SystemClassName : defaults to PG_ComputerSystem

	Sets the class name used to refer to computer system. Different cimmoms
can instrument variously named computer systems and some may not
instrument any at all. Sfcb [http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb] is an example of the later, it needs the
sblim-cmpi-base package installed providing the basic set of
providers containing Linux_ComputerSystem. So in case you run a
Sfcb or you preferr to use providers from sblim-cmpi-base
package, you need to change this to Linux_ComputerSystem.

YUM options

Options related to the use of YUM API and its configuration.

	[Yum] LockWaitInterval : defaults to 0.5

	Number of seconds to wait before next try to lock yum package database.
This applies, when yum database is locked by another process.

	[Yum] FreeDatabaseTimeout = 60 : defaults to 60

	Number of seconds to keep package cache in memory after the last use
(caused by user request). Package cache takes up a lot of memory.

Log options

	[Yum] Level : defaults to ERROR

	Can be set to one of the following:

	CRITICAL

	ERROR

	WARNING

	INFO

	DEBUG

	TRACE_WARNING

	TRACE_INFO

	TRACE_VERBOSE

It specifies the minimum severity of messages that shall be logged.
Messages having DEBUG or more severe level are sent to CIMOM
using standard function CMLogMessage(). Tracing messages (whose
level names start with TRACE_ use the CMTraceMessage() instead.

Please consult the documentation of your CIMOM to see, how these
messages can be treated and logged to different facilities.

Note

This does not have any effect if the [Log] FileConfig option is
set.

	[Yum] Stderr : defaults to False

	Whether to enable logging to standard error output. This does not
affect logging to CIMOM which stays enabled independently of this
option.

This is mostly usefull when debugging with CIMOM running on
foreground.

Note

This does not have any effect if the [Log] FileConfig option is
set.

See also

Since this accepts boolean values, refer to
Treating boolean values for details.

	[Yum] FileConfig : defaults to empty string

	This option overrides any other logging option. It provides complete
control over what is logged, when and where. It’s a path to a logging
configuration file with format specified in:
http://docs.python.org/2/library/logging.config.html#configuration-file-format
Path can be absolute or relative. In the latter case it’s relative to
a directory of this configuration file.

YumWorkerLog options

This section is targeted mostly on developpers of OpenLMI Software provider.
YUM API is accessed exclusively from separated process called YumWorker.
Because separated process can not send its log messages to CIMOM, its
logging configuration needs to be configured extra.

	[YumWorkerLog] OutputFile : defaults to empty string

	This is an absolute or relative path to a file, where the logging
will be done. Without this option set, logging of YumWorker is
disabled (assuming the [YumWorkerLog] FileConfig option is also
unset).

	[YumWorkerLog] Level : defaults to DEBUG

	This has generally the same meaning as Level in previous section
(Log options). Except this affects only logging of YumWorker
process.

	[YumWorkerLog] FileConfig : defaults to empty string

	Similar to the FileConfig option in Log options. This overrides
any other option in this section.

	[1]	Default value will be used as a fallback. This applies also to other
non-boolean options in case of invalid value.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Software Provider

Usage

Examples for common use cases listed below are written in lmishell [https://fedorahosted.org/openlmi/wiki/shell]. Where
appropriate, an example for lmi meta-command, which is a part of
OpenLMI-Scripts project, is added. Please refer to its documentation [https://fedorahosted.org/openlmi/wiki/scripts]
for installation notes and usage.

Note

Examples below are written for openlmi-tools version 0.9.

Listing installed packages

Simple

Simple but very slow way:

c = connect("host", "user", "pass")
cs = c.root.cimv2.PG_ComputerSystem.first_instance()
for identity in cs.associators(
 AssocClass="LMI_InstalledSoftwareIdentity",
 Role="System",
 ResultRole="InstalledSoftware",
 ResultClass="LMI_SoftwareIdentity"):
 print(identity.ElementName)

Note

Here we use PG_ComputerSystem as a class representing computer
system. It is part of sblim-cmpi-base package, which is obsoleted.
If you use Pegasus as your CIMOM you may safely switch to
PG_ComputerSystem.

See also

LMI_InstalledSoftwareIdentity

Faster

This is much faster. Here we enumerate association class
LMI_InstalledSoftwareIdentity and
get information from its key properties.

c = connect("host", "user", "pass")
for iname in c.root.cimv2.LMI_InstalledSoftwareIdentity.instance_names():
 print(iname.InstalledSoftware.InstanceID
 [len("LMI:LMI_SoftwareIdentity:"):])

Note

Whole instance is not available. To get it from association instance name,
you need to add:

iname.InstalledSoftware.to_instance()

lmi meta-command

lmi -h $HOST sw list pkgs

Listing repositories

lmishell

c = connect("host", "user", "pass")
for repo in c.root.cimv2.LMI_SoftwareIdentityResource.instance_names():
 print(repo.Name)

See also

LMI_SoftwareIdentityResource

lmi meta-command

lmi -h $HOST sw list pkgs

Listing available packages

lmishell

Enumerating of LMI_SoftwareIdentity is
disabled due to a huge amount of data being generated. That’s why we
enumerate them for particular repository represented by
LMI_SoftwareIdentityResource.

c = connect("host", "user", "pass")
for repo in c.root.cimv2.LMI_SoftwareIdentityResource.instances():
 if repo.EnabledState != c.root.cimv2.LMI_SoftwareIdentityResource. \
 EnabledStateValues.Enabled:
 continue # skip disabled repositories
 print(repo.Name)
 for identity in repo.associator_names(
 AssocClass="LMI_ResourceForSoftwareIdentity",
 Role="AvailableSAP",
 ResultRole="ManagedElement",
 ResultClass="LMI_SoftwareIdentity"):
 print(" " + identity.InstanceID[len("LMI:LMI_SoftwareIdentity:"):])

Note

This is not the same as running:

yum list available

which outputs all available, not installed packages. The example above
yields available packages without any regard to their installation status.

See also

LMI_ResourceForSoftwareIdentity

lmi meta-command

lmi -h $HOST sw list --available pkgs

Listing files of package

Let’s list files of packages openlmi-tools. Note that package must
be installed on system in order to list its files.

lmishell

We need to know exact NEVRA [1] of package we want to operate on. If
we don’t know it, we can find out using
FindIdentity() method.
See example under Searching for packages.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:openlmi-tools-0:0.5-2.fc18.noarch"})
for filecheck in identity.to_instance().associator_names(
 AssocClass="LMI_SoftwareIdentityChecks",
 Role="Element",
 ResultRole="Check",
 ResultClass="LMI_SoftwareIdentityFileCheck"):
 print("%s" % filecheck.Name)

See also

LMI_SoftwareIdentityFileCheck

lmi meta-command

lmi -h $HOST sw list files openlmi-tools

Searching for packages

If we know just a fraction of informations needed to identify a package,
we may query package database in the following way.

lmishell

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
let's find all packages with "openlmi" in Name or Summary without
architecture specific code
ret = service.FindIdentity(Name="openlmi", Architecture="noarch")
for identity in ret.rparams["Matches"]:
 # we've got only references to instances
 print identity.Name[len("LMI:LMI_SoftwareIdentity:"):]

See also

FindIdentity() method

Please don’t use this method to get an instance of package you know
precisely. If you know all the identification details, you may just
construct the instance name this way:

c = connect("host", "user", "pass")
iname = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:openlmi-software-0:0.1.1-2.fc20.noarch"})
identity = iname.to_instance()

lmi meta-command

See help on sw command for more information on this.

lmi -h $HOST sw list pkgs openlmi

Package installation

There are two approaches to package installation. One is synchronous
and the other asynchronous.

Synchronous installation

This is a very simple and straightforward approach. We install package by
creating a new instance of
LMI_InstalledSoftwareIdentity
with a reference to some available software identity.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-3.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
installed_assoc = c.root.cimv2.LMI_InstalledSoftwareIdentity.create_instance(
 properties={
 "InstalledSoftware" : identity,
 "System" : cs
})

If the package is already installed, this operation will fail with
the pywbem.CIMError exception being raised initialized with
CIM_ERR_ALREADY_EXISTS error code.

Asynchronous installation

Method
InstallFromSoftwareIdentity()
needs to be invoked with desired options. After the options are checked
by provider, a job will be returned representing installation process running
at background. Please refer to Asynchronous Jobs [http://jsafrane.fedorapeople.org/openlmi-storage/api/0.6.0/concept-job.html#asynchronous-jobs] for more details.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.InstallFromSoftwareIdentity(
 Source=identity,
 Target=cs,
 # these options request to install available, not installed package
 InstallOptions=[4] # [Install]
 # this will force installation if package is already installed
 # (possibly in different version)
 #InstallOptions=[4, 3] # [Install, Force installation]
)

The result can be checked by polling resulting job for finished status:

finished_statuses = {
 c.root.cimv2.CIM_ConcreteJob.JobState.Completed
 , c.root.cimv2.CIM_ConcreteJob.JobState.Exception
 , c.root.cimv2.CIM_ConcreteJob.JobState.Terminated
 }
job = ret.rparams["Job"].to_instance()
while job.JobStatus not in finished_statuses:
 # wait for job to complete
 time.sleep(1)
 job.refresh()
print c.root.cimv2.LMI_SoftwareJob.JobStateValues.value_name(job.JobState)
get an associated job method result and check the return value
print "result: %s" % job.first_associator(
 AssocClass='LMI_AssociatedSoftwareJobMethodResult').__ReturnValue
get installed software identity
installed = job.first_associator(
 Role='AffectingElement',
 ResultRole='AffectedElement',
 AssocClass="LMI_AffectedSoftwareJobElement",
 ResultClass='LMI_SoftwareIdentity')
print "installed %s at %s" % (installed.ElementName, installed.InstallDate)

You may also subscribe to indications related to
LMI_SoftwareInstallationJob and listen for
events instead of the polling done above

As you can see, you may force the installation allowing for reinstallation
of already installed package. For more options please refer to the
documentation of this method.

Combined way

We can combine both approaches by utilizing a feature of lmishell [https://fedorahosted.org/openlmi/wiki/shell]. Method
above can be called in a synchronous way (from the perspective of script’s
code). It’s done like this:

note the use of "Sync" prefix
ret = service.SyncInstallFromSoftwareIdentity(
 Source=identity,
 Target=cs,
 # these options request to install available, not installed package
 InstallOptions=[4] # [Install]
 # this will force installation if package is already installed
 # (possibly in different version)
 #InstallOptions=[4, 3] # [Install, Force installation]
)
print "result: %s" % ret.rval

The value of
LMI_SoftwareMethodResult .__ReturnValue is
placed to the ret.rval attribute. Waiting for job’s completion is taken care
of by lmishell [https://fedorahosted.org/openlmi/wiki/shell]. But we lose the reference to the job itself and we can not
enumerate affected elements (that contain, among other things, installed
package).

Installation from URI

This is also possible with:

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.to_instance().InstallFromSoftwareURI(
 Source="http://someserver.com/fedora/repo/package.rpm",
 Target=cs,
 InstallOptions=[4]) # [Install]

Supported URI schemes are:

	http

	https

	ftp

	file

In the last cast, the file must be located on the remote system hosting
the CIMOM.

See also

InstallFromURI()
method

Please refer to Asynchronous installation above for the consequent
procedure and how to deal with ret value.

lmi meta-command

lmi -h $HOST sw install sblim-sfcb

Package removal

Again both asynchronous and synchronous approaches are available.

Synchronous removal

The aim is achieved by issuing an opposite operation than before. The instance
of LMI_InstalledSoftwareIdentity is
deleted here.

c = connect("host", "user", "pass")
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-3.fc19.x86_64"})
installed_assocs = identity.to_instance().reference_names(
 Role="InstalledSoftware",
 ResultClass="LMI_InstalledSoftwareIdentity")
if len(installed_assocs) > 0:
 for assoc in installed_assocs:
 assoc.to_instance().delete()
 print("deleted %s" % assoc.InstalledSoftware.InstanceID)
else:
 print("no package removed")

Asynchronous removal

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.InstallFromSoftwareIdentity(
 Source=identity,
 Target=cs,
 InstallOptions=[9]) # [Uninstall]

Again please refer to Asynchronous installation for examples on how to
deal with the ret value.

lmi meta-command

lmi -h $HOST sw remove sblim-sfcb

Package update

Only asynchronous method is provided for this purpose. But with the possibility
of synchronous invocation.

lmishell

Example below shows the synchronous invocation of asynchronous method.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
cs = c.root.cimv2.PG_ComputerSystem.first_instance_name()
ret = service.SyncInstallFromSoftwareIdentity(
 Source=identity,
 Target=cs,
 InstallOptions=[5] # [Update]
 # to force update, when package is not installed
 #InstallOptions=[4, 5] # [Install, Update]
)
print "installation " + ("successful" if rval == 0 else "failed")

lmi meta-command

lmi -h $HOST sw update sblim-sfcb

Package verification

Installed RPM packages can be verified. Attributes of installed files
are compared with those stored in particular RPM package. If some value
of attribute does not match or the file does not exist, it fails the
verification test. Following attributes come into play in this process:

	File size - in case of regular file

	User ID

	Group ID

	Last modification time

	Mode

	Device numbers - in case of device file

	Link Target - in case the file is a symbolic link

	Checksum - in case of regular file

lmishell

It’s done via invocation of
VerifyInstalledIdentity().
This is an asynchronous method. We can not use synchronous invocation
if we want to be able to list failed files.

c = connect("host", "user", "pass")
service = c.root.cimv2.LMI_SoftwareInstallationService.first_instance()
identity = c.root.cimv2.LMI_SoftwareIdentity.new_instance_name(
 {"InstanceID" : "LMI:LMI_SoftwareIdentity:sblim-sfcb-0:1.3.16-5.fc19.x86_64"})
results = service.VerifyInstalledIdentity(
 Source=identity,
 Target=ns.PG_ComputerSystem.first_instance_name())
nevra = (identity.ElementName if isinstance(identity, LMIInstance)
 else identity.InstanceID[len('LMI:LMI_SoftwareIdentity:'):])
if results.rval != 4096:
 msg = 'failed to verify identity "%s (rval=%d)"' % (nevra, results.rval)
 if results.errorstr:
 msg += ': ' + results.errorstr
 raise Exception(msg)

job = results.rparams['Job'].to_instance()

wait by polling or listening for indication
wait_for_job_finished(job)

if not LMIJob.lmi_is_job_completed(job):
 msg = 'failed to verify package "%s"' % nevra
 if job.ErrorDescription:
 msg += ': ' + job.ErrorDescription
 raise Exception(msg)

get the failed files
failed = job.associators(
 AssocClass="LMI_AffectedSoftwareJobElement",
 Role='AffectingElement',
 ResultRole='AffectedElement',
 ResultClass='LMI_SoftwareIdentityFileCheck')
for iname in failed:
 print iname.Name # print their paths

Polling, as a way of waiting for job completion, has been already shown in the
example under Asynchronous installation.

See also

LMI_SoftwareIdentityFileCheck

lmi meta-command

lmi -h $HOST sw verify sblim-sfcb

Enable and disable repository

lmishell

c = connect("host", "user", "pass")
repo = c.root.cimv2.LMI_SoftwareIdentityResource.first_instance_name(
 key="Name",
 value="fedora-updates-testing")
disable repository
repo.to_instance().RequestStateChange(
 RequestedState=c.root.cimv2.LMI_SoftwareIdentityResource. \
 RequestedStateValues.Disabled)
repo = c.root.cimv2.LMI_SoftwareIdentityResource.first_instance_name(
 key="Name",
 value="fedora-updates")
enable repository
repo.to_instance().RequestStateChange(
 RequestedState=c.root.cimv2.LMI_SoftwareIdentityResource. \
 RequestedStateValues.Enabled)

lmi meta-command

lmi -h $HOST sw disable fedora-updates-testing
lmi -h $HOST sw enable fedora-updates

Supported event filters

There are various events related to asynchronous job you may be interested
about. All of them can be subscribed to with static filters presented below.
Usage of custom query strings is not supported due to a complexity of
its parsing. These filters should be already registered in CIMOM if
OpenLMI Software providers are installed. You may check them by enumerating
LMI_IndicationFilter class located in root/interop namespace.
All of them apply to two different software job classes you may want to
subscribe to:

	LMI_SoftwareInstallationJob

	Represents a job requesting to install, update or remove some package.

	LMI_SoftwareVerificationJob

	Represents a job requesting verification of installed package.

Filters below are written for LMI_SoftwareInstallationJob only. If you deal with the other one, just replace the
class name right after the ISA operator and classname in filter’s name.

Percent Updated

Indication is sent when the
LMI_SoftwareJob.PercentComplete
property of a job changes.

SELECT * FROM LMI_SoftwareInstModification WHERE
 SourceInstance ISA LMI_SoftwareInstallationJob AND
 SourceInstance.CIM_ConcreteJob::PercentComplete <>
 PreviousInstance.CIM_ConcreteJob::PercentComplete

Registered under filter name
"LMI:LMI_SoftwareInstallationJob:PercentUpdated".

Job state change

Indication is sent when the
LMI_SoftwareJob.JobState
property of a job changes.

SELECT * FROM LMI_SoftwareInstModification WHERE
 SourceInstance ISA LMI_SoftwareInstallationJob AND
 SourceInstance.CIM_ConcreteJob::JobState <>
 PreviousInstance.CIM_ConcreteJob::JobState

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Changed".

Job Completed

This event occurs when the state of job becomes COMPLETED/OK [2].

SELECT * FROM LMI_SoftwareInstModification WHERE
 SourceInstance ISA LMI_SoftwareInstallationJob AND
 SourceInstance.CIM_ConcreteJob::JobState = 17

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Succeeded".

Error

This event occurs when the state of job becomes COMPLETED/Error [3].

SELECT * FROM LMI_SoftwareInstModification WHERE
 SourceInstance ISA LMI_SoftwareInstallationJob AND
 SourceInstance.CIM_ConcreteJob::JobState = 10

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Failed".

New Job

This event occurs when the new instance of
LMI_SoftwareJob is created.

SELECT * FROM LMI_SoftwareInstCreation WHERE
 SourceInstance ISA LMI_SoftwareInstallationJob

Registered under filter name "LMI:LMI_SoftwareInstallationJob:Created".

	[1]	Stands for

Name, Epoch, Version, Release,
Architecure.Please refer to Identifying software identity for more details.

	[2]	This is a composition of values in
OperationalStatus array.
It corresponds to value Completed of
JobState property.

	[3]	This is a composition of values in
OperationalStatus array.
It corresponds to value Exception of
JobState property.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

SSSD Provider

OpenLMI SSSD is a CIM provider for managing the System Security Services
Daemon.

It provides only the basic functionality: managing SSSD components and
providing information about active domains.

Contents:

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Storage Provider

Overview

OpenLMI-Storage is a CIM provider which manages storage on a Linux machine.
It exposes remotely accessible object-oriented API using
WBEM [http://www.openlmi.org/node/1785] set of protocols and technologies.

OpenLMI-Storage is part of OpenLMI project [http://www.openlmi.org]. For
a client-side API and command line tool usage see documentation of OpenLMI
storage scripts [http://pythonhosted.org/openlmi-scripts-storage/index.html].

Features

	Enumerate all block devices.

	Partition a block device.

	Manage MD RAID and LVM.

	Format a block device with a filesystem (xfs, ext2/3/4, ...)

	Manage mounts.

Currently, OpenLMI-Storage manages local block devices, i.e. block devices
which are present in /dev/ directory. This includes also attached iSCSI, FC
and FCoE devices, as long as appropriate block device is present.

In future, it may include configuration of iSCSI and FC initiators,
multipath and other remote-storage management.

Examples

There is plenty of examples how to use OpenLMI-Storage provider remotely
from LMIShell [http://pythonhosted.org/openlmi-tools/index.html#lmishell]:

	Create a partition table on a device.

	Create a new partition.

	Create software RAID5 with 3 devices.

	Format a device with ext3 filesystem.

	Mount a filesystem.

Documentation

The provider is inspired by SNIA [http://www.snia.org/]
SMI-S [http://www.snia.org/forums/smi], but it differers in several
important areas. Application developers who are familiar with SMI-S should
read SMI-S profiles chapter.

Application developers and/or sysadmins should skip whole SMI-S chapter
and start at OpenLMI-Storage concept.

Table of contents

	SMI-S profiles
	SMI-S Disk Partition Subprofile

	SMI-S Block Services Package

	SMI-S Extent Composition Subprofile

	SMI-S File Storage Profile

	SMI-S Filesystem Profile

	SMI-S Filesystem Manipulation Profile

	SMI-S Job Control Subprofile

	SMI-S Block Server Performance Subprofile

	Storage API concept
	CIM API concepts

	Document conventions

	Device hierarchy

	Device identification

	Overwrite policy

	Asynchronous jobs

	Usage
	Partitioning

	MD RAID

	Logical Volume management

	File system management

	Block device performance

	Mounting

	Storage encryption

	Configuration
	Persistent setting

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

SMI-S profiles

This chapter lists SMI-S profiles implemented by OpenLMI-Storage. The
implementation does not follow SMI-S strictly and deviates from it where SMI-S
model cannot be used. Each such deviation is appropriately marked.

OpenLMI-Storage implements following profiles:

	SMI-S Disk Partition Subprofile
	Profile adjustment

	Implementation

	SMI-S Block Services Package
	Primordial pool

	Logical disks

	Implementation

	SMI-S Extent Composition Subprofile

	SMI-S File Storage Profile

	SMI-S Filesystem Profile
	Implementation

	SMI-S Filesystem Manipulation Profile
	Implementation

	SMI-S Job Control Subprofile
	Implementation

	SMI-S Block Server Performance Subprofile
	Implementation

The OpenLMI-Storage CIM API follows following principles:

	Each block device is represented by exactly one
CIM_StorageExtent.

	For example RAID devices are created using
LMI_StorageConfigurationService.
CreateOrModifyElementFromElements,
without any pool being involved.

	No CIM_LogicalDisk is created for devices
consumed by the OS, i.e. when there is a filesystem on them.

	Actually, all block devices can be used by the OS and it might be useful
to have LMI_StorageExtent as subclass of
CIM_LogicalDisk.

Warning

This violates SMI-S, each block device should have both a
StorageExtent + LogicalDisk associated from it to be usable by the OS.

	CIM_StoragePool is used only for real pool
objects - volume groups.

	PrimordialPool is not present. It might be added in future to track unused
disk drives and partitions.

The implementation is not complete, e.g. mandatory Server Profile is not
implemented at all. The list will get updated.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S Disk Partition Subprofile

Profile adjustment

The Disk Partition Subprofile does not reflect real-world MBR partition tables:

	The profile specifies, there can be up to 4 primary partitions (correct),
one of them can be extended (correct) and up to 4 logical partitions can be
instantiated on this extended partition (wrong, number of logical partitions
is not limited).

	The profile specifies that logical partition metadata is on the beginning of
the extended partition (see Figure 7 in the profile). In reality, each
logical partition has its own metadata sector just before the partition. In
addition, there can be number of empty sectors between the logical partition
metadata and the partition beginning, which are left as result of alignment
rules.

As result of this deficiency, some adjustments were necessary:

	The LMI_DiskPartition representing a logical
partition includes the metadata sector and any alignment sectors.

	NumberOfBlocks property
includes the metadata and any alignment sectors.

	ConsumableBlocks includes only
the real usable data on partition.

[image: ../_images/partitions.png]
Correct overview of logical partitions.

GPT partition tables do not have these issues and are generally preferred over
MBR ones.

Implementation

All mandatory classes are implemented. However,
CreateOrModifyPartition
method is not implemented. This function might be added in future.

The only way, how to create partitions is proprietary
LMI_CreateOrModifyPartition,
which fits actual partitioning better.

Classes

Implemented SMI-S classes:

	LMI_PartitionBasedOn

	LMI_DiskPartition

	LMI_DiskPartitionConfigurationCapabilities

	LMI_DiskPartitionConfigurationService

	LMI_DiskPartitionElementCapabilities

	LMI_GenericDiskPartition

	LMI_InstalledPartitionTable

	LMI_StorageExtent

Additional implemented classes:

	LMI_DiskPartitionConfigurationSetting

	LMI_DiskPartitionElementSettingData

Not implemented classes:

	CIM_GPTDiskPartition

	CIM_LogicalDisk

	CIM_VTOCDiskPartition

	CIM_SystemDevice

	CIM_HostedService

Methods

Implemented:

	SetPartitionStyle

	LMI_CreateOrModifyPartition

Not implemented:

	CreateOrModifyPartition

Warning

Mandatory indications are not
implemented.

Anaconda does not provide such functionality and it would be very
CPU-intensive to periodically scan for new/deleted partitions.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S Block Services Package

This package is core of SMI-S. It describes how devices (disks) are grouped
together into pools with different capabilities and even hierarchy of pools can
be built.

A StoragePool is a storage element; its storage capacity has a given set
of capabilities. Those ‘StorageCapabilities’ indicate the ‘Quality of
Service’ requirements that can be applied to objects created from the
StoragePool.

Storage on Linux does not use pool concept except Volume Groups, therefore we
allow to create storage devices directly from other storage devices, e.g.
create MD RAID from partitions.

Primordial pool

At the lowest level of hierarchy of SMI-S storage pools are primordial devices
and pools.

A primordial StoragePool is a type of StoragePool that contains
unformatted, unprepared, or unassigned capacity. Storage capacity is drawn
from the primordial StoragePool to create concrete StoragePools. A
primordial StoragePool aggregates storage capacity not assigned to a
concrete StoragePool. StorageVolumes and LogicalDisks are allocated from
concrete StoragePools.

At least one primordial StoragePool shall always exists on the block
storage system to represent the unallocated storage on the storage device.

OpenLMI-Storage uses raw disk as primordial. Everything else (partitions, RAIDs,
logical volumes, ...) are not primordial.

Logical disks

In SMI-S, only LogicalDisks instances can be used by the OS. I.e. if an admin
wants to build a filesystem e.g. on RAIDCompositeExtent, in SMI-S it’s
necessary to allocate a LogicalDisk from it.

We find this approach useless and we don’t allocate LogicalDisks for devices,
which can be used by the OS. In fact, any block device can be used by the OS,
therefore it would make sense to make LMI_StorageExtent as subclass of
CIM_LogicalDisk.

Implementation

Classes

Implemented SMI-S classes:

	LMI_VGAssociatedComponentExtent

	LMI_MDRAIDBasedOn

	LMI_LVBasedOn

	LMI_LVAllocatedFromStoragePool

	LMI_LVElementCapabilities

	LMI_VGElementCapabilities

	LMI_MDRAIDElementCapabilities

	LMI_MDRAIDElementSettingData

	LMI_LVElementSettingData

	LMI_VGElementSettingData

	LMI_StorageExtent

	LMI_LVStorageExtent

	LMI_MDRAIDStorageExtent

	LMI_StorageConfigurationService

	LMI_VGStoragePool

	LMI_VGStorageCapabilities

	LMI_LVStorageCapabilities

	LMI_MDRAIDStorageCapabilities

	LMI_VGStorageSetting

	LMI_MDRAIDStorageSetting

	LMI_LVStorageSetting

Methods

Implemented:

	CreateOrModifyStoragePool
(creates Volume Group from list of block devices).

	CreateOrModifyElementFromElements
(creates MD RAID from list of block devices).

	CreateOrModifyElementFromStoragePool
(creates logical Volumes from a Volume Group).

	CreateOrModifyMDRAID

	CreateOrModifyVG

	CreateOrModifyLV

Warning

Mandatory indications are not implemented.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S Extent Composition Subprofile

This profile provides lot of examples how to create various RAID levels and how
to composite hierarchy of StoragePools in general. It does not introduce any
new method or class.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S File Storage Profile

This profile is fully implemented. See the next chapter for its usage and
mapping to LMI_ classes.

SMI-S Filesystem Profile

OpenLMI-Storage implements the Filesystem Profile with these adjustments:

	Local Access is not implemented, we use LMI_MountService to mount local
filesystems:
	SMI-S expects that one filesystem can be mounted only once using Local
Access, which is not true on Linux, we might mount one filesystem multiple
times.

	Mounting a filesystem is totally different operation to
creating/modifying of a filesystem, these two functions should be
separated. Therefore we introduce LMI_MountService to mount various
filesystems.

	Directory Services are not implemented.

Implementation

All mandatory classes and methods are implemented.

Classes

Implemented SMI-S classes:

	LMI_FileSystemSetting

	LMI_FileSystemElementSettingData

	LMI_HostedFileSystem

	LMI_LocalFileSystem

	CIM_LogicalFile using separate
LogicalFile provider
from OpenLMI-Providers package.

Not implemented classes:

	`CIM_FileStorage

	SNIA_LocalAccessAvailable

	SNIA_LocalFileSystem

	SNIA_LocallyAccessibleFileSystemSetting

	and all related references.

Methods

There are no methods in this profile.

Warning

Mandatory indications are not implemented.

Blivet does not provide such functionality and it would be very
CPU-intensive to periodically scan for modified filesystems.

SMI-S Filesystem Manipulation Profile

OpenLMI-Storage implements the Filesystem Profile with these adjustments:

	Local Access is not implemented, we use LMI_MountService to mount local
filesystems:
	SMI-S expects that one filesystem can be mounted only once using Local
Access, which is not true on Linux, we might mount one filesystem multiple
times.

	Mounting a filesystem is totally different operation to
creating/modifying of a filesystem, these two functions should be separated.

	Directory Services are not implemented.

Implementation

SNIA-specific classes and methods (with SNIA_ prefix) are not implemented to
avoid any copyright problems - SNIA MOF files have a license which does not
allow us to implement it in open source project.

We implement our LMI_ counterparts, inspired by CIM_StorageService and
CIM_StorageSetting. The major difference to CIM_ and
SNIA_FileSystemConfigurationService is that all methods accepts a Setting
argument as reference and not as embedded instance to match the rest of the
methods (mainly in Block Services profile).

Classes

Implemented SMI-S classes:

	LMI_FileSystemConfigurationElementCapabilities

	LMI_FileSystemElementSettingData

	LMI_HostedFileSystem

	LMI_HostedStorageService

	LMI_FileSystemCapabilities
	not derived from SNIA_FileSystemCapabilities!

	LMI_FileSystemConfigurationCapabilities
	not derived from SNIA_FileSystemConfigurationCapabilities!

	LMI_FileSystemConfigurationService
	not derived from SNIA_FileSystemConfigurationService!

	LMI_FileSystemSetting
	not derived from SNIA_FileSystemSetting!

	LMI_LocalFileSystem
	not derived from SNIA_LocalFileSystem!

Not implemented classes:

	SNIA_FileSystemCapabilities

	SNIA_FileSystemConfigurationCapabilities

	SNIA_FileSystemConfigurationService

	SNIA_FileSystemSetting

	SNIA_LocalFileSystem

	SNIA_LocalAccessAvailable

	SNIA_LocallyAccessibleFileSystemCapabilities

	SNIA_LocallyAccessibleFileSystemSetting

	and all related references.

Methods

Implemented:

	LMI_CreateSetting

	LMI-CreateFileSystem
	Similar to plain CIM CreateFileSystem, with these modifications:
	Goal parameters is passed as reference and not as embedded
instance, i.e. all LMI_FileSystemSetting
instances reside on server and are created using
LMI_CreateSetting

	Multiple extents can be passed in InExtents parameter. The
method then creates one filesystem on multiple devices. Currently only
btrfs supports this behavior, other filesystems can be created only on
one device.

	DeleteFileSystem

Not implemented:

	CreateGoalSettings

	GetRequiredStorageSize

	SNIA_CreateFileSystem

	SNIA_ModifyFileSystem

	CreateFileSystem

	ModifyFileSystem

Warning

Mandatory indications are not implemented.

Blivet does not provide such functionality and it would be very CPU-intensive
to periodically scan for modified filesystems.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S Job Control Subprofile

OpenLMI-Storage implements the Job Control Subprofile with these adjustments:

	All indications are implemented, however the CQL query is different. SMI-S
uses optional CQL extensions, e.g. ANY keyword, and our CIMOMs do not
support that. Therefore all the CQL queries for
OperationalStatus[*] were reworked to use JobState property.

Implementation

All mandatory classes and methods are implemented.

Classes

Implemented SMI-S classes:

	LMI_AffectedStorageJobElement

	LMI_AssociatedStorageJobMethodResult

	LMI_StorageJob

	StorageMethodResult

	LMI_OwningStorageJobElement

Methods

	GetErrors

	GetError

	RequestStateChange

Indications

See list of indications in Jobs chapter.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	SMI-S profiles

SMI-S Block Server Performance Subprofile

This profile provides I/O statistics for various
CIM_StorageExtent subclasses.

OpenLMI-Storage implements the Block Server Performance Subprofile with these
adjustments:

	Applications cannot create custom manifests, i.e.
LMI_BlockStatisticsService.AddOrModifyManifest
is not implemented.

	We provide
LMI_BlockStorageStatisticalData for
every CIM_StorageExtent subclass and not only for
disk drives.
LMI_BlockStorageStatisticalData.ElementType
property is always set to 9, i.e. Extent.

	There is no sampling interval. OpenLMI always reports current values when
returning
LMI_BlockStorageStatisticalData
instance.

Note

Even though properties in
LMI_BlockStorageStatisticalData
are 64-bit, they are tracked as 32-bit on systems with 32-bit kernel.
They can wrap pretty quickly on modern hardware.

For example, on i686 with iSCSI drive on 10Gb/s link, the KBytesRead counter
can wrap in approximately 27 minutes.

With 64-bit kernels, these counters are tracked in 64-bits and they wrap once
in a few years.

Implementation

All mandatory classes and methods are implemented.

Classes

Implemented SMI-S classes:

	LMI_BlockStorageStatisticalData

	LMI_StorageElementStatisticalData

	LMI_StorageStatisticsCollection

	LMI_MemberOfStorageStatisticsCollection

	LMI_HostedStorageStatisticsCollection

	LMI_BlockStatisticsService

	LMI_BlockStatisticsCapabilities

	LMI_BlockStatisticsManifest

	LMI_BlockStatisticsManifestCollection

	LMI_MemberOfBlockStatisticsManifestCollection

	LMI_AssociatedBlockStatisticsManifestCollection

Methods

Implemented methods:

	LMI_BlockStatisticsService.GetStatisticsCollection

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

Storage API concept

OpenLMI-Storage provides CIM API. Some CIM knowledge is required and this guide
assumes that reader can routinely read and modify remote CIM objects and call
their intrinsic and extrinsic methods.

No SMI-S knowledge is necessary, but it can help a lot.

	CIM API concepts
	Separation of state and configuration

	Configuration service

	Change of configuration

	Creation of instances

	Capabilities

	Predefined configurations

	Document conventions
	Examples

	Device hierarchy

	Device identification
	CIM_StorageExtent

	LMI_VGStoragePool

	Overwrite policy

	Asynchronous jobs
	Job status

	Return value and output parameters

	Supported event filters

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

CIM API concepts

Storage API is based on several design patterns, which are common in CIM and
SMI-S.

Separation of state and configuration

If foo is configurable, CIM uses two classes to describe it:

	CIM_Foo: state of foo.

	CIM_FooSetting: configuration of foo.

That means, each foo on managed system is represented by one CIM_Foo
instance and one CIM_FooSetting instance. They are connected together using
CIM_FooElementSettingData association instance.

If there is no CIM_FooSetting instance for a CIM_Foo, it indicates that
the foo is not configurable.

For example, a local filesystem is represented by:

	one instance of CIM_LocalFileSystem, which contains state of the
filesystem – nr. of inodes, nr. of free inodes, total space on the
filesystem, free space, etc.

	one instance of CIM_LocalFileSystemSetting, which contains
configuration of the filesystem – inode size, journal size, ...

Sometimes, state and configuration overlap. In our filesystem example,
BlockSize is property of both CIM_LocalFileSystem and
CIM_LocalFileSystemSetting. Logically, the BlockSize should be only in
CIM_LocalFileSystemSetting. But if a filesystem was not configurable, there
would be no CIM_LocalFileSystemSetting for it and therefore any management
application would not have access to its BlockSize, which is important
feature of the filesystem.

Configuration service

In CIM world, managed elements cannot be configured directly by editing the
associated CIM_FooSetting with the configuration of foo. Instead, there
is CIM_FooConfigurationService singleton, which has method to create,
modify and sometimes also delete foos.

Change of configuration

If an application want to change configuration of a foo, it must create new
auxiliary CIM_FooSetting instance with requested new configuration and
associate this new CIM_FooSetting with the CIM_Foo it wants to
configure. The application does not need to completely fill the auxiliary
CIM_FooSetting, in most cases it is enough to edit only the properties that
it wants to change, the rest of properties can be NULL.

For example, to change CIM_LocalFileSystemSetting of a
CIM_LocalFileSystem, the application must create new
CIM_LocalFileSystemSetting, fill its properties it wants to change and then
call CIM_FileSystemConfigurationService.SNIA_ModifyFileSystem() method.

The auxiliary CIM_LocalFileSystemSetting created by the application can be
reused by the application to change configuration of different
CIM_LocalFileSystem instances.

Creation of instances

The CIM_FooSetting is also used to create new objects. If an application
wants to create new foo, it creates new auxiliary CIM_FooSetting, which
describes configuration of the foo to create. The application can then call
specific API method to create the foo and new CIM_Foo is created, with
its own associated CIM_FooSetting. The associated CIM_FooSetting is
basically a copy of the auxiliary CIM_FooSetting created by the application.
Therefore the application can reuse one auxiliary CIM_FooSetting instance
to create or modify multiple foos.

For example, to create a filesystem on a block device, the application must
create CIM_LocalFileSystemSetting, set its properties as it wants and call
CIM_FileSystemConfigurationService.SNIA_CreateFileSystem.

Capabilities

The DMTF and SMI-S describe various methods and configuration properties of
various classes. Implementations of the standards can implement only some of
these methods and properties. Therefore CIM_FooConfigurationCapabilities
describes what methods and kinds of foo our implementation of
CIM_FooConfigurationService supports.

For example, if our CIM_FileSystemConfigurationService supports xfs and ext3
filesystems and only SNIA_CreateFileSystem and SNIA_ModifyFileSystem
method calls, it will be reflected in its associated
CIM_FileSystemConfigurationCapabilities.

In addition, if there are several different kind of foos supported by the
implementation, each such kind can have its own CIM_FooCapabilities
instance to describe all available configuration options and their value ranges.

For example, if our CIM_FileSystemConfigurationService is able to create xfs
and ext3 filesystems, there are two CIM_LocalFileSystemCapabilities
instances, one for xfs and the second for ext3. The xfs-related instance
describes valid inode sizes for xfs, while the ext3-related instance describes
valid inode sizes for ext3. Since we can subclass
CIM_LocalFileSystemCapabilities, the xfs-related instance can have
additional xfs-specific properties and so can have also the ext3-related
instance.

The supported properties and their ranges can be either defined directly in the
CIM_FooCapabilities (which is the most common case) or using
CIM_FooSetting attached to CIM_FooCapabilities using
CIM_SettingsDefineCapabilities association. The associated
CIM_FooSetting can then define minimum, maximum or default values of the
configuration properties. Consult DMTF description of
CIM_SettingsDefineCapabilities association in this case.

This is the case of filesystem configuration, the capabilities of xfs and ext3
filesystem is defined using CIM_LocalFileSystemSetting.

Example CIM_FileSystemConfigurationService with capabilities and
settings, which define the capabilities.

There are slight variations on this concept across DMTF and SMI-S profiles as
the standards evolved, sometimes are CIM_FooConfigurationCapabilities and
CIM_FooCapabilities merged into one class, sometimes the capabilities are
associated directly to managed elements, sometimes the capabilities as defined
using setting instances etc. Still, the concept is the same - capabilities
define what configuration options are supported by the implementation and its
valid values or value ranges. Different implementations will have different
capabilities. Setting instances then describe specific configuration of one
managed element.

Predefined configurations

To simplify management applications, the implementation can provide several
CIM_FooSetting instances for the most typical foo configurations. These
instances are associated to CIM_FooCapabilities. Application then does not
need to manually create auxiliary CIM_FooSetting instance and fill its
properties, it can directly use the preconfigured ones.

For example, an implementation can provide one typical
CIM_LocalFileSystemSetting instance for generic xfs filesystem and one
CIM_LocalFileSystemSetting instance for xfs filesystem tuned for Gluster,
which needs larger inode size for better performance.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

Document conventions

Throughout this document we use following conventions.

Examples

All example scripts are for lmishell. See it’s documentation [https://fedorahosted.org/openlmi/wiki/shell] on OpenLMI [https://fedorahosted.org/openlmi/]
page.

We also assume that following script has been run to connecto to a CIMOM and
initialize basic variables:

MEGABYTE = 1024*1024
connection = connect("localhost", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

Device hierarchy

The API manages all block devices in machine’s local /dev/ directory, i.e. also
remote disks (iSCSI, FcoE, ...), as long as there is appropriate device in
local /dev/.

The API exposed by OpenLMI-Storage is object-oriented. Each block device present
on the managed system is represented as instance of
CIM_StorageExtent class. The instance has properties
like DeviceID, Name, BlockSize and NumberOfBlocks, which describe the block
device.

CIM_StorageExtent has several subclasses, such as
LMI_DiskPartition (=MS DOS partition) or
LMI_LVStorageExtent (=Logical Volume), which add
properites specific for the particular device type.

Each block device is represented by instance of
CIM_StorageExtent or its subclasss.

LMI_StorageExtent represents all devices, which do not
have any specific CIM_StorageExtent subclass.

Each volume group is represented by LMI_VGStoragePool.

Instances of LMI_VGStoragePool,
CIM_StorageExtent and its subclasses
compose an oriented graph of devices on the system. Devices are connected with
these associations or their subclasses:

	CIM_BasedOn and is subclasses associates a block device to
all devices, on which it directly depends on, for example a partition is
associated to a disk, on which it resides, and MD RAID is associated to all
underlying devices, which compose the RAID.

	LMI_VGAssociatedComponentExtent
associates volume groups with its physical extents.

	LMI_LVAllocatedFromStoragePool
associates logical volumes to their volume groups.

Example of two logical volumes allocated from volume group created on top of
MD RAID with three devices.

All other storage objects, like partition tables, filesystems and mounts are
designed in similar way - all these are instances of particular classes.

These storage elements are managed (i.e. created / modified and deleted) by
subclasses of CIM_Service such as
LMI_FileSystemConfigurationService.
These services are not system services in systemd or UNIX SysV sense, it is just
API collecting bunch of methods related to a particular topic, e.g. filesystem
management in our example.

These services are described in OpenLMI-Storage API chapter.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

Device identification

On modern Linux, block devices can be identified in number of ways. Some of them
are stable across reboots, some other are nice to remeber and it is also
possible to configure block device names using udev rules.

For example, all these paths refer to the same block device:

	/dev/disk/by-id/ata-Samsung_SSD_840_Series_S19MNSAD500335K

	/dev/disk/by-id/wwn-0x50025385a0031e7c

	/dev/sda

	/dev/systemdisk (using an udev rule)

OpenLMI does not assume any site policy, it’s up to system administrator
to write udev rules if default /dev/sdX and /dev/disk/by-id/XYZ is not
sufficient.

As many things in Linux are configurable and tunable, term SHOULD below
means unless explicitly reconfigured.

CIM_StorageExtent

When OpenLMI builds CIM_StorageExtent for a block
device, it fills following properties:

DeviceID

OpenLMI internal identifier of a block device. Even if it looks like
a device path, it should be opaque for applications and applications should
not parse it / interpret it in any way. Its format may change in
future versions of OpenLMI.

This is the primary key how to identify a
CIM_StorageExtent.

	Guaranteed to be unique in the managed system.

	SHOULD be persistent across reboots.

InstanceID

OpenLMI internal identifier of a block device group.
This property has been added to have the same way how to identify
CIM_StorageExtent and
LMI_VGStoragePool.

	Guaranteed to be unique in the managed system.

	SHOULD be persistent across reboots.

Name

Canonical path to the device, such as as /dev/sda,
/dev/mapper/test-test1, /dev/md/blivet00.
This is the Linux default device name.

	Guaranteed to be unique in the managed system.

	Not persistent across reboots.

ElementName

Name of the block device, logical volume, RAID etc, such as as sda
for disk, test1 for logical volume, blivet00 for MD RAID.

	Not unique in the managed system.

	Not persistent across reboots.

	Usually assigned by system administrator when the device is created
(logical volume, MD RAID, ...)

Names

Array of all paths, under which this device is known in the system.
All these paths are links to one block device.
For disk from the example above, it’s content would be:

[
 '/dev/disk/by-id/ata-Samsung_SSD_840_Series_S19MNSAD500335K',
 '/dev/disk/by-id/wwn-0x50025385a0031e7c',
 '/dev/sda',
 '/dev/systemdisk;
]

Applications can use any of these properties to find a block device (using
CQL or WQL).

Note

OpenLMI tries as hard as possible to have
DeviceID and
InstanceID properties really stable
across reboots. Unfortunately, some hardware does not provide unique
identifier for disks - typically in virtualized environment, there may be
cases where DeviceID may be just /dev/vda and it may change when the
virtual machine reorders the virtual disks after reconfiguration.

LMI_VGStoragePool

Although volume groups are not exactly block devices, there are several ways how
to identify LMI_VGStoragePool instances:

InstanceID

OpenLMI internal identifier of a volume group. It should
be opaque for applications, i.e. applications should not parse it /
interpret it in any way.

	Guaranteed to be unique in the managed system.

	SHOULD be persistent across reboots.

PoolID,
ElementName

Name of the volume group.

	Guaranteed to be unique among all volume groups on the managed system.
However, there can be other ManagedElements, such as logical volumes,
with the same ElementName.

	SHOULD be persistent across reboots.

Name

Canonical path to the volume group, such as as /dev/mapper/mygroup.
This property has been added to have the same way how to identify
CIM_StorageExtent and
LMI_VGStoragePool.

	Guaranteed to be unique in the managed system.

	Not persistent across reboots.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

Overwrite policy

Before OpenLMI-Storage overwrites or deletes a device, it first checks if the
device is unused.

Unused device:

	Is not mounted.

	Is not part of running device, e.g. MD RAID, Volume Group or LUKS.

If a device is used, any operation which would overwrite or delete it returns
CIM_Error with error message “Device XYZ is mounted” or “Device XYZ is used
by ABC”. It is up to the application to first unmount the device, close the
LUKS/dm-crypt device, stop the RAID or remove it from running Volume Group etc.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Storage API concept

Asynchronous jobs

Most of storage manipulation methods, for example
CreateOrModifyVG, can
be time-consuming. Therefore the methods only check input parameters and return
immediately with a reference to LMI_StorageJob
instance. The operation itself is performed asynchronously on the server in a
separate thread.

The returned LMI_StorageJob instance can be then used to
either pull the operation status or applications can subscribe for job events
and get an indication when status of a job changes.

Currently, only one job is being executed at a time, all others are enqueued and
executed later.

Job status

The job status is exposed in
OperationalStatus and
JobState properties. Their combination
compose unique job status:

	Job is
	OperationalStatus
	JobState

	Queued
	Dormant
	New

	Suspended
	OK
	Suspended

	Running
	OK
	Running

	Finished OK
	Completed, OK
	Completed

	Failed
	Completed, Error
	Exception

	Cancelled
	Stopped
	Terminated

Job.RequestStateChange method can be
used to suspend, resume and cancel a job, while following rules apply:

	Only Queued job can be suspended.

	Only Suspended job can be resumed.

	Only Queued or Suspended job can be cancelled.

Note

Running job cannot be terminated in any way.

Job state machine.

By default, all job instances disappear automatically after 60 seconds after
they reach any final state. This can be overridden by setting
TimeBeforeRemoval and
DeleteOnCompletion properties of a job.

Return value and output parameters

Return value and output parameters of an asynchronous method call are stored in
LMI_StorageJob.JobOutParameters
property, which is EmbeddedObject of a class, which has property for each output
parameter of the asynchronous method. The method return value itself is
available there too, as __ReturnValue property.

For compatibility with SMI-S, the output parameters are also included in
LMI_StorageMethodResult.PostCallIndication
property, which is associated to the job. The property itself is embedded
instance of CIM_InstMethodCall class. Return value
is stored in its ReturnValue property.
Output parameters are stored in its
MethodParameters property.

LMI_AffectedStorageJobElement association
can be also used to find created/modified element of a
LMI_StorageJob instance.

Instance diagram of a job before finishing.

Instance diagram of a job after finishing.

Supported event filters

	PercentComplete property of a job changed:

SELECT * FROM LMI_StorageInstModification
 WHERE SourceInstance ISA LMI_StorageJob
 AND SourceInstance.CIM_ConcreteJob::PercentComplete
 <> PreviousInstance.CIM_ConcreteJob::PercentComplete

	State of a job changed:

SELECT FROM LMI_StorageInstModification
 WHERE SourceInstance ISA CIM_ConcreteJob
 AND SourceInstance.CIM_ConcreteJob::JobState <> PreviousInstance.CIM_ConcreteJob::JobState

	A job reaches state “Completed/OK”:

SELECT * FROM LMI_StorageInstModification
 WHERE SourceInstance ISA LMI_StorageJob
 AND SourceInstance.CIM_ConcreteJob::JobState = 7

	A job reaches state “Completed/Error”:

SELECT * FROM LMI_StorageInstModification
 WHERE SourceInstance ISA LMI_StorageJob
 AND SourceInstance.CIM_ConcreteJob::JobState = 10

	New job was created:

SELECT * FROM LMI_StorageInstCreation WHERE SourceInstance ISA LMI_StorageJob

Note

All other indication filter queries will be rejected.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

Usage

Block devices cannot be directly manipulated using intrinsic or extrinsic
methods of CIM_StorageExtent or
LMI_VGStoragePool.

Please use appropriate ConfigurationService to create, modify or delete devices
or volume groups.

	Partitioning
	Useful methods

	Use cases

	Future direction

	MD RAID
	Useful methods

	Use cases

	Future direction

	Logical Volume management
	Useful methods

	Use cases

	Future direction

	File system management
	Useful methods

	Use cases

	Future direction

	Block device performance
	Useful methods

	Use cases

	Mounting
	Using the mounting API

	Use cases

	Storage encryption
	Useful methods

	Use cases

Note

Previous releases allowed to use DeleteInstance intrinsic method to
delete various CIM_StorageExtents. This method is now deprecated and
will be removed from future releases of OpenLMI-Storage. The reason is that
DeleteInstance cannot be asynchronous and could block the whole provider
for a long time.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

Partitioning

Disks or any other block devices with partition tables have their
LMI_StorageExtent or its subclass associated to
LMI_DiskPartitionConfigurationCapabilities
using LMI_InstalledPartitionTable.

A GPT partition present on a block device are represented as
LMI_GenericDiskPartition.

A MS-DOS partition present on a block device are represented as
LMI_DiskPartition.

Both MS-DOS and GPT partitions are associated to the parent device using
LMI_PartitionBasedOn. This BasedOn association
contains also start and end sectors of the partitions. Note that logical
partitions are associated with the extended partition where they are located,
see the diagram below.

Following instance diagram shows /dev/sda disk with MS-DOS partition table
and:

	3 primary partitions

	1 extended partition
	2 logical partitions

Especially note that the extended partition /dev/sda4 contains an extended
partition table and all logical partitions are based on this extended
partition. This is for compatibility with SMI-S and also it better illustrates
physical composition of the partitions on the disk.

However, to create a partition on the device, applications can use both
/dev/sda or /dev/sda4 as value of Extent parameter in
LMI_CreateOrModifyPartition,
call.

Useful methods

	LMI_CreateOrModifyPartition

	Creates a partition of given size on a device with GPT or MS-DOS partition
table. It can automatically create extended and logical partitions
when there is no space in the partition table for a primary partition.

	CreateOrModifyPartition

	Creates a partition on a device with GPT or MS-DOS partition table.
This method is provided for compatibility with SMI-S. Instead of providing
requested size of the new partition, exact location of partition
must be specified, which may result in suboptimal performance of the
partition.

	SetPartitionStyle

	Creates partition table on a device of requested size. If the size is not
specified, the largest possible partition is created.

	FindPartitionLocation

	Finds start and end sector where a partition would be created and returns
size of the partition.

	LMI_DeletePartition

	Destroys a partition.

Use cases

List supported partition table types

Currently GPT and MS-DOS partition tables are supported. More types can be added
later. Enumerate instances of
LMI_DiskPartitionConfigurationCapabilities
class to get list of all of them, together with their basic properties like
partition table size and maximum number of partitions:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

part_styles = ns.LMI_DiskPartitionConfigurationCapabilities.instances()
for style in part_styles:
 print style.Caption
 print "Partition table size:", style.PartitionTableSize, "block(s)"

Create partition table

Use
SetPartitionStyle
method.

Sample code to create GPT partition table on /dev/sda:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

Find the partition table style we want to create there
gpt_caps = ns.LMI_DiskPartitionConfigurationCapabilities.first_instance(
 {"InstanceID": "LMI:LMI_DiskPartitionConfigurationCapabilities:GPT"})

Create the partition table
partitioning_service.SetPartitionStyle(
 Extent=sda,
 PartitionStyle=gpt_caps)

MS-DOS partition tables are created with the same code, just using different
LMI_DiskPartitionConfigurationCapabilities
instance.

Create partition

Use
LMI_CreateOrModifyPartition
method.

Following code creates several partitions on /dev/sda. The code is the same
for GPT and MS-DOS partitions:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()
MEGABYTE = 1024*1024

Define helper function
def print_partition(partition_name):
 partition = partition_name.to_instance()
 print "Created partition", partition.DeviceID, \
 "with", partition.NumberOfBlocks * partition.BlockSize, "bytes."

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

create 4 partitions with 100 MB each
for i in range(4):
 (ret, outparams, err) = partitioning_service.SyncLMI_CreateOrModifyPartition(
 Extent=sda,
 Size = 100 * MEGABYTE)
 print_partition(outparams['Partition'])

Create partition with the whole remaining space - just omit 'Size' parameter
(ret, outparams, err) = partitioning_service.SyncLMI_CreateOrModifyPartition(
 Extent=sda)

print_partition(outparams['Partition'])

On an empty disk with GPT partition table this code creates:

	4 partitions with 100 MB each.

	One partition with the largest continuous unpartitioned space on the disk.

On an empty disk with MS-DOS partition table, the code creates:

	3 primary partitions, 100 MB each.

	One extended partition with the largest continuous unpartitioned space.

	One 100 MB logical partitions.

	One logical partition with the largest continuous free space on the extended
partition.

The resulting partitions can be seen in the diagram above.

List all partitions on a disk

Enumerate LMI_PartitionBasedOn associations of the
disk.

Following code lists all partitions on /dev/sda, together with their
location:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})

based_ons = sda.references(ResultClass="LMI_PartitionBasedOn")
for based_on in based_ons:
 print "Found partition", based_on.Dependent.DeviceID, \
 "at sectors", based_on.StartingAddress, based_on.EndingAddress
TODO: check extended partition

Find the largest continuous unpartitioned space on a disk

Using side-effect of
FindPartitionLocation,
we can find size of the largest partition that can be created on /dev/sda:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
sda = ns.LMI_StorageExtent.first_instance({"Name": "/dev/sda"})
Find LMI_DiskPartitionConfigurationCapabilities associated to the disk
sda_partition_capabilities = sda.associators(
 AssocClass='LMI_InstalledPartitionTable') [0]

Call its FindPartitionLocation without 'Size' parameter
- the largest available space is returned.
(ret, outparams, err) = sda_partition_capabilities.FindPartitionLocation(
 Extent=sda)

print "Largest space for a partition:", outparams['size']

Delete partition

Call
LMI_DeletePartition:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
partitioning_service = ns.LMI_DiskPartitionConfigurationService.first_instance()

sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
(ret, outparams, err) = partitioning_service.LMI_DeletePartition(
 Partition=sda1)

Future direction

In future, we might implement:

	LMI_CreateOrModifyPartition
would also modify existing partitions, for example resize them.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

MD RAID

MD RAID devices are represented by
LMI_MDRAIDStorageExtent class.

Configuration of a MD RAID device is represented by instance of
LMI_MDRAIDStorageSetting associated to it.
Currently this instance is there only for compatibility with SMI-S, but in
future it may be extended to allow detailed configuration of the RAID.

Members of the MD RAID are associated to the
LMI_MDRAIDStorageExtent instance by
LMI_MDRAIDBasedOn association.

Following instance diagram shows RAID5 /dev/md/myRAID with three devices:

Note the Level property in
LMI_MDRAIDStorageExtent, which was added to
simplify RAID level calculation, in SMI-S the data redundancy and striping is
determined by DataRedundancy,
ExtentStripeLength and
PackageRedundancy properties.

Currently the MD RAID support is limited to creation and removal of RAIDs. It is
not possible to modify existing RAID, e.g. add or remove devices to/from it
and/or manage RAID spares.

Useful methods

	CreateOrModifyMDRAID

	Creates a MD RAID of given level with given devices. Optionally, RAID name
can be specified and in future also more detailed RAID configuration.

	CreateOrModifyElementFromElements

	Creates a MD RAID in SMI-S way. It is necessary to provide correct Goal
setting, which can be calculated e.g. by
CreateMDRAIDStorageSetting

	CreateMDRAIDStorageSetting

	This is helper method to calculate
LMI_StorageSetting for given list of devices and
given RAID level for
CreateOrModifyElementFromElements.

	DeleteMDRAID

	Destroys a MD RAID. There is no SMI-S function for this.

Use cases

Create MD RAID

Use
CreateOrModifyMDRAID
method. Following example creates MD RAID level 5 named ‘/dev/md/myRAID’ with
three members:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to MD RAID
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the RAID
(ret, outparams, err) = storage_service.SyncCreateOrModifyMDRAID(
 ElementName = "myRAID",
 InExtents= [sda1, sdb1, sdc1],
 Level=storage_service.CreateOrModifyMDRAID.LevelValues.RAID5)
raid = outparams['TheElement'].to_instance()
print "RAID", raid.DeviceID, \
 "level", raid.Level, \
 "of size", raid.BlockSize * raid.NumberOfBlocks, \
 "created"

The result is the same as shown in diagram above.

Create MD RAID in SMI-S way

SMI-S applications can use
CreateOrModifyElementFromElements
method. Following example creates MD RAID level 5 named ‘/dev/md/myRAID’ with
three members:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to MD RAID
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Calculate LMI_StorageSetting, e.g. using our helper method
(SMI-S application can of course use standard caps.CreateSetting()
and edit it manually)
caps = ns.LMI_MDRAIDStorageCapabilities.first_instance()
(ret, outparams, err) = caps.CreateMDRAIDStorageSetting(
 InExtents=[sda1, sdb1, sdc1],
 Level=caps.CreateMDRAIDStorageSetting.LevelValues.RAID5)
setting = outparams ['Setting'].to_instance()

Create the RAID
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromElements(
 InElements=[sda1, sdb1, sdc1],
 Goal=setting,
 ElementType = storage_service.CreateOrModifyElementFromElements.ElementTypeValues.StorageExtent)
raid = outparams['TheElement'].to_instance()
print "RAID", raid.DeviceID, \
 "level", raid.Level, \
 "of size", raid.BlockSize * raid.NumberOfBlocks, \
 "created"

List members of MD RAID

Enumerate LMI_MDRAIDBasedOn associations of the MD
RAID extent.

Following code lists all members od /dev/md/myRAID:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the disk
md = ns.LMI_StorageExtent.first_instance({"Name": "/dev/md/myRAID"})

devices = md.associators(AssocClass="LMI_MDRAIDBasedOn")
for dev in devices:
 print "Found device", dev.DeviceID

Delete MD RAID

Call DeleteMDRAID method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

md = ns.LMI_MDRAIDStorageExtent.first_instance({"Name": "/dev/md/myRAID"})
(ret, outparams, err) = storage_service.SyncDeleteMDRAID(TheElement=md)

Future direction

In future, we might implement:

	Modification of existing MD RAIDs, for example adding/removing devices.

	Management of spare devices.

	Detailed information of device status, synchronization progress etc.

	Indications of various events, like RAID failed member, synchronization
errors etc.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

Logical Volume management

Volume Groups (VG) and Thin Pools (TP) are represented by
LMI_VGStoragePool class. To differentiate between the
two, SpaceLimitDetermination and SpaceLimit are both set or both empty.

If both are set, an instance of the class is a thin pool.
SpaceLimitDetermination is always set to 4 (limitless thin pool, meaning that
it can be overcommited) and SpaceLimit is set to the capacity of the storage
allocated to the pool. Also, RemainingManagedSpace will be set to the
remaining space on the pool. Due to the current limitation of the underlying
storage library, if the pool is overcommited, its RemainingManagedSpace value
is set to 0.

If both SpaceLimitDetermination and SpaceLimit are empty, the instance of the
LMI_VGStoragePool class is a regular volume group.

Every LMI_VGStoragePool instance has associated one
instance of LMI_VGStorageSetting representing its
configuration (e.g. volume group extent size) and one instance of
LMI_LVStorageCapabilities, representing its
ability to create logical volumes (for SMI-S applications).
Every LMI_VGStoragePool instance, if it is a thin
pool, is associated with its thin logical volumes (if they exist) using
LMI_VGAllocatedFromStoragePool.

Physical Volumes (PV) are associated to VGs using
LMI_VGAssociatedComponentExtent
association.

Logical Volumes (LV) and Thin Logical Volumes (TLV) are represented by
LMI_LVStorageExtent class. If an instance of the
class is a thin logical volume, ThinlyProvisioned is set to True.

Each LMI_LVStorageExtent instance is associated to
its respective VG/TP using LMI_LVAllocatedFromStoragePool association.

In addition, LVs are associated to all PVs using
LMI_LVBasedOn association.

Following instance diagram shows one Volume Group /dev/myGroup based on
three Physical Volumes /dev/sda1, /dev/sdb1 and /dev/sdc1 and two
Logical Volumes myVol1 and myVol2.

Note that the diagram is simplified and does not show
LMI_LVBasedOn association, which associates every
myVolY to /dev/sdX1.

The next instance diagram displays the Volume Group /dev/myGroup (see
previous diagram) that has myThinPool, sized 100 MiB, associated to it.
This Thin Pool is used to provision the 10 GiB Thin Logical Volume
/dev/mapper/myGroup-myThinVolume. The VG/TP pair is connected with an
LMI_VGAllocatedFromStoragePool
association. LMI_LVAllocatedFromStoragePool association joins the TP/TLV pair.

Currently the LVM support is limited to creation and removal of VGs and LVs and
to adding/removing devices to/from a VG. It is not possible to modify existing
LV, e.g. or resize LVs. In future OpenLMI may be extended to have more
configuration options in LMI_VGStorageSetting and
LMI_LVStorageSetting.

Useful methods

	CreateOrModifyVG

	Creates a Volume Group with given devices. The devices are automatically
formatted with Physical Volume metadata. Optionally, the Volume Group extent
size can be specified by using Goal parameter of the method.

This method can be also used to add/remove PVs to/from VG.

	CreateOrModifyThinPool

	Creates or modifies a Thin Pool.

	CreateOrModifyThinLV

	Create or modifies a Thin Logical Volume.

	CreateOrModifyStoragePool

	Creates a Volume Group in SMI-S way.

	CreateVGStorageSetting

	This is helper method to calculate
LMI_VGStorageSetting for given list of devices
for
CreateOrModifyStoragePool
method.

	CreateOrModifyLV

	Creates a Logical Volume from given VG.

	CreateOrModifyElementFromStoragePool

	Creates a Logical Volume in SMI-S way.

	DeleteLV

	Destroys a Logical Volume or a Thin Logical Volume.

	ReturnToStoragePool

	Destroys a Logical Volume in SMI-S way.

	DeleteVG

	Destroys a Volume Group or a Thin Pool.

	DeleteStoragePool

	Destroys a Volume Group in SMI-S way.

Use cases

Create Volume Group

Use CreateOrModifyVG
method. Following example creates a VG ‘/dev/myGroup’ with three members and
with default extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the VG
(ret, outparams, err) = storage_service.SyncCreateOrModifyVG(
 ElementName="myGroup",
 InExtents=[sda1, sdb1, sdc1])
vg = outparams['Pool'].to_instance()
print "VG", vg.PoolID, \
 "with extent size", vg.ExtentSize, \
 "and", vg.RemainingExtents, "free extents created."

The resulting VG is the same as shown in diagram above, except it does not have
any LVs yet.

Create Thin Pool

The VG from the previous example can be used to create a TP on. This example
script creates a Thin Pool ‘myThinPool’ on the VG ‘myGroup’. The TP is 100 MiB
in size:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the volume group
vg = ns.LMI_VGStoragePool.first_instance({"InstanceID":"LMI:VG:myGroup"})

Allocate a thin pool out of it
(ret, outparams, err) = storage_service.SyncCreateOrModifyThinPool(
 ElementName="myThinPool",
 InPool=vg.path,
 # 100 MiB
 Size=100 * MEGABYTE)
tp = outparams["Pool"].to_instance()
print "TP %s with %d MiB remaining" % \
 (tp.Name, tp.RemainingManagedSpace / MEGABYTE)

Create Volume Group in SMI-S way

SMI-S applications can use
CreateOrModifyStoragePool
method. Following example creates a VG ‘/dev/myGroup’ with three members and
with default extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the VG
(ret, outparams, err) = storage_service.SyncCreateOrModifyStoragePool(
 InExtents=[sda1, sdb1, sdc1],
 ElementName="myGroup")
vg = outparams['Pool'].to_instance()
print "VG", vg.PoolID, \
 "with extent size", vg.ExtentSize, \
 "and", vg.RemainingExtents, "free extents created."

The resulting VG is the same as shown in diagram above, except it does not have
any LVs yet.

Add and remove devices to/from a Volume Group

CreateOrModifyStoragePool
can be used to modify exising VG. Its ‘InExtents’ parameter specifies
new list of Physical Volumes of the VG. When an PV is being removed
from a VG, all its data are safely moved to a free PV.

Continuing with previous example, let’s remove ‘/dev/sda1’ from the VG and
add ‘/dev/sdd1’ to it:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find all the devices we want to be in VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})
sdd1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdd1"})

new_pvs = [sdb1, sdc1, sdd1] # Without sda1!

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Set the list of PVs of the VG.
All existing PVs, which are not listed in InExtents parameter will
be removed from the VG. All new devices listed in InExtents parameter
are added to the VG. All data in the VG are moved from the PVs being
removed to a free PV, no data is lost.

(ret, outparams, err) = storage_service.SyncCreateOrModifyVG(
 InExtents=new_pvs,
 pool=vg.path)

Create Volume Group with specific extent size

Use
CreateVGStorageSetting
to create LMI_VGStorageSetting, modify its
ExtentSize property with desired
extent size and finally call
CreateOrModifyVG with
the setting as Goal parameter. Following example creates a VG
‘/dev/myGroup’ with three members and with 1MiB extent size (4MiB):

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the devices we want to add to VG
(filtering one CIM_StorageExtent.instances()
call would be faster, but this is easier to read)
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sdb1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
sdc1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdc1"})

Create the LMI_VGStorageSetting
vg_caps = ns.LMI_VGStorageCapabilities.first_instance()
(ret, outparams, err) = vg_caps.CreateVGStorageSetting(
 InExtents = [sda1, sdb1, sdc1])
setting = outparams['Setting'].to_instance()
Modify the LMI_VGStorageSetting
setting.ExtentSize = MEGABYTE
settinh.push()

Create the VG
(either of CreateOrModifyStoragePool or CreateOrModifyVG
can be used with the same result)
(ret, outparams, err) = storage_service.SyncCreateOrModifyStoragePool(
 InExtents=[sda1, sdb1, sdc1],
 ElementName="myGroup",
 Goal=setting)
vg = outparams['Pool'].to_instance()
print "VG", vg.PoolID, \
 "with extent size", vg.ExtentSize, \
 "and", vg.RemainingExtents, "free extents created."

List Physical Volumes of a Volume Group

Enumerate VGAssociatedComponentExtent
associations of the VG.

Following code lists all PVs of /dev/myGroup:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})
pvs = vg.associators(AssocClass="LMI_VGAssociatedComponentExtent")
for pv in pvs:
 print "Found PV", pv.DeviceID

Create Logical Volume

Use CreateOrModifyLV
method. Following example creates two 100MiB volumes:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Create the LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyLV(
 ElementName="Vol1",
 InPool=vg,
 Size=100 * MEGABYTE)
lv = outparams['TheElement'].to_instance()
print "LV", lv.DeviceID, \
 "with", lv.BlockSize * lv.NumberOfBlocks,\
 "bytes created."

Create the second LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyLV(
 ElementName="Vol2",
 InPool=vg,
 Size=100 * MEGABYTE)
lv = outparams['TheElement'].to_instance()
print "LV", lv.DeviceID, \
 "with", lv.BlockSize * lv.NumberOfBlocks, \
 "bytes created."

The resulting LVs are the same as shown in diagram above.

Create Thin Logical Volume

The following example assumes that a TP was already created (see Create Thin Pool).

There already is a TP (100 MiB) in the system. This snippet of code creates a 10
GiB Thin Logical Volume and prints some information about it. Note that this TLV
causes the underlying TP to be overcommited:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

Find the thin pool
tp = ns.LMI_VGStoragePool.first_instance({"ElementName":"myThinPool"})

(ret, outparams, err) = storage_service.SyncCreateOrModifyThinLV(
 ElementName="myThinLV",
 ThinPool=tp.path,
 # 10 GiB
 Size=10 * GIGABYTE)
tlv = outparams["TheElement"].to_instance()
print "TLV %s of size %d GiB" % \
 (tlv.Name, tlv.BlockSize * tlv.NumberOfBlocks / GIGABYTE)

Create Logical Volume in SMI-S way

Use
CreateOrModifyElementFromStoragePool
method. The code is the same as in previous sample, just different method is
used:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()
MEGABYTE = 1024*1024

Find the VG
vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})

Create the LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromStoragePool(
 ElementName="Vol1",
 InPool=vg,
 Size=100 * MEGABYTE)
lv = outparams['TheElement'].to_instance()
print "LV", lv.DeviceID, \
 "with", lv.BlockSize * lv.NumberOfBlocks,\
 "bytes created."

Create the second LV
(ret, outparams, err) = storage_service.SyncCreateOrModifyElementFromStoragePool(
 ElementName="Vol2",
 InPool=vg,
 Size=100 * MEGABYTE)
lv = outparams['TheElement'].to_instance()
print "LV", lv.DeviceID, \
 "with", lv.BlockSize * lv.NumberOfBlocks, \
 "bytes created."

Delete VG

Call DeleteVG method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

vg = ns.LMI_VGStoragePool.first_instance({"Name": "/dev/mapper/myGroup"})
(ret, outparams, err) = storage_service.SyncDeleteVG(
 Pool = vg)

Delete LV

Call DeleteLV method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
storage_service = ns.LMI_StorageConfigurationService.first_instance()

lv = ns.LMI_LVStorageExtent.first_instance({"Name": "/dev/mapper/myGroup-Vol2"})
(ret, outparams, err) = storage_service.SyncDeleteLV(
 TheElement=lv)

Future direction

In future, we might implement:

	Modification of existing VGs and LVs, for example renaming VGs and LVs
and resizing LVs.

	LVs with stripping and mirroring.

	Clustered VGs and LVs.

	Snapshots.

	Indications of various events.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

File system management

Local file systems, both supported and unsupported, are represented by
LMI_LocalFileSystem class and its subclasses.

Each LMI_LocalFileSystem instance of supported
filesystems have associated one instance of
LMI_FileSystemSetting representing its
configuration (e.g. inode size).

Supported filesystems are: ext2, ext3, ext4, xfs, btrfs. Only supported
filesystems can be created! Actual set of supported filesystems can be obtained
from
LMI_FileSystemConfigurationCapabilities
instance associated to
LMI_FileSystemConfigurationService.

Following instance diagram shows four block devices:

	/dev/sda1 and /dev/sda2 with btrfs filesystem spanning both these
devices.

	/dev/sda3 with ext3 filesystem.

	/dev/sda4 with msdos filesystems. The msdos filesystem is unsupported,
therefore it has no LMI_FileSystemSetting
associated.

Note

Currently the filesystem support is limited:

	Filesystems can be only created and deleted, it is not possible to modify
existing filesystem.

	There is no way to set specific filesystem options
when creating one. Simple mkfs.<filesystem type> is called, without any
additional parameters.

	btrfs filesystem can be only created or destroyed. There is currently no
support for btrfs subvolumes, RAIDs, and dynamic addition or removal of
block devices.

	The LMI_LocalFileSystem instances do not
report free and used space on the filesystems.

These limitations will be addressed in future releases.

Useful methods

	LMI_CreateFileSystem

	Formats a StorageExtent with filesystem of given type. Currently the Goal
parameter is not used, i.e. no filesystem options can be specified.

	DeleteFileSystem

	Destroys a file system (LMI_LocalFileSystem) or
other metadata, such as Physical Volume metadata or MD RAID metadata present
(LMI_DataFormat) on a device.

Only unmounted filesystems and unused metadata can be deleted.

Use cases

Create File System

Use
LMI_CreateFileSystem
method. Following example formats /dev/sda3 with ext3:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda3 device
sda3 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda3"})

Format it
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(
 FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.EXT3,
 InExtents=[sda3])

The resulting filesystem is the same as shown in diagram above.

Create btrfs File System with two devices

Use the same
LMI_CreateFileSystem
method as above. Following example formats /dev/sda1 and dev/sda2 as
one btrfs volume:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda1+2 devices
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
sda2 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda2"})

Format them
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(
 FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.BTRFS,
 InExtents=[sda1, sda2])

The resulting filesystem is the same as shown in diagram above.

Delete filesystem

Use
LMI_CreateFileSystem
method:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
fs = sda1.first_associator(ResultClass='LMI_LocalFileSystem')
(ret, outparams, err) = filesystem_service.SyncDeleteFileSystem(
 TheFileSystem = fs)

Note that with one btrfs on multiple block devices, the whole btrfs volume is
destroyed.

Future direction

In future, we might implement:

	Add advanced options to
LMI_CreateFileSystem

	Allow (some) filesystem modification, e.g. amount of reserved space for root
user.

	Indications of various events, like filesystem is getting full.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

Block device performance

OpenLMI-Storage provider reports I/O statistics of all block devices. Every
instance of CIM_StorageExtent or its subclass has
associated
LMI_BlockStorageStatisticalData
instance, which reports current I/O statistics like nr. of kbytes read/written
etc.

Following instance diagram shows two block devices and their associated
statistics:

There are many more classes related to block device performance, but these are
provided mainly for compatibility with SMI-S. See following instance diagram,
which shows the same two block devices, but now with all SMI-S classes:

The only useful method is
LMI_BlockStatisticsService.GetStatisticsCollection,
which returns I/O statistics of all block devices as
semicolon-separated-list. The order of fields in this list is described in
LMI_BlockStatisticsManifest.CSVSequence
property.

Note

Even though properties in
LMI_BlockStorageStatisticalData
are 64-bit, they are tracked as 32-bit on 32-bit systems like i686 or
ppc by Linux kernel. They can wrap pretty quickly on modern hardware.

For example, with iSCSI drive on 10Gb/s link, the KBytesRead counter can wrap
in around 27 minutes.

On 64-bit systems, these counters are tracked in 64-bits in Linux kernel
and they wrap once in a few years.

Useful methods

	LMI_BlockStatisticsService.GetStatisticsCollection

	Return I/O statistics of all block devices as CSV-formatted string.
(CSV = semicolon-separated list).

Note that this method is currently synchronous and does not return a
Job.

Use cases

Get I/O statistics of a block device

Find LMI_BlockStorageStatisticalData
associated to appropriate CIM_StorageExtent:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find the /dev/sda3 device
sda3 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda3"})

Find its statistics
stat = sda3.first_associator(ResultClass="LMI_BlockStorageStatisticalData")
print "KBytesRead:", stat.KBytesRead

Get I/O statistics of all block devices I

Enumerate all
LMI_BlockStorageStatisticalData
instances on the system:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Find all LMI_BlockStorageStatisticalData instances
stats = ns.LMI_BlockStorageStatisticalData.instances()
for stat in stats:
 print "Device", stat.ElementName, "KBytesRead:", stat.KBytesRead

This approach can return huge list of
LMI_BlockStorageStatisticalData
instances on systems with lot of block devices.

Get I/O statistics of all block devices II

Use
LMI_BlockStatisticsService.GetStatisticsCollection
method to get all statistics in one method call:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

Print column headers
manifest = ns.LMI_BlockStatisticsManifest.first_instance()
print ";".join(manifest.CSVSequence)

Print the real data
service = ns.LMI_BlockStatisticsService.first_instance()
(ret, outparams, err) = service.GetStatisticsCollection()
stats = outparams['Statistics']
for stat in stats:
 print stat

Note that this method is currently synchronous and does not return a Job.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

Mounting

Note

Currently, only basic mounting/unmounting works. Persistency and mount flags
(i.e. bind) are not implemented, yet. These limitations will be addressed
in the future releases.

Every mount is represented by an
LMI_MountedFileSystem
instance. Each instance can have one or two
LMI_MountedFileSystemSetting instances
associated to it via
LMI_MountedFileSystemElementSettingData
(one for the currently mounted filesystem and one for a persistent entry in
/etc/fstab). This association class has two important properties –
IsCurrent
and
IsNext
. Their meaning is described in detail in the On modes section.

LMI_MountedFileSystemSetting is used for
representing mount options (e.g. whether to mount read-write or read-only).

The setting instance can also exists on its own. This means that it’s not
connected with
LMI_MountedFileSystem
by any association. Such situation can
happen after
CreateSetting
is called. According to its
ChangeableType
property, it is either deleted after an hour (ChangeableType = Transient), or
has to be associated or deleted manually (Changeable = Persistent).

Local filesystems are represented by
LMI_LocalFileSystem class and its
subclasses. Filesystems are associated to
LMI_MountedFileSystem
via
LMI_AttachedFileSystem
.

Note

Currently, only local filesystems are supported.

When a filesystem is currently mounted, the directory where the
LMI_MountedFileSystem
instance is attached at is represented by an
LMI_UnixDirectory
instance. These two instances are connected through an
LMI_MountPoint
association instance.

The following diagram shows a local ext4 partition /dev/sda2 currently mounted
at /boot. The filesystem is specified by its UUID. No persitent entry in
/etc/fstab is managed.

The next figure shows a local ext3 partition /dev/sda1 mounted at /home and also
made persistent in /etc/fstab, both with slightly different mount options. The
filesystem is specified by its UUID. Notice that the mount options are
represented by two different
LMI_MountedFileSystemSetting
instances.

The final diagram represents a state where a local ext4 partition /dev/sda4,
filesystem of which is specified by its UUID, is mounted at /var/log and also
has the respective entry written in /etc/fstab. Note that both settings (current
mount and the persistent entry) are the same, as is indicated by IsNext and
IsCurrent being set to 1.

Note

TODO: bind mount examples, remote fs examples

Using the mounting API

On modes

When calling
CreateMount or
DeleteMount
methods, one of their arguments is a mode. The mode is an enumeration that
denotes values of two different properties of the
LMI_MountedFileSystemElementSettingData
association. They are
IsNext and
IsCurrent.
They determine if the mount operation performs mount only, adds a persistent
entry to /etc/fstab, or both.

The following table displays possible values and their respective meanings of
IsNext
and
IsCurrent
.

	
	Value
	Meaning

	IsNext
	1
	This property indicates if the associated setting will be applied as mount
options on next reinitialization, i.e. on reboot. In mounting this means
persistency, an entry in /etc/fstab.

	2
	No entry in /etc/fstab.

	IsCurrent
	1
	This property indicates if the associated setting represents current mount
options of the MountedFileSystem.

	2
	The device is not mounted.

Supported modes of
CreateMount,
ModifyMount and
DeleteMount
methods and their meaning are described in the following table. See decription of
the methods for details.

	Mode
	IsNext
	IsCurrent

	1
	1
	1

	2
	1
	Not affected.

	4
	2
	2

	5
	2
	Not affected.

	32768
	Not affected.
	1

	32769
	Not affected.
	2

Methods

	CreateMount

	Mounts a device to the specified mountpoint.

	ModifyMount

	Modifies (remounts) the specified filesystem.

	DeleteMount

	Unmounts the specified filesystem.

All the methods are asynchronous.

DeleteMount() note

If, after
DeleteMount,
IsNext and
IsCurrent
are both set to 2 (device was unmounted and its persistent
entry removed), the corresponding
LMI_MountedFileSystem,
LMI_MountedFileSystemSetting
and their association are removed. This implies that there cannot be any
LMI_MountedFileSystemElementSettingData
with both
IsNext and
IsCurrent
set to 2.

Use cases

Typical use of the mounting API could be like the following:

Use an
LMI_MountedFileSystemCapabilities
instance to create a setting instance using the
CreateSetting
method. This method creates an instance of
LMI_MountedFileSystemSetting
class with default property values.

Modify the setting instance as needed. This is done using the ModifyInstance
intrinsic method. This step is optional if the admin is satisfied with the
default set of values.

Use an
LMI_MountConfigurationService
to create a mount using the
CreateMount
method or modify a mount using the
ModifyMount
method. You can also use an
LMI_MountConfigurationService
to unmount a mount using the
DeleteMount
.

Example 1

This example demonstrates mounting /dev/sda partition with a customized setting.

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace

cap = ns.LMI_MountedFileSystemCapabilities.first_instance()

Create an LMI_MountedFileSystemSetting instance
(rc, out, err) = cap.CreateSetting()
setting_name = out['Setting']
setting = setting_name.to_instance()

Modify the setting instance with requested options
setting.AllowWrite = False
setting.InterpretDevices = False
setting.push()

Find the filesystem to mount
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sda1"})
fs = sda1.first_associator(ResultClass='LMI_LocalFileSystem')

Mount it
Mode == 32768 -> only mount, no fstab entry
mount_service = ns.LMI_MountConfigurationService.first_instance()
(rc, out, err) = mount_service.SyncCreateMount(
 Goal=setting,
 FileSystemType='ext4',
 Mode=32768,
 FileSystem=fs,
 MountPoint='/mnt/test',
 FileSystemSpec='/dev/sda1')

Example 2

In this example, /mnt, that was mounted in Example 1, is unmounted.

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
mount_service = ns.LMI_MountConfigurationService.first_instance()

mnt = ns.LMI_MountedFileSystem.first_instance({"MountPointPath": "/mnt/test"})

if not mnt:
 raise BaseException("Mountpoint does not exist: /mnt/test")

(rc, out, err) = mount_service.SyncDeleteMount(
 Mount=mnt,
 Mode=32769)

Note

Currently, only basic mounting/unmounting works. Persistency and mount flags
(i.e. bind) are not implemented, yet. These limitations will be addressed in
the future releases.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

 	Usage

Storage encryption

OpenLMI supports
Linux Unified Key Setup [https://code.google.com/p/cryptsetup/] (LUKS)
to encrypt block devices. This means any
device can be formatted with LUKS, which destroys
all data on the device and allows for encryption of the device future content.
The block device then contains encrypted data. To see unencrypted
(clear-text) data, the LUKS format must be opened. This operation creates
new block device, which contains the clear-text data. This device is just
regular block device and can be formatted with any filesystem. All write
operations are automatically encrypted and stored in the LUKS format data.

To hide the clear-text data, the clear text device must be closed. This
destroys the clear-text device, preserving only encrypted content in the
LUKS format data.

The data are encrypted by a key, which is accessible using a pass phrase.
There can be up to 8 different pass phrases per LUKS format. Any of them
can be used to open the format and to unencrypt the data.

Note

There is currently no way how to specify which algorithm, key or key size
will be used to actually encrypt the data. cryptsetup defaults are
applied.

CIM_StorageExtent can be recognized by
LMI_LUKSFormat resides on it.

If the LMI_LUKSFormat is opened, the new clear-text
device is created as LMI_LUKSStorageExtent,
which has BasedOn association to the original
CIM_StorageExtent.

All operations with LUKS format can be done using
LMI_ExtentEncryptionConfigurationService.

Following instance diagram shows one encrypted partition. The LUKS is not
opened, which means that there is no clear-text device on the system.

Instance diagram of closed LUKS format on a partition.

Following instance diagram shows one encrypted partition with opened LUKS.
That means any data written to /dev/mapper/cleartext are automatically
encrypted and stored on the partition.

Instance diagram of opened LUKS format on a partition.

Useful methods

	CreateEncryptionFormat

	Formats a StorageExtent with LUKS format. All data on the device are
destroyed.

	OpenEncryptionFormat

	Opens given LUKS format and shows its clear-text in
LMI_LUKSStorageExtent.

	CloseEncryptionFormat

	Closes given LUKS format and destroys its previously opened
LMI_LUKSStorageExtent.

	AddPassphrase, DeletePassphrase

	Manage pass phrases for given LUKS format.

Use cases

Create encrypted file system.

Use
CreateEncryptionFormat
to create LUKS format, open it and create ext3 filesystem on it:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()
filesystem_service = ns.LMI_FileSystemConfigurationService.first_instance()

Find the /dev/sda1 device
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})

Format it
(ret, outparams, err) = encryption_service.SyncCreateEncryptionFormat(
 InExtent=sda1, Passphrase="opensesame")
luks_format = outparams['Format'].to_instance()

'Open' it as /dev/mapper/secret_data
(ret, outparams, err) = encryption_service.SyncOpenEncryptionFormat(
 Format=luks_format,
 Passphrase="opensesame",
 ElementName="secret_data")
clear_text_extent = outparams['Extent'].to_instance()

Format the newly created clear-text device
(ret, outparams, err) = filesystem_service.SyncLMI_CreateFileSystem(
FileSystemType=filesystem_service.LMI_CreateFileSystem.FileSystemTypeValues.EXT3,
InExtents=[clear_text_extent])

The resulting situation is the same as shown in the second diagram above.

Close opened LUKS format

CloseEncryptionFormat
can be used to destroy the clear-text device so only encrypted data is available.
The clear-text device must be unmounted first!

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

Find the LUKS format
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
luks_format = sda1.first_associator(AssocClass="LMI_ResidesOnExtent")

Close it
(ret, outparams, err) = encryption_service.SyncCloseEncryptionFormat(
 Format=luks_format)

The resulting situation is the same as shown in the first diagram above.

Pass phrase management

Pass phrases can be added or deleted using
AddPassphrase
and
DeletePassphrase
methods.

Following code can be used to replace weak ‘opensesame’ password with something
stronger:

Connect to the remote system and prepare some local variables
connection = connect("remote.host.org", "root", "opensesame")
ns = connection.root.cimv2 # ns as NameSpace
encryption_service = ns.LMI_ExtentEncryptionConfigurationService.first_instance()

Find the LUKS format
sda1 = ns.CIM_StorageExtent.first_instance({"Name": "/dev/sdb1"})
luks_format = sda1.first_associator(AssocClass="LMI_ResidesOnExtent")

Add a pass phrase
(ret, outparams, err) = encryption_service.AddPassphrase(
 Format=luks_format,
 Passphrase="opensesame",
 NewPassphrase="o1mcW+O27F")

Remove the old weak one
(ret, outparams, err) = encryption_service.DeletePassphrase(
 Format=luks_format,
 Passphrase="opensesame")

There are 8 so called key slots, which means each LUKS formats supports up to 8
different pass phrases. Any of the pass phrases can be used to open the LUKS
format. Status of these key slots can be found in
LMI_LUKSFormat.SlotStatus property.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Storage Provider

Configuration

Configuration is stored in /etc/openlmi/storage/storage.conf.

In addition to common configuration options,
this provider can be configured to allow or deny various filesystem operations.
Default configuration:

[Log]
Toggles logging of detailed debug messages in Blivet.
DebugBlivet=False

[Storage]
Path to temporary directory. The provider (usually running as root) need
read/write access there. When SELinux or other security enhancement
mechanism is used, **only** the provider should have read/write access
to this directory.
Tempdir=/tmp

Options and their values are self-explanatory.

Persistent setting

OpenLMI-Storage stores persistent data in /var/lib/openlmi-storage/.
Typically, various CIM_SettingData instances with
ChangeableType
Changeable - Persistent are stored here.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

Networking Provider

OpenLMI-Networking is CIM provider which manages local network devices.

This provider is based on following DMTF [http://dmtf.org] standards:

	DSP1116 - IP Configuration Profile [http://dmtf.org/sites/default/files/standards/documents/DSP1116_1.0.0.pdf]

	DSP1035 - Host LAN Network Port Profile [http://dmtf.org/sites/default/files/standards/documents/DSP1035_1.0.2.pdf]

The knowledge of these standards is not necessary, but it can help a lot.

Application developers should first get familliar with Networking API concepts
and then look at usage of OpenLMI-Networking.

Content:

	Networking API concepts
	Hardware representation

	Current network configuration

	Settings

	Altering and applying settings

	Bridging and bonding

	Usage
	Enumeration of network devices

	Get parameters of network devices

	Get current IP configuration

	Bring up / take down a network device

	Enumerate available settings

	Obtaining setting details

	Create new setting

	Set DNS servers for given setting

	Manage static routes for given setting

	Delete setting

	Apply setting

	Bridging and bonding

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Networking Provider

Networking API concepts

OpenLMI-Networking provides CIM API. Some CIM knowledge is required and this
guide assumes that reader can routinely read and modify remote CIM objects
and call their intrinsic and extrinsic methods.

Hardware representation

There is instance of subclass of CIM_NetworkPort
for each physical network device present in the system, e.g.
LMI_EthernetPort for ethernet ports.

Instances of class LMI_LANEndpoint represent
communication endpoints, identified by MAC address to which the network port
will respond. It’s associated to the corresponding instance of
CIM_NetworkPort subclass via instance of
LMI_NetworkDeviceSAPImplementation.

Current network configuration

LMI_IPNetworkConnection instances
represents the network connection in the system, e.g. “eth0”, “p1p1”.
Instances of this class are associated to the
LMI_LANEndpoint via
LMI_EndpointForIPNetworkConnection.

Note

There are usually 1:1:1 relation between instances of CIM_NetworkPort
subclasses, LMI_LANEndpoint instances and LMI_IPNetworkConnection
instance in this provider. The classes are implemented for sake of
compatibility with DMTF profiles.

LMI_IPProtocolEndpoint - there is instance
of this class for each IP address on any network device and the instance is
associated with LMI_IPNetworkConnection via
LMI_NetworkSAPSAPDependency and with
LMI_LANEndpoint via
LMI_BindsToLANEndpoint.

Default gateway is represented by instance of
LMI_NetworkRemoteServiceAccessPoint
with attribute AccessContext equal to 2 (Default Gateway).

Instances of class LMI_IPVersionSettingData
represent IPv4 or IPv6 support. If there is instance of this class associated
with CIM_ComputerSystem it means that the system
supports IPv4 and/or IPv6 (depending on value of the ProtocolIFType property).
Instances of this class can be associated also to
LMI_IPNetworkConnection.
It means that the network connection supports IPv4 and/or IPv6.

Settings

The OpenLMI networking provider is based on concept of setting.
Setting is a set of configuration options that can be applied
to an interface. Each setting is represented by instance of
LMI_IPAssignmentSettingData
and it is aggregator for detailed configuration represented by instances
of following classes: LMI_DHCPSettingData,
LMI_DNSSettingData,
LMI_ExtendedStaticIPAssignmentSettingData.
These detailed settings are associated with the master setting via
LMI_OrderedIPAssignmentComponent
where the master has role GroupComponent.

Settings available for given port are associated by
LMI_IPElementSettingData.
Its property IsCurrent is 1 when the setting is currently active.
Property IsDefault is 1 when the setting is automatically activated.

Altering and applying settings

Method
LMI_CreateIPSetting
of the LMI_IPNetworkConnectionCapabilites
class can be used to create new setting. The setting will be tied to
LMI_IPNetworkConnection that is associated
with given
LMI_IPNetworkConnectionCapabilites.

Singleton class LMI_IPConfigurationService
provides method
ApplySettingToIPNetworkConnection
that applies LMI_IPAssignmentSettingData
to LMI_IPNetworkConnection.

Bridging and bonding

Current state

Instance of the LMI_LinkAggregator8023ad
class represents currently active bond. It’s associated to the
LMI_LAGPort8023ad representing bonded interface via
LMI_LinkAggregationBindsTo.

Instance of the LMI_SwitchService class represents
currently active bridge. It’s associated to the
LMI_SwitchPort representing bridged interface via
LMI_SwitchesAmong”.

Creating bridge/bond

Creating bridge/bond setting is the same as creating any other setting, just
the Type parameter of the
LMI_CreateIPSetting
is different (Bonding or Bridging).

Bonding/bridging setting details can be altered by changing the properties of
LMI_BondingMasterSettingData (or
LMI_BridgingMasterSettingData) instance
that is returned from the
LMI_CreateIPSetting
method.

For activating bridge/bond setting, use
ApplySettingToIPNetworkConnection
of the LMI_IPConfigurationService class.

For deletion of the bridge/bond setting just delete the “master” setting
(the one created by
LMI_CreateIPSetting).
Deleting other settings will just remove the slave from the settings.

Enslaving

First network interface is enslaved to the given bond/bridge setting
automatically (depending on what
LMI_IPNetworkConnectionCapabilities
is the
LMI_CreateIPSetting
method called). Other interface can be enslaved by using
LMI_CreateSlaveSetting
method of the LMI_IPNetworkConnectionCapabilities.

Alter the LMI_BondingSlaveSettingData (or
LMI_BridgingSlaveSettingData) instance to
change the properties of bond/bridge slave.

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	Networking Provider

Usage

All example scripts are for lmishell. See it’s documentation [https://fedorahosted.org/openlmi/wiki/shell] on OpenLMI [https://fedorahosted.org/openlmi/]
page.

We also assume that lmishell is connected to the CIMOM and the
connection is stored in connection variable and variable ns points to
cimv2 namespace:

connection = connect("server", "username", "password")
ns = connection.root.cimv2

Enumeration of network devices

Obtaining a list of network devices can be done by executing following
commands in lmishell:

for device in ns.LMI_IPNetworkConnection.instances():
 print device.ElementName

Get parameters of network devices

Obtaining parameters of network device might be a little bit tricky.
DMTF standards split network device to three classes and one might need
to traverse between them through associations, see
Networking API concepts.

Following example prints name, its status, MAC address, link technology and
maximal speed for each device.

MAC address is not in the LMI_IPNetworkConnection
class and must be accessed through
LMI_EndpointForIPNetworkConnection
association to LMI_LANEndpoint class,
same for MaxSpeed and LinkTechnology, those are in
CIM_NetworkPort subclasses, associated through
LMI_NetworkDeviceSAPImplementation
class:

for device in ns.LMI_IPNetworkConnection.instances():
 # print device name
 print device.ElementName,
 # print operating status
 print ns.LMI_IPNetworkConnection.OperatingStatusValues.value_name(device.OperatingStatus),

 # MAC address in not part of LMI_IPNetworkConnection but LMI_LANEndpoint class,
 # which is associated through LMI_EndpointForIPNetworkConnection
 lanendpoint = device.first_associator(AssocClass="LMI_EndpointForIPNetworkConnection")

 # print MAC address
 print lanendpoint.MACAddress,

 # LinkTechnology is part of CIM_NetworkPort subclasses, we need to traverse
 # through LMI_NetworkDeviceSAPImplementation association
 networkport = lanendpoint.first_associator(AssocClass="LMI_NetworkDeviceSAPImplementation")

 # print link technology
 print ns.CIM_NetworkPort.LinkTechnologyValues.value_name(networkport.LinkTechnology),

 # network speed might not be defined
 if networkport.MaxSpeed:
 # Convert bps to Mbps
 print "%dMbps" % (networkport.MaxSpeed // (1024*1024)),
 else:
 print "unknown",
 print

Get current IP configuration

Current IP addresses are in the
LMI_IPProtocolEndpoint class associated
to given LMI_IPNetworkConnection:

device = ns.LMI_IPNetworkConnection.first_instance({'ElementName': 'eth0'})
for endpoint in device.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_IPProtocolEndpoint"):
 if endpoint.ProtocolIFType == ns.LMI_IPProtocolEndpoint.ProtocolIFTypeValues.IPv4:
 print "IPv4: %s/%s" % (endpoint.IPv4Address, endpoint.SubnetMask)
 elif endpoint.ProtocolIFType == ns.LMI_IPProtocolEndpoint.ProtocolIFTypeValues.IPv6:
 print "IPv6: %s/%d" % (endpoint.IPv6Address, endpoint.IPv6SubnetPrefixLength)

Default gateway is represented by instance of
LMI_NetworkRemoteServiceAccessPoint
with AccessContext equal to DefaultGateway:

for rsap in device.associators(AssocClass="LMI_NetworkRemoteAccessAvailableToElement", ResultClass="LMI_NetworkRemoteServiceAccessPoint"):
 if rsap.AccessContext == ns.LMI_NetworkRemoteServiceAccessPoint.AccessContextValues.DefaultGateway:
 print "Default Gateway: %s" % rsap.AccessInfo

For the list of DNS servers we need to traverse the object model a little bit.
First get LMI_IPProtocolEndpoint instances
associated with given LMI_IPNetworkConnection
via LMI_NetworkSAPSAPDependency.
Then use the same association to get instances of
LMI_DNSProtocolEndpoint.
Finally instances of
LMI_NetworkRemoteServiceAccessPoint
with AccessContext equal to DNS Server associated through
LMI_NetworkRemoteAccessAvailableToElement
have the DNS server address in the AccessInfo property.

Note that there might be more possible path to get to the
RemoteServiceAccessPath and you might get duplicated entries. The set is
used here to deduplicate the list of DNS servers:

dnsservers = set()
for ipendpoint in device.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_IPProtocolEndpoint"):
 for dnsedpoint in ipendpoint.associators(AssocClass="LMI_NetworkSAPSAPDependency", ResultClass="LMI_DNSProtocolEndpoint"):
 for rsap in dnsedpoint.associators(AssocClass="LMI_NetworkRemoteAccessAvailableToElement", ResultClass="LMI_NetworkRemoteServiceAccessPoint"):
 if rsap.AccessContext == ns.LMI_NetworkRemoteServiceAccessPoint.AccessContextValues.DNSServer:
 dnsservers.add(rsap.AccessInfo)
print "DNS:", ", ".join(dnsservers)

Bring up / take down a network device

Note

Changing the state of a network device is not recommended! Just disconnect
the active setting.

Use method RequestStateChange of the
LMI_LANEndpoint object. RequestedState parameter
can be either Enabled or Disabled:

lanendpoint = ns.LMI_LANEndpoint.first_instance({ "ElementName": "eth0" })
lanendpoint.RequestStateChange(RequestedState=ns.LMI_LANEndpoint.RequestedStateValues.Enabled)

Enumerate available settings

One setting is a set of configuration options that are applicable to a network
interface. This setting is represented by a
LMI_IPAssignmentSettingData instances that
have AddressOrigin equal to Cumulative Configuration:

for settingdata in ns.LMI_IPAssignmentSettingData.instances():
 if settingdata.AddressOrigin == ns.LMI_IPAssignmentSettingData.AddressOriginValues.cumulativeconfiguration:
 print "Setting: %s" % settingdata.Caption

Obtaining setting details

Setting configuration is spread between the instances of
LMI_IPAssignmentSettingData subclasses
associated with the “master” setting:

settingdata = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0" })
for setting in settingdata.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):
 if setting.classname == "LMI_DHCPSettingData":
 if setting.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:
 print "IPv4 DHCP"
 else:
 print "IPv6 DHCPv6"
 elif setting.classname == "LMI_ExtendedStaticIPAssignmentSettingData":
 for i in range(len(setting["IPAddresses"])):
 if setting["ProtocolIFType"] == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:
 print "Static IPv4 address: %s/%s, Gateway %s" % (
 setting["IPAddresses"][i],
 setting["SubnetMasks"][i],
 setting["GatewayAddresses"][i])
 else:
 print "Static IPv6 address: %s/%d, Gateway %s" % (
 setting["IPAddresses"][i],
 setting["IPv6SubnetPrefixLengths"][i],
 setting["GatewayAddresses"][i])
 elif (setting.classname == "LMI_IPAssignmentSettingData" and
 setting["AddressOrigin"] == ns.LMI_IPAssignmentSettingData.AddressOriginValues.Stateless):
 print "IPv6 Stateless"

Create new setting

New setting is created by calling
LMI_CreateIPSetting
method on the instance of
LMI_IPNetworkConnectionCapabilities,
which is associated with LMI_IPNetworkConnection
through
LMI_IPNetworkConnectionElementCapabilities.
It also has the ElementName property same as is the name of the network
interface.

Created setting can be modified by using ModifyInstance intrinsic method
(push() in the lmishell).

Let’s say we want to create a new setting with static IPv4 and stateless IPv6
configuration for given network interface:

capability = ns.LMI_IPNetworkConnectionCapabilities.first_instance({ 'ElementName': 'eth0' })
result = capability.LMI_CreateIPSetting(Caption='eth0 Static',
 IPv4Type=capability.LMI_CreateIPSetting.IPv4TypeValues.Static,
 IPv6Type=capability.LMI_CreateIPSetting.IPv6TypeValues.Stateless)
setting = result.rparams["SettingData"].to_instance()
for settingData in setting.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):
 if setting.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4:
 # Set static IPv4 address
 settingData.IPAddresses = ["192.168.1.100"]
 settingData.SubnetMasks = ["255.255.0.0"]
 settingData.GatewayAddresses = ["192.168.1.1"]
 settingData.push()

Set DNS servers for given setting

DNS server for given setting is stored in the
DNSServerAddresses property
of class LMI_DNSSettingData.

Following code adds IPv4 DNS server to the existing setting:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
for settingData in setting.associators(AssocClass="LMI_OrderedIPAssignmentComponent"):
 if (settingData.classname == "LMI_DNSSettingData" and
 settingData.ProtocolIFType == ns.LMI_IPAssignmentSettingData.ProtocolIFTypeValues.IPv4):
 settingData.DNSServerAddresses.append("192.168.1.1")
 settingData.push()

Manage static routes for given setting

Static route can be added by calling
LMI_AddStaticIPRoute
method on the instance of the
LMI_IPAssignmentSettingData class:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
result = setting.LMI_AddStaticIPRoute(
 AddressType=setting.LMI_AddStaticIPRouteValues.IPv4,
 DestinationAddress="192.168.2.1",
 DestinationMask="255.255.255.0")
route = result.rparams["Route"]

Additional parameters can be set by modifying the instance of
LMI_IPRouteSettingData. The route can be deleted
by using DeleteInstance intrinsic method (delete() in lmishell).

Delete setting

For setting deletion just call DeleteInstance intrinsic method (delete()
in the lmishell) to the instance of
LMI_IPAssignmentSettingData:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ 'Caption': 'eth0 Static' })
setting.delete()

Apply setting

The setting can by applied to the network interface by calling
ApplySettingToIPNetworkConnection
of the LMI_IPConfigurationService class.

This method is asynchronous and returns a job, but lmishell can call it
synchronously:

setting = ns.LMI_IPAssignmentSettingData.first_instance({ "Caption": "eth0 Static" })
port = ns.LMI_IPNetworkConnection.first_instance({ 'ElementName': 'ens8' })
service = ns.LMI_IPConfigurationService.first_instance()
service.SyncApplySettingToIPNetworkConnection(SettingData=setting, IPNetworkConnection=port, Mode=32768)

Mode parameter affects how is the setting applied. Most commonly used
values are:

	Mode 1 – apply the setting now and make it auto-activated

	Mode 2 – just make it auto-activated, don’t apply now

	Mode 4 – disconnect and disable auto-activation

	Mode 5 – don’t change the setting state, only disable auto-activation

	Mode 32768 – apply the setting

	Mode 32769 – disconnect

Bridging and bonding

Warning

Bridge, bond and vlan support needs to be explicitly enabled when using
0.8 version of NetworkManager as a backend (for example on RHEL-6). Add following
line to the /etc/sysconfig/network file and restart NetworkManager

NM_BOND_BRIDGE_VLAN_ENABLED=yes

Setting up

Use following code to create and activate bond with eth0 and eth1 interfaces:

Get the interfaces
interface1 = ns.LMI_IPNetworkConnection.first_instance({ 'ElementName': 'eth0' })
interface2 = ns.LMI_IPNetworkConnection.first_instance({ 'ElementName': 'eth1' })

Get the capabilities
capability1 = interface1.first_associator(AssocClass="LMI_IPNetworkConnectionElementCapabilities",
 ResultClass="LMI_IPNetworkConnectionCapabilities")
capability2 = interface2.first_associator(AssocClass="LMI_IPNetworkConnectionElementCapabilities",
 ResultClass="LMI_IPNetworkConnectionCapabilities")
Use one of the capabilities to create the bond
result = capability1.LMI_CreateIPSetting(Caption='Bond',
 Type=capability1.LMI_CreateIPSetting.TypeValues.Bonding,
 IPv4Type=capability1.LMI_CreateIPSetting.IPv4TypeValues.DHCP)
setting = result.rparams["SettingData"].to_instance()
Get first slave setting
slave1setting = setting.first_associator_name(ResultClass="LMI_BondingSlaveSettingData",
 AssocClass="LMI_OrderedIPAssignmentComponent")
Enslave the second interface using the second capability
result = capability2.LMI_CreateSlaveSetting(MasterSettingData=setting)
Get second slave setting
slave2setting = result.rparams["SettingData"]
service = ns.LMI_IPConfigurationService.first_instance()
Activate the bond
service.SyncApplySettingToIPNetworkConnection(
 SettingData=slave1setting,
 IPNetworkConnection=interface1,
 Mode=32768)
service.SyncApplySettingToIPNetworkConnection(
 SettingData=slave2setting,
 IPNetworkConnection=interface2,
 Mode=32768)

Displaying current state

Following code displays existing bonds and bonded interfaces:

for linkaggregation in ns.LMI_LinkAggregator8023ad.instances():
 print "Bond: %s" % linkaggregation.Name
 for lagport in linkaggregation.associators(AssocClass="LMI_LinkAggregationBindsTo",
 ResultClass="LMI_LAGPort8023ad"):
 print "Bonded interface: %s" % lagport.Name

Following code displays existing bridges and bridged interfaces:

for switchservice in ns.LMI_SwitchService.instances():
 print "Bridge: %s" % switchservice.Name
 for switchport in switchservice.associators(AssocClass="LMI_SwitchesAmong",
 ResultClass="LMI_SwitchPort"):
 print "Bridged interface: %s" % switchport.Name

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

CIM classes

OpenLMI providers expose wide variety of CIM classes over WBEM interface.
See below for complete list.

	Class reference

	Inheritance tree

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	CIM classes

Class reference

	CIM_ATAPort

	CIM_ATAProtocolEndpoint

	CIM_AbstractBasedOn

	CIM_AbstractComponent

	CIM_AbstractElementAllocatedFromPool

	CIM_AbstractElementStatisticalData

	CIM_Account

	CIM_AccountManagementCapabilities

	CIM_AccountOnSystem

	CIM_AccountSettingData

	CIM_AffectedJobElement

	CIM_AllocatedFromStoragePool

	CIM_AssignedIdentity

	CIM_AssociatedBlockStatisticsManifestCollection

	CIM_AssociatedCacheMemory

	CIM_AssociatedComponentExtent

	CIM_AssociatedJobMethodResult

	CIM_AssociatedMemory

	CIM_AssociatedPowerManagementService

	CIM_AssociatedSensor

	CIM_BasedOn

	CIM_Battery

	CIM_BindsTo

	CIM_BindsToLANEndpoint

	CIM_BlockStatisticsCapabilities

	CIM_BlockStatisticsManifest

	CIM_BlockStatisticsManifestCollection

	CIM_BlockStatisticsService

	CIM_BlockStorageStatisticalData

	CIM_Capabilities

	CIM_Card

	CIM_Chassis

	CIM_Check

	CIM_Chip

	CIM_Collection

	CIM_Component

	CIM_ComputerSystemPackage

	CIM_ConcreteIdentity

	CIM_ConcreteJob

	CIM_Container

	CIM_Controller

	CIM_CoolingDevice

	CIM_DHCPSettingData

	CIM_DNSProtocolEndpoint

	CIM_DNSSettingData

	CIM_DataFile

	CIM_Dependency

	CIM_DeviceFile

	CIM_DeviceSAPImplementation

	CIM_Directory

	CIM_DirectoryContainsFile

	CIM_DiskDrive

	CIM_DiskPartition

	CIM_DiskPartitionConfigurationCapabilities

	CIM_DiskPartitionConfigurationService

	CIM_ElementAllocatedFromPool

	CIM_ElementCapabilities

	CIM_ElementInConnector

	CIM_ElementSettingData

	CIM_ElementSoftwareIdentity

	CIM_ElementStatisticalData

	CIM_EnabledLogicalElement

	CIM_EnabledLogicalElementCapabilities

	CIM_EndpointForIPNetworkConnection

	CIM_EndpointIdentity

	CIM_EthernetPort

	CIM_EthernetPortStatistics

	CIM_ExtendedStaticIPAssignmentSettingData

	CIM_FIFOPipeFile

	CIM_Fan

	CIM_FileIdentity

	CIM_FileSpecification

	CIM_FileSystem

	CIM_FileSystemCapabilities

	CIM_FileSystemConfigurationCapabilities

	CIM_FileSystemConfigurationService

	CIM_FileSystemSetting

	CIM_ForwardingService

	CIM_ForwardsAmong

	CIM_GPTDiskPartition

	CIM_GenericDiskPartition

	CIM_Group

	CIM_HostedAccessPoint

	CIM_HostedCollection

	CIM_HostedDependency

	CIM_HostedFileSystem

	CIM_HostedService

	CIM_IPAssignmentSettingData

	CIM_IPConfigurationService

	CIM_IPNetworkConnection

	CIM_IPProtocolEndpoint

	CIM_IPVersionSettingData

	CIM_Identity

	CIM_Indication

	CIM_InstCreation

	CIM_InstDeletion

	CIM_InstIndication

	CIM_InstMethodCall

	CIM_InstModification

	CIM_InstalledPartitionTable

	CIM_InstalledSoftwareIdentity

	CIM_Job

	CIM_LAGPort8023ad

	CIM_LANEndpoint

	CIM_LinkAggregator8023ad

	CIM_LocalFileSystem

	CIM_Log

	CIM_LogRecord

	CIM_LogicalDevice

	CIM_LogicalDisk

	CIM_LogicalElement

	CIM_LogicalFile

	CIM_LogicalIdentity

	CIM_LogicalPort

	CIM_ManagedElement

	CIM_ManagedSystemElement

	CIM_MediaAccessDevice

	CIM_MediaPartition

	CIM_MediaPresent

	CIM_MemberOfCollection

	CIM_Memory

	CIM_MessageLog

	CIM_MethodResult

	CIM_NetworkPort

	CIM_NetworkPortStatistics

	CIM_NetworkService

	CIM_NextHopIPRoute

	CIM_NextHopRoute

	CIM_NumericSensor

	CIM_OrderedComponent

	CIM_OwningCollectionElement

	CIM_OwningJobElement

	CIM_PCIBridge

	CIM_PCIController

	CIM_PCIDevice

	CIM_PackageInConnector

	CIM_PhysicalComponent

	CIM_PhysicalConnector

	CIM_PhysicalElement

	CIM_PhysicalFrame

	CIM_PhysicalMemory

	CIM_PhysicalPackage

	CIM_PointingDevice

	CIM_PowerManagementCapabilities

	CIM_PowerManagementService

	CIM_PowerSource

	CIM_Processor

	CIM_ProcessorCapabilities

	CIM_ProtocolEndpoint

	CIM_Realizes

	CIM_RecordForLog

	CIM_RecordInLog

	CIM_RemoteAccessAvailableToElement

	CIM_RemoteServiceAccessPoint

	CIM_ResidesOnExtent

	CIM_ResourcePool

	CIM_RouteUsesEndpoint

	CIM_SAPAvailableForElement

	CIM_SAPSAPDependency

	CIM_SecurityService

	CIM_Sensor

	CIM_Service

	CIM_ServiceAccessPoint

	CIM_ServiceAffectsElement

	CIM_ServiceAvailableToElement

	CIM_ServiceSAPDependency

	CIM_Setting

	CIM_SettingData

	CIM_SettingsDefineCapabilities

	CIM_Slot

	CIM_SoftwareIdentity

	CIM_SoftwareIdentityResource

	CIM_SoftwareInstallationService

	CIM_SoftwareInstallationServiceCapabilities

	CIM_StatisticalData

	CIM_StatisticsCapabilities

	CIM_StatisticsCollection

	CIM_StatisticsService

	CIM_StorageCapabilities

	CIM_StorageConfigurationService

	CIM_StorageExtent

	CIM_StoragePool

	CIM_StorageSetting

	CIM_SwitchPort

	CIM_SwitchService

	CIM_SwitchesAmong

	CIM_SymbolicLink

	CIM_SystemComponent

	CIM_SystemDevice

	CIM_SystemPackaging

	CIM_SystemSetting

	CIM_SystemSpecificCollection

	CIM_UnixDeviceFile

	CIM_UnixDirectory

	CIM_UnixFile

	CIM_UserDevice

	CIM_VTOCDiskPartition

	LMI_Account

	LMI_AccountCapabilities

	LMI_AccountInstanceCreationIndication

	LMI_AccountInstanceDeletionIndication

	LMI_AccountManagementCapabilities

	LMI_AccountManagementService

	LMI_AccountManagementServiceCapabilities

	LMI_AccountManagementServiceSettingData

	LMI_AccountOnSystem

	LMI_AccountSettingData

	LMI_AffectedJobElement

	LMI_AffectedNetworkJobElement

	LMI_AffectedSELinuxJobElement

	LMI_AffectedSoftwareJobElement

	LMI_AffectedStorageJobElement

	LMI_AssignedAccountIdentity

	LMI_AssignedGroupIdentity

	LMI_AssociatedBlockStatisticsManifestCollection

	LMI_AssociatedJobMethodResult

	LMI_AssociatedPowerManagementService

	LMI_AssociatedProcessorCacheMemory

	LMI_AssociatedSELinuxJobMethodResult

	LMI_AssociatedSoftwareInstallationServiceCapabilities

	LMI_AssociatedSoftwareJobMethodResult

	LMI_AssociatedStorageJobMethodResult

	LMI_AttachedFileSystem

	LMI_Baseboard

	LMI_BaseboardContainer

	LMI_Battery

	LMI_BatteryPhysicalPackage

	LMI_BatterySystemDevice

	LMI_BindsToLANEndpoint

	LMI_BlockStatisticsCapabilities

	LMI_BlockStatisticsManifest

	LMI_BlockStatisticsManifestCollection

	LMI_BlockStatisticsService

	LMI_BlockStorageStatisticalData

	LMI_BlockStorageStatisticsElementCapabilities

	LMI_BondingMasterSettingData

	LMI_BondingSlaveSettingData

	LMI_BridgingMasterSettingData

	LMI_BridgingSlaveSettingData

	LMI_Chassis

	LMI_ChassisComputerSystemPackage

	LMI_ConcreteJob

	LMI_DHCPSettingData

	LMI_DNSProtocolEndpoint

	LMI_DNSSettingData

	LMI_DataFile

	LMI_DataFormat

	LMI_DirectoryContainsFile

	LMI_DiskDrive

	LMI_DiskDriveATAPort

	LMI_DiskDriveATAProtocolEndpoint

	LMI_DiskDriveDeviceSAPImplementation

	LMI_DiskDriveElementSoftwareIdentity

	LMI_DiskDriveRealizes

	LMI_DiskDriveSAPAvailableForElement

	LMI_DiskDriveSoftwareIdentity

	LMI_DiskDriveSystemDevice

	LMI_DiskPartition

	LMI_DiskPartitionConfigurationCapabilities

	LMI_DiskPartitionConfigurationService

	LMI_DiskPartitionConfigurationSetting

	LMI_DiskPartitionElementCapabilities

	LMI_DiskPartitionElementSettingData

	LMI_DiskPhysicalPackage

	LMI_DiskPhysicalPackageContainer

	LMI_ElementCapabilities

	LMI_EnabledAccountCapabilities

	LMI_EncryptionExtent

	LMI_EncryptionFormat

	LMI_EndpointForIPNetworkConnection

	LMI_EndpointIdentity

	LMI_EthernetPort

	LMI_EthernetPortStatistics

	LMI_ExtendedStaticIPAssignmentSettingData

	LMI_ExtentEncryptionConfigurationService

	LMI_FIFOPipeFile

	LMI_Fan

	LMI_FanAssociatedSensor

	LMI_FanSensor

	LMI_FileIdentity

	LMI_FileSystemCapabilities

	LMI_FileSystemConfigurationCapabilities

	LMI_FileSystemConfigurationElementCapabilities

	LMI_FileSystemConfigurationService

	LMI_FileSystemElementCapabilities

	LMI_FileSystemElementSettingData

	LMI_FileSystemSetting

	LMI_GenericDiskPartition

	LMI_Group

	LMI_HostedAccountManagementService

	LMI_HostedFileSystem

	LMI_HostedIPConfigurationService

	LMI_HostedMount

	LMI_HostedPowerManagementService

	LMI_HostedRealmdService

	LMI_HostedSELinuxService

	LMI_HostedSSSDService

	LMI_HostedSoftwareCollection

	LMI_HostedSoftwareIdentityResource

	LMI_HostedSoftwareInstallationService

	LMI_HostedStorageService

	LMI_HostedStorageStatisticsCollection

	LMI_HostedSystemService

	LMI_IPAssignmentSettingData

	LMI_IPConfigurationService

	LMI_IPConfigurationServiceAffectsElement

	LMI_IPElementSettingData

	LMI_IPNetworkConnection

	LMI_IPNetworkConnectionCapabilities

	LMI_IPNetworkConnectionElementCapabilities

	LMI_IPProtocolEndpoint

	LMI_IPRouteSettingData

	LMI_IPVersionElementSettingData

	LMI_IPVersionSettingData

	LMI_Identity

	LMI_InstalledPartitionTable

	LMI_InstalledSoftwareIdentity

	LMI_JournalLogRecord

	LMI_JournalLogRecordInstanceCreationIndication

	LMI_JournalMessageLog

	LMI_JournalRecordInLog

	LMI_LAGPort8023ad

	LMI_LANEndpoint

	LMI_LUKSBasedOn

	LMI_LUKSFormat

	LMI_LUKSStorageExtent

	LMI_LVAllocatedFromStoragePool

	LMI_LVBasedOn

	LMI_LVElementCapabilities

	LMI_LVElementSettingData

	LMI_LVStorageCapabilities

	LMI_LVStorageExtent

	LMI_LVStorageSetting

	LMI_LinkAggregationBindsTo

	LMI_LinkAggregationConcreteIdentity

	LMI_LinkAggregator8023ad

	LMI_LocalFileSystem

	LMI_Locale

	LMI_MDRAIDBasedOn

	LMI_MDRAIDElementCapabilities

	LMI_MDRAIDElementSettingData

	LMI_MDRAIDFormat

	LMI_MDRAIDStorageCapabilities

	LMI_MDRAIDStorageExtent

	LMI_MDRAIDStorageSetting

	LMI_MediaPresent

	LMI_MemberOfBlockStatisticsManifestCollection

	LMI_MemberOfGroup

	LMI_MemberOfSoftwareCollection

	LMI_MemberOfStorageStatisticsCollection

	LMI_Memory

	LMI_MemoryPhysicalPackage

	LMI_MemoryPhysicalPackageInConnector

	LMI_MemorySlot

	LMI_MemorySlotContainer

	LMI_MemorySystemDevice

	LMI_MethodResult

	LMI_MountConfigurationService

	LMI_MountElementCapabilities

	LMI_MountPoint

	LMI_MountedFileSystem

	LMI_MountedFileSystemCapabilities

	LMI_MountedFileSystemElementSettingData

	LMI_MountedFileSystemSetting

	LMI_NetworkDeviceSAPImplementation

	LMI_NetworkElementCapabilities

	LMI_NetworkEnabledLogicalElementCapabilities

	LMI_NetworkHostedAccessPoint

	LMI_NetworkInstCreation

	LMI_NetworkInstDeletion

	LMI_NetworkInstModification

	LMI_NetworkJob

	LMI_NetworkRemoteAccessAvailableToElement

	LMI_NetworkRemoteServiceAccessPoint

	LMI_NetworkSAPSAPDependency

	LMI_NetworkSystemDevice

	LMI_NextHopIPRoute

	LMI_OrderedIPAssignmentComponent

	LMI_OwningGroup

	LMI_OwningJobElement

	LMI_OwningNetworkJobElement

	LMI_OwningSoftwareJobElement

	LMI_OwningStorageJobElement

	LMI_PCIBridge

	LMI_PCIBridgeSystemDevice

	LMI_PCIDevice

	LMI_PCIDeviceSystemDevice

	LMI_PVFormat

	LMI_PartitionBasedOn

	LMI_PhysicalBatteryContainer

	LMI_PhysicalBatteryRealizes

	LMI_PhysicalMemory

	LMI_PhysicalMemoryContainer

	LMI_PhysicalMemoryRealizes

	LMI_PointingDevice

	LMI_PortPhysicalConnector

	LMI_PortPhysicalConnectorContainer

	LMI_PowerConcreteJob

	LMI_PowerManagementCapabilities

	LMI_PowerManagementService

	LMI_Processor

	LMI_ProcessorCacheMemory

	LMI_ProcessorCapabilities

	LMI_ProcessorChip

	LMI_ProcessorChipContainer

	LMI_ProcessorChipRealizes

	LMI_ProcessorElementCapabilities

	LMI_ProcessorSystemDevice

	LMI_RealmdService

	LMI_ResidesOnExtent

	LMI_ResourceForSoftwareIdentity

	LMI_RootDirectory

	LMI_RouteUsesEndpoint

	LMI_SELinuxBoolean

	LMI_SELinuxElement

	LMI_SELinuxInstCreation

	LMI_SELinuxInstDeletion

	LMI_SELinuxInstModification

	LMI_SELinuxJob

	LMI_SELinuxMethodResult

	LMI_SELinuxPort

	LMI_SELinuxService

	LMI_SELinuxServiceHasElement

	LMI_SSSDAvailableComponent

	LMI_SSSDAvailableDomain

	LMI_SSSDBackend

	LMI_SSSDBackendDomain

	LMI_SSSDBackendProvider

	LMI_SSSDComponent

	LMI_SSSDDomain

	LMI_SSSDDomainSubdomain

	LMI_SSSDMonitor

	LMI_SSSDProvider

	LMI_SSSDResponder

	LMI_SSSDService

	LMI_Service

	LMI_ServiceAffectsIdentity

	LMI_ServiceInstanceModificationIndication

	LMI_SettingsDefineAccountCapabilities

	LMI_SettingsDefineManagementCapabilities

	LMI_SoftwareIdentity

	LMI_SoftwareIdentityChecks

	LMI_SoftwareIdentityFileCheck

	LMI_SoftwareIdentityResource

	LMI_SoftwareInstCreation

	LMI_SoftwareInstDeletion

	LMI_SoftwareInstModification

	LMI_SoftwareInstallationJob

	LMI_SoftwareInstallationService

	LMI_SoftwareInstallationServiceAffectsElement

	LMI_SoftwareInstallationServiceCapabilities

	LMI_SoftwareJob

	LMI_SoftwareMethodResult

	LMI_SoftwareVerificationJob

	LMI_StorageConfigurationService

	LMI_StorageElementStatisticalData

	LMI_StorageExtent

	LMI_StorageInstCreation

	LMI_StorageInstModification

	LMI_StorageJob

	LMI_StorageMethodResult

	LMI_StorageSetting

	LMI_StorageStatisticsCollection

	LMI_SwitchPort

	LMI_SwitchService

	LMI_SwitchesAmong

	LMI_SymbolicLink

	LMI_SystemSlot

	LMI_SystemSlotContainer

	LMI_SystemSoftwareCollection

	LMI_SystemStorageDevice

	LMI_TransientFileSystem

	LMI_UnixDeviceFile

	LMI_UnixDirectory

	LMI_UnixFile

	LMI_UnixSocket

	LMI_VGAllocatedFromStoragePool

	LMI_VGAssociatedComponentExtent

	LMI_VGElementCapabilities

	LMI_VGElementSettingData

	LMI_VGStorageCapabilities

	LMI_VGStoragePool

	LMI_VGStorageSetting

	PCP_MetricValue

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	OpenLMI providers PROVIDERSVER documentation

 	OpenLMI server components

 	CIM classes

Inheritance tree

CIM_AbstractComponent

└── CIM_Component

├── CIM_OrderedComponent

│└── LMI_OrderedIPAssignmentComponent

├── CIM_DirectoryContainsFile

│└── LMI_DirectoryContainsFile

├── CIM_SettingsDefineCapabilities

│├── LMI_SettingsDefineManagementCapabilities

│└── LMI_SettingsDefineAccountCapabilities

├── CIM_SystemComponent

│├── CIM_HostedFileSystem

││└── LMI_HostedFileSystem

│├── CIM_AccountOnSystem

││└── LMI_AccountOnSystem

│└── CIM_SystemDevice

│├── LMI_NetworkSystemDevice

│├── LMI_PCIDeviceSystemDevice

│├── LMI_SystemStorageDevice

│├── LMI_MemorySystemDevice

│├── LMI_BatterySystemDevice

│├── LMI_ProcessorSystemDevice

│├── LMI_PCIBridgeSystemDevice

│└── LMI_DiskDriveSystemDevice

├── CIM_AssociatedComponentExtent

│└── LMI_VGAssociatedComponentExtent

├── CIM_Container

│├── LMI_SystemSlotContainer

│├── LMI_DiskPhysicalPackageContainer

│├── LMI_BaseboardContainer

│├── LMI_PhysicalBatteryContainer

│├── LMI_MemorySlotContainer

│├── LMI_PortPhysicalConnectorContainer

│├── LMI_ProcessorChipContainer

│└── LMI_PhysicalMemoryContainer

└── LMI_RootDirectory

CIM_AbstractElementStatisticalData

└── CIM_ElementStatisticalData

└── LMI_StorageElementStatisticalData

CIM_AffectedJobElement

└── LMI_AffectedJobElement

├── LMI_AffectedSoftwareJobElement

├── LMI_AffectedStorageJobElement

├── LMI_AffectedNetworkJobElement

└── LMI_AffectedSELinuxJobElement

CIM_AssignedIdentity

├── LMI_AssignedGroupIdentity

└── LMI_AssignedAccountIdentity

CIM_AssociatedBlockStatisticsManifestCollection

└── LMI_AssociatedBlockStatisticsManifestCollection

CIM_AssociatedJobMethodResult

└── LMI_AssociatedJobMethodResult

├── LMI_AssociatedSoftwareJobMethodResult

├── LMI_AssociatedSELinuxJobMethodResult

└── LMI_AssociatedStorageJobMethodResult

CIM_Dependency

├── CIM_RemoteAccessAvailableToElement

│└── LMI_NetworkRemoteAccessAvailableToElement

├── LMI_SELinuxServiceHasElement

├── CIM_AbstractBasedOn

│└── CIM_BasedOn

│├── LMI_MDRAIDBasedOn

│├── LMI_PartitionBasedOn

│├── LMI_LVBasedOn

│└── LMI_LUKSBasedOn

├── CIM_MediaPresent

│└── LMI_MediaPresent

├── CIM_RouteUsesEndpoint

│└── LMI_RouteUsesEndpoint

├── CIM_AssociatedSensor

│└── LMI_FanAssociatedSensor

├── CIM_Realizes

│├── LMI_PhysicalMemoryRealizes

│├── LMI_ProcessorChipRealizes

│├── LMI_PhysicalBatteryRealizes

│└── LMI_DiskDriveRealizes

├── CIM_DeviceSAPImplementation

│├── LMI_DiskDriveDeviceSAPImplementation

│└── LMI_NetworkDeviceSAPImplementation

├── LMI_MountPoint

├── CIM_ElementInConnector

│└── CIM_PackageInConnector

│└── LMI_MemoryPhysicalPackageInConnector

├── CIM_ElementSoftwareIdentity

│└── LMI_DiskDriveElementSoftwareIdentity

├── CIM_AbstractElementAllocatedFromPool

│└── CIM_ElementAllocatedFromPool

│└── CIM_AllocatedFromStoragePool

│├── LMI_LVAllocatedFromStoragePool

│└── LMI_VGAllocatedFromStoragePool

├── LMI_AttachedFileSystem

├── CIM_SAPSAPDependency

│├── CIM_EndpointForIPNetworkConnection

││└── LMI_EndpointForIPNetworkConnection

│├── CIM_BindsTo

││├── CIM_BindsToLANEndpoint

│││└── LMI_BindsToLANEndpoint

││└── LMI_LinkAggregationBindsTo

│└── LMI_NetworkSAPSAPDependency

├── CIM_ServiceSAPDependency

│└── CIM_ForwardsAmong

│└── CIM_SwitchesAmong

│└── LMI_SwitchesAmong

├── CIM_SystemPackaging

│└── CIM_ComputerSystemPackage

│└── LMI_ChassisComputerSystemPackage

├── CIM_AssociatedMemory

│└── CIM_AssociatedCacheMemory

│└── LMI_AssociatedProcessorCacheMemory

├── LMI_HostedMount

├── CIM_ResidesOnExtent

│└── LMI_ResidesOnExtent

├── CIM_HostedDependency

│├── CIM_HostedAccessPoint

││├── LMI_HostedSoftwareIdentityResource

││└── LMI_NetworkHostedAccessPoint

│├── CIM_HostedService

││├── LMI_HostedIPConfigurationService

││├── LMI_HostedSSSDService

││├── LMI_HostedSystemService

││├── LMI_HostedStorageService

││├── LMI_HostedAccountManagementService

││├── LMI_HostedSoftwareInstallationService

││├── LMI_HostedSELinuxService

││├── LMI_HostedRealmdService

││└── LMI_HostedPowerManagementService

│└── CIM_HostedCollection

│├── LMI_HostedSoftwareCollection

│└── LMI_HostedStorageStatisticsCollection

└── CIM_InstalledPartitionTable

└── LMI_InstalledPartitionTable

CIM_ElementCapabilities

├── LMI_BlockStorageStatisticsElementCapabilities

├── LMI_AssociatedSoftwareInstallationServiceCapabilities

├── LMI_NetworkElementCapabilities

├── LMI_FileSystemConfigurationElementCapabilities

├── LMI_MDRAIDElementCapabilities

├── LMI_LVElementCapabilities

├── LMI_FileSystemElementCapabilities

├── LMI_ProcessorElementCapabilities

├── LMI_MountElementCapabilities

├── LMI_VGElementCapabilities

├── LMI_AccountManagementServiceCapabilities

├── LMI_AccountCapabilities

├── LMI_IPNetworkConnectionElementCapabilities

├── LMI_ElementCapabilities

└── LMI_DiskPartitionElementCapabilities

CIM_ElementSettingData

├── LMI_FileSystemElementSettingData

├── LMI_IPVersionElementSettingData

├── LMI_MDRAIDElementSettingData

├── LMI_AccountManagementServiceSettingData

├── LMI_LVElementSettingData

├── LMI_DiskPartitionElementSettingData

├── LMI_IPElementSettingData

├── LMI_VGElementSettingData

└── LMI_MountedFileSystemElementSettingData

CIM_Indication

└── CIM_InstIndication

├── CIM_InstModification

│├── LMI_NetworkInstModification

│├── LMI_ServiceInstanceModificationIndication

│├── LMI_SoftwareInstModification

│├── LMI_SELinuxInstModification

│└── LMI_StorageInstModification

├── CIM_InstCreation

│├── LMI_SoftwareInstCreation

│├── LMI_JournalLogRecordInstanceCreationIndication

│├── LMI_SELinuxInstCreation

│├── LMI_AccountInstanceCreationIndication

│├── LMI_StorageInstCreation

│└── LMI_NetworkInstCreation

├── CIM_InstMethodCall

└── CIM_InstDeletion

├── LMI_SELinuxInstDeletion

├── LMI_SoftwareInstDeletion

├── LMI_NetworkInstDeletion

└── LMI_AccountInstanceDeletionIndication

CIM_InstalledSoftwareIdentity

└── LMI_InstalledSoftwareIdentity

CIM_LogicalIdentity

├── CIM_EndpointIdentity

│└── LMI_EndpointIdentity

├── CIM_ConcreteIdentity

│└── LMI_LinkAggregationConcreteIdentity

└── CIM_FileIdentity

└── LMI_FileIdentity

CIM_ManagedElement

├── LMI_SSSDDomain

├── CIM_Identity

│└── LMI_Identity

├── CIM_SettingData

│├── CIM_IPAssignmentSettingData

││├── LMI_IPAssignmentSettingData

│││├── LMI_BondingMasterSettingData

│││├── LMI_BridgingSlaveSettingData

│││├── LMI_BridgingMasterSettingData

│││├── LMI_BondingSlaveSettingData

│││└── LMI_IPRouteSettingData

││├── CIM_ExtendedStaticIPAssignmentSettingData

│││└── LMI_ExtendedStaticIPAssignmentSettingData

││├── CIM_DHCPSettingData

│││└── LMI_DHCPSettingData

││└── CIM_DNSSettingData

││└── LMI_DNSSettingData

│├── CIM_IPVersionSettingData

││└── LMI_IPVersionSettingData

│├── LMI_MountedFileSystemSetting

│├── CIM_FileSystemSetting

││└── LMI_FileSystemSetting

│├── CIM_StorageSetting

││└── LMI_StorageSetting

││├── LMI_VGStorageSetting

││├── LMI_MDRAIDStorageSetting

││└── LMI_LVStorageSetting

│├── CIM_AccountSettingData

││└── LMI_AccountSettingData

│└── LMI_DiskPartitionConfigurationSetting

├── LMI_SSSDComponent

│├── LMI_SSSDBackend

│├── LMI_SSSDResponder

│└── LMI_SSSDMonitor

├── LMI_SSSDProvider

├── CIM_MethodResult

│└── LMI_MethodResult

│├── LMI_SELinuxMethodResult

│├── LMI_SoftwareMethodResult

│└── LMI_StorageMethodResult

├── CIM_Check

│└── CIM_FileSpecification

│└── LMI_SoftwareIdentityFileCheck

├── CIM_Capabilities

│├── CIM_DiskPartitionConfigurationCapabilities

││└── LMI_DiskPartitionConfigurationCapabilities

│├── CIM_SoftwareInstallationServiceCapabilities

││└── LMI_SoftwareInstallationServiceCapabilities

│├── CIM_FileSystemCapabilities

││└── LMI_FileSystemCapabilities

│├── CIM_FileSystemConfigurationCapabilities

││└── LMI_FileSystemConfigurationCapabilities

│├── CIM_StatisticsCapabilities

││└── CIM_BlockStatisticsCapabilities

││└── LMI_BlockStatisticsCapabilities

│├── CIM_PowerManagementCapabilities

││└── LMI_PowerManagementCapabilities

│├── LMI_MountedFileSystemCapabilities

│├── CIM_StorageCapabilities

││├── LMI_VGStorageCapabilities

││├── LMI_LVStorageCapabilities

││└── LMI_MDRAIDStorageCapabilities

│└── CIM_EnabledLogicalElementCapabilities

│├── LMI_EnabledAccountCapabilities

│├── CIM_ProcessorCapabilities

││└── LMI_ProcessorCapabilities

│├── LMI_IPNetworkConnectionCapabilities

│├── LMI_NetworkEnabledLogicalElementCapabilities

│└── CIM_AccountManagementCapabilities

│└── LMI_AccountManagementCapabilities

├── LMI_MountedFileSystem

├── CIM_RecordForLog

│└── CIM_LogRecord

│└── LMI_JournalLogRecord

├── CIM_ManagedSystemElement

│├── CIM_LogicalElement

││├── CIM_LogicalFile

│││├── CIM_FIFOPipeFile

││││└── LMI_FIFOPipeFile

│││├── CIM_DeviceFile

││││└── CIM_UnixDeviceFile

││││└── LMI_UnixDeviceFile

│││├── CIM_Directory

││││└── CIM_UnixDirectory

││││└── LMI_UnixDirectory

│││├── CIM_DataFile

││││├── LMI_UnixSocket

││││└── LMI_DataFile

│││└── CIM_SymbolicLink

│││└── LMI_SymbolicLink

││├── CIM_EnabledLogicalElement

│││├── CIM_Account

││││└── LMI_Account

│││├── CIM_Log

││││└── CIM_MessageLog

││││└── LMI_JournalMessageLog

│││├── LMI_DataFormat

││││├── LMI_PVFormat

││││├── LMI_EncryptionFormat

│││││└── LMI_LUKSFormat

││││└── LMI_MDRAIDFormat

│││├── CIM_Service

││││├── LMI_Service

││││├── CIM_SoftwareInstallationService

│││││└── LMI_SoftwareInstallationService

││││├── CIM_SecurityService

│││││└── LMI_AccountManagementService

││││├── LMI_RealmdService

││││├── CIM_DiskPartitionConfigurationService

│││││└── LMI_DiskPartitionConfigurationService

││││├── CIM_StatisticsService

│││││└── CIM_BlockStatisticsService

│││││└── LMI_BlockStatisticsService

││││├── LMI_SSSDService

││││├── CIM_StorageConfigurationService

│││││└── LMI_StorageConfigurationService

││││├── CIM_FileSystemConfigurationService

│││││└── LMI_FileSystemConfigurationService

││││├── CIM_NetworkService

│││││└── CIM_ForwardingService

│││││└── CIM_SwitchService

│││││└── LMI_SwitchService

││││├── CIM_IPConfigurationService

│││││└── LMI_IPConfigurationService

││││├── CIM_PowerManagementService

│││││└── LMI_PowerManagementService

││││├── LMI_MountConfigurationService

││││├── LMI_SELinuxService

││││└── LMI_ExtentEncryptionConfigurationService

│││├── CIM_LogicalDevice

││││├── CIM_UserDevice

│││││└── CIM_PointingDevice

│││││└── LMI_PointingDevice

││││├── CIM_StorageExtent

│││││├── CIM_LogicalDisk

│││││├── CIM_Memory

││││││├── LMI_ProcessorCacheMemory

││││││└── LMI_Memory

│││││├── CIM_MediaPartition

││││││└── CIM_GenericDiskPartition

││││││├── CIM_DiskPartition

│││││││└── LMI_DiskPartition

││││││├── CIM_VTOCDiskPartition

││││││├── CIM_GPTDiskPartition

││││││└── LMI_GenericDiskPartition

│││││└── LMI_StorageExtent

│││││├── LMI_LVStorageExtent

│││││├── LMI_EncryptionExtent

││││││└── LMI_LUKSStorageExtent

│││││└── LMI_MDRAIDStorageExtent

││││├── CIM_PowerSource

│││││└── CIM_Battery

│││││└── LMI_Battery

││││├── CIM_MediaAccessDevice

│││││└── CIM_DiskDrive

│││││└── LMI_DiskDrive

││││├── CIM_CoolingDevice

│││││└── CIM_Fan

│││││└── LMI_Fan

││││├── CIM_Processor

│││││└── LMI_Processor

││││├── CIM_Controller

│││││└── CIM_PCIController

│││││└── CIM_PCIDevice

│││││├── CIM_PCIBridge

││││││└── LMI_PCIBridge

│││││└── LMI_PCIDevice

││││├── CIM_Sensor

│││││└── CIM_NumericSensor

│││││└── LMI_FanSensor

││││└── CIM_LogicalPort

││││├── CIM_NetworkPort

│││││└── CIM_EthernetPort

│││││└── LMI_EthernetPort

││││└── CIM_ATAPort

││││└── LMI_DiskDriveATAPort

│││├── CIM_ServiceAccessPoint

││││├── CIM_IPNetworkConnection

│││││└── LMI_IPNetworkConnection

││││├── CIM_ProtocolEndpoint

│││││├── CIM_LinkAggregator8023ad

││││││└── LMI_LinkAggregator8023ad

│││││├── CIM_SwitchPort

││││││└── LMI_SwitchPort

│││││├── CIM_DNSProtocolEndpoint

││││││└── LMI_DNSProtocolEndpoint

│││││├── CIM_IPProtocolEndpoint

││││││└── LMI_IPProtocolEndpoint

│││││├── CIM_ATAProtocolEndpoint

││││││└── LMI_DiskDriveATAProtocolEndpoint

│││││├── CIM_LAGPort8023ad

││││││└── LMI_LAGPort8023ad

│││││└── CIM_LANEndpoint

│││││└── LMI_LANEndpoint

││││└── CIM_RemoteServiceAccessPoint

││││├── CIM_SoftwareIdentityResource

│││││└── LMI_SoftwareIdentityResource

││││└── LMI_NetworkRemoteServiceAccessPoint

│││└── CIM_FileSystem

│││└── CIM_LocalFileSystem

│││├── LMI_LocalFileSystem

│││└── LMI_TransientFileSystem

││├── CIM_SoftwareIdentity

│││├── LMI_SoftwareIdentity

│││└── LMI_DiskDriveSoftwareIdentity

││├── CIM_ResourcePool

│││└── CIM_StoragePool

│││└── LMI_VGStoragePool

││├── CIM_UnixFile

│││└── LMI_UnixFile

││└── CIM_Job

││└── CIM_ConcreteJob

││├── LMI_PowerConcreteJob

││└── LMI_ConcreteJob

││├── LMI_NetworkJob

││├── LMI_SoftwareJob

│││├── LMI_SoftwareInstallationJob

│││└── LMI_SoftwareVerificationJob

││├── LMI_SELinuxJob

││└── LMI_StorageJob

│└── CIM_PhysicalElement

│├── CIM_PhysicalPackage

││├── LMI_DiskPhysicalPackage

││├── LMI_BatteryPhysicalPackage

││├── CIM_Card

│││└── LMI_Baseboard

││├── CIM_PhysicalFrame

│││└── CIM_Chassis

│││└── LMI_Chassis

││└── LMI_MemoryPhysicalPackage

│├── CIM_PhysicalComponent

││└── CIM_Chip

││├── CIM_PhysicalMemory

│││└── LMI_PhysicalMemory

││└── LMI_ProcessorChip

│└── CIM_PhysicalConnector

│├── CIM_Slot

││├── LMI_SystemSlot

││└── LMI_MemorySlot

│└── LMI_PortPhysicalConnector

├── LMI_SELinuxElement

│├── LMI_SELinuxBoolean

│└── LMI_SELinuxPort

├── CIM_Collection

│├── CIM_Group

││└── LMI_Group

│└── CIM_SystemSpecificCollection

│├── CIM_BlockStatisticsManifestCollection

││└── LMI_BlockStatisticsManifestCollection

│├── CIM_StatisticsCollection

││└── LMI_StorageStatisticsCollection

│└── LMI_SystemSoftwareCollection

├── CIM_StatisticalData

│├── PCP_MetricValue

│├── CIM_NetworkPortStatistics

││└── CIM_EthernetPortStatistics

││└── LMI_EthernetPortStatistics

│└── CIM_BlockStorageStatisticalData

│└── LMI_BlockStorageStatisticalData

├── CIM_Setting

│└── CIM_SystemSetting

│└── LMI_Locale

├── CIM_NextHopRoute

│└── CIM_NextHopIPRoute

│└── LMI_NextHopIPRoute

└── CIM_BlockStatisticsManifest

└── LMI_BlockStatisticsManifest

CIM_MemberOfCollection

├── LMI_MemberOfGroup

├── LMI_MemberOfStorageStatisticsCollection

├── LMI_MemberOfBlockStatisticsManifestCollection

└── LMI_MemberOfSoftwareCollection

CIM_OwningCollectionElement

└── LMI_OwningGroup

CIM_OwningJobElement

└── LMI_OwningJobElement

├── LMI_OwningSoftwareJobElement

├── LMI_OwningStorageJobElement

└── LMI_OwningNetworkJobElement

CIM_RecordInLog

└── LMI_JournalRecordInLog

CIM_SAPAvailableForElement

├── LMI_ResourceForSoftwareIdentity

└── LMI_DiskDriveSAPAvailableForElement

CIM_ServiceAffectsElement

├── LMI_ServiceAffectsIdentity

├── LMI_SoftwareInstallationServiceAffectsElement

└── LMI_IPConfigurationServiceAffectsElement

CIM_ServiceAvailableToElement

└── CIM_AssociatedPowerManagementService

└── LMI_AssociatedPowerManagementService

LMI_SSSDAvailableComponent

LMI_SSSDAvailableDomain

LMI_SSSDBackendDomain

LMI_SSSDBackendProvider

LMI_SSSDDomainSubdomain

LMI_SoftwareIdentityChecks

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	OpenLMI providers PROVIDERSVER documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lmi	

 	
 	
 lmi.scripts.account	

 	
 	
 lmi.scripts.common	

 	
 	
 lmi.scripts.common.command	

 	
 	
 lmi.scripts.common.command.base	

 	
 	
 lmi.scripts.common.command.checkresult	

 	
 	
 lmi.scripts.common.command.endpoint	

 	
 	
 lmi.scripts.common.command.helper	

 	
 	
 lmi.scripts.common.command.lister	

 	
 	
 lmi.scripts.common.command.meta	

 	
 	
 lmi.scripts.common.command.multiplexer	

 	
 	
 lmi.scripts.common.command.select	

 	
 	
 lmi.scripts.common.command.session	

 	
 	
 lmi.scripts.common.command.show	

 	
 	
 lmi.scripts.common.command.util	

 	
 	
 lmi.scripts.common.configuration	

 	
 	
 lmi.scripts.common.errors	

 	
 	
 lmi.scripts.common.formatter	

 	
 	
 lmi.scripts.common.formatter.command	

 	
 	
 lmi.scripts.common.lmi_logging	

 	
 	
 lmi.scripts.common.session	

 	
 	
 lmi.scripts.common.util	

 	
 	
 lmi.scripts.common.versioncheck	

 	
 	
 lmi.scripts.common.versioncheck.parser	

 	
 	
 lmi.scripts.hardware	

 	
 	
 lmi.scripts.journald	

 	
 	
 lmi.scripts.locale	

 	
 	
 lmi.scripts.logicalfile.logicalfile	

 	
 	
 lmi.scripts.networking	

 	
 	
 lmi.scripts.powermanagement	

 	
 	
 lmi.scripts.realmd	

 	
 	
 lmi.scripts.service	

 	
 	
 lmi.scripts.software	

 	
 	
 lmi.scripts.sssd	

 	
 	
 lmi.scripts.storage.common	

 	
 	
 lmi.scripts.storage.fs	

 	
 	
 lmi.scripts.storage.luks	

 	
 	
 lmi.scripts.storage.lvm	

 	
 	
 lmi.scripts.storage.partition	

 	
 	
 lmi.scripts.storage.raid	

 	
 	
 lmi.scripts.storage.show	

 	
 	
 lmi.scripts.system	

 	
 	
 lmi.shell.LMIBaseObject	

 	
 	
 lmi.shell.LMICIMXMLClient	

 	
 	
 lmi.shell.LMIClass	

 	
 	
 lmi.shell.LMICompleter	

 	
 	
 lmi.shell.LMIConnection	

 	
 	
 lmi.shell.LMIConsole	

 	
 	
 lmi.shell.LMIConstantValues	

 	
 	
 lmi.shell.LMIDecorators	

 	
 	
 lmi.shell.LMIExceptions	

 	
 	
 lmi.shell.LMIFormatter	

 	
 	
 lmi.shell.LMIHelper	

 	
 	
 lmi.shell.LMIIndicationListener	

 	
 	
 lmi.shell.LMIInstance	

 	
 	
 lmi.shell.LMIInstanceName	

 	
 	
 lmi.shell.LMIJob	

 	
 	
 lmi.shell.LMIMethod	

 	
 	
 lmi.shell.LMINamespace	

 	
 	
 lmi.shell.LMIObjectFactory	

 	
 	
 lmi.shell.LMIReturnValue	

 	
 	
 lmi.shell.LMIShellCache	

 	
 	
 lmi.shell.LMIShellClient	

 	
 	
 lmi.shell.LMIShellConfig	

 	
 	
 lmi.shell.LMIShellLogger	

 	
 	
 lmi.shell.LMIShellOptions	

 	
 	
 lmi.shell.LMIShellVersion	

 	
 	
 lmi.shell.LMISubscription	

 	
 	
 lmi.shell.LMIUtil	

 	
 	
 lmi.shell.LMIWSMANClient	

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	OpenLMI providers PROVIDERSVER documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	activate() (in module lmi.scripts.networking)

 	active (lmi.shell.LMIShellCache.LMIShellCache attribute)

 	add_class() (lmi.shell.LMIShellCache.LMIShellCache method)

 	add_dns_server() (in module lmi.scripts.networking)

 	add_handler() (lmi.shell.LMIIndicationListener.LMIIndicationListener method)

 	add_ip_address() (in module lmi.scripts.networking)

 	add_luks_passphrase() (in module lmi.scripts.storage.luks)

 	add_static_route() (in module lmi.scripts.networking)

 	

 	add_superclass() (lmi.shell.LMIShellCache.LMIShellCache method)

 	add_to_group() (in module lmi.scripts.account)

 	And (class in lmi.scripts.common.versioncheck.parser)

 	app (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	association() (lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	associator_names() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	associators() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	attr_matches() (lmi.shell.LMICompleter.LMICompleter method)

B

 	

 	bnf_parser() (in module lmi.scripts.common.versioncheck.parser)

C

 	

 	cache (lmi.shell.LMIShellClient.LMIShellClient attribute)

 	call_method() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	callback_attach() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	callback_detach() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	cert_file (lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	check_result() (lmi.scripts.common.command.checkresult.LmiCheckResult method)

 	CheckResultMetaClass (class in lmi.scripts.common.command.meta)

 	child_commands() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	

 	(lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer class method)

 	cim_namespace() (lmi.scripts.common.command.session.LmiSessionCommand class method)

 	CIMError

 	classes() (lmi.shell.LMINamespace.LMINamespace method)

 	classname (lmi.shell.LMIClass.LMIClass attribute)

 	

 	(lmi.shell.LMIInstance.LMIInstance attribute)

 	(lmi.shell.LMIInstanceName.LMIInstanceName attribute)

 	clear() (lmi.shell.LMIShellCache.LMIShellCache method)

 	clear_cache() (lmi.shell.LMIConnection.LMIConnection method)

 	clear_history() (lmi.shell.LMIConsole.LMIConsole method)

 	client (lmi.shell.LMIConnection.LMIConnection attribute)

 	close_luks() (in module lmi.scripts.storage.luks)

 	cmd_name (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	cmd_name_parts (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	cmp_profiles() (in module lmi.scripts.common.versioncheck)

 	cmp_version() (in module lmi.scripts.common.versioncheck.parser)

 	

 	complete() (lmi.shell.LMICompleter.LMICompleter method)

 	Configuration (class in lmi.scripts.common.configuration)

 	connect() (in module lmi.shell.LMIConnection)

 	

 	(lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	(lmi.shell.LMIConnection.LMIConnection method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	connection (lmi.shell.LMIBaseObject.LMIWrapperBaseObject attribute)

 	ConnectionError

 	copy() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	cql() (lmi.shell.LMINamespace.LMINamespace method)

 	create_fs() (in module lmi.scripts.storage.fs)

 	create_group() (in module lmi.scripts.account)

 	create_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIClass.LMIClass method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	create_luks() (in module lmi.scripts.storage.luks)

 	create_lv() (in module lmi.scripts.storage.lvm)

 	create_partition() (in module lmi.scripts.storage.partition)

 	create_partition_table() (in module lmi.scripts.storage.partition)

 	create_raid() (in module lmi.scripts.storage.raid)

 	create_setting() (in module lmi.scripts.networking)

 	create_user() (in module lmi.scripts.account)

 	create_vg() (in module lmi.scripts.storage.lvm)

 	critical() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	CsvFormatter (class in lmi.scripts.common.formatter)

 	cwd_first_in_path (lmi.shell.LMIShellOptions.LMIShellOptions attribute)

D

 	

 	deactivate() (in module lmi.scripts.networking)

 	debug() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	debug_level() (in module lmi.scripts.sssd)

 	DEFAULT_FORMAT_STRING (in module lmi.scripts.common.configuration)

 	DEFAULT_FORMATTER_OPTIONS (in module lmi.scripts.common.command.base)

 	default_options() (lmi.scripts.common.configuration.Configuration class method)

 	delete() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	(lmi.shell.LMISubscription.LMISubscription method)

 	delete_format() (in module lmi.scripts.storage.fs)

 	delete_group() (in module lmi.scripts.account)

 	delete_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	delete_luks_passphrase() (in module lmi.scripts.storage.luks)

 	delete_lv() (in module lmi.scripts.storage.lvm)

 	

 	delete_partition() (in module lmi.scripts.storage.partition)

 	delete_raid() (in module lmi.scripts.storage.raid)

 	delete_setting() (in module lmi.scripts.networking)

 	delete_user() (in module lmi.scripts.account)

 	delete_vg() (in module lmi.scripts.storage.lvm)

 	dest_pos_args_count() (lmi.scripts.common.command.endpoint.LmiEndPointCommand class method)

 	

 	(lmi.scripts.common.command.session.LmiSessionCommand class method)

 	device_show() (in module lmi.scripts.storage.show)

 	device_show_data() (in module lmi.scripts.storage.show)

 	device_show_device() (in module lmi.scripts.storage.show)

 	disconnect() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIConnection.LMIConnection method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	doc() (lmi.shell.LMIClass.LMIClass method)

 	

 	(lmi.shell.LMIInstance.LMIInstance method)

 	(lmi.shell.LMIMethod.LMIMethod method)

 	dummy() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

E

 	

 	enable_service() (in module lmi.scripts.service)

 	encoding (lmi.scripts.common.formatter.Formatter attribute)

 	EndPointCommandMetaClass (class in lmi.scripts.common.command.meta)

 	enslave() (in module lmi.scripts.networking)

 	enumerate() (lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	enumerate_iter() (lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	enumerate_iter_with_uri() (lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	
 environment variable

 	

 	PAGER, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	error() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	

 	(lmi.shell.LMIShellOptions.LMIShellOptionParser method)

 	ErrorFormatter (class in lmi.scripts.common.formatter)

 	

 	escape_cql() (in module lmi.scripts.storage.common)

 	eval_expr() (lmi.scripts.common.command.select.LmiSelectCommand method)

 	eval_respl() (in module lmi.scripts.common.versioncheck)

 	evaluate() (lmi.scripts.common.versioncheck.parser.SemanticGroup method)

 	exception() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	exec_query() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	execute() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	execute_on_connection() (lmi.scripts.common.command.session.LmiSessionCommand method)

 	Expr (class in lmi.scripts.common.versioncheck.parser)

 	expr() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

F

 	

 	fallback_command() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer class method)

 	fancy_format() (lmi.shell.LMIFormatter.LMIFormatter method)

 	fetch() (lmi.shell.LMIClass.LMIClass method)

 	FILE_TYPES (in module lmi.scripts.software)

 	FilteredDict (class in lmi.scripts.common.util)

 	find_package() (in module lmi.scripts.software)

 	first_associator() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	first_associator_name() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	first_instance() (lmi.shell.LMIClass.LMIClass method)

 	first_instance_name() (lmi.shell.LMIClass.LMIClass method)

 	first_reference() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	first_reference_name() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	format() (lmi.scripts.common.lmi_logging.LevelDispatchingFormatter method)

 	

 	(lmi.shell.LMIFormatter.LMIClassFormatter method)

 	(lmi.shell.LMIFormatter.LMIFormatter method)

 	(lmi.shell.LMIFormatter.LMIInstanceFormatter method)

 	(lmi.shell.LMIFormatter.LMIMethodFormatter method)

 	(lmi.shell.LMIFormatter.LMIMofFormatter method)

 	(lmi.shell.LMIFormatter.LMITextFormatter method)

 	

 	format_memory_size() (in module lmi.scripts.hardware)

 	

 	(in module lmi.scripts.system)

 	format_method() (lmi.shell.LMIFormatter.LMIMethodFormatter method)

 	format_options (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	format_parameter() (lmi.shell.LMIFormatter.LMIMethodFormatter method)

 	format_property() (lmi.shell.LMIFormatter.LMIClassFormatter method)

 	

 	(lmi.shell.LMIFormatter.LMIInstanceFormatter method)

 	format_qualifier() (lmi.shell.LMIFormatter.LMIMethodFormatter method)

 	format_show() (in module lmi.scripts.storage.show)

 	Formatter (class in lmi.scripts.common.formatter)

 	formatter (lmi.scripts.common.command.endpoint.LmiEndPointCommand attribute)

 	formatter_factory() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	FormatterCommand (class in lmi.scripts.common.formatter.command)

 	fs_show() (in module lmi.scripts.storage.show)

G

 	

 	get_active_settings() (in module lmi.scripts.networking)

 	get_all_info() (in module lmi.scripts.hardware)

 	get_all_instances() (in module lmi.scripts.hardware)

 	

 	(in module lmi.scripts.system)

 	get_applicable_devices() (in module lmi.scripts.networking)

 	get_associator_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_associators() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_available_settings() (in module lmi.scripts.networking)

 	get_children() (in module lmi.scripts.storage.common)

 	get_class() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMINamespace.LMINamespace method)

 	(lmi.shell.LMIShellCache.LMIShellCache method)

 	(lmi.shell.LMIShellClient.LMIShellClient method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_class_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIShellClient.LMIShellClient method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_class_version() (in module lmi.scripts.common.versioncheck)

 	get_classes() (lmi.shell.LMIShellCache.LMIShellCache method)

 	get_cmd_name_parts() (lmi.scripts.common.command.base.LmiBaseCommand method)

 	get_color_sequence() (in module lmi.scripts.common.lmi_logging)

 	get_colored_string() (in module lmi.scripts.hardware)

 	get_columns() (lmi.scripts.common.command.lister.LmiBaseListerCommand class method)

 	get_computer_system() (in module lmi.scripts.common)

 	get_conditionals() (lmi.scripts.common.command.select.LmiSelectCommand class method)

 	get_cpu_info() (in module lmi.scripts.hardware)

 	get_credentials() (lmi.scripts.common.session.Session method)

 	get_default_gateways() (in module lmi.scripts.networking)

 	get_description() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	get_device_by_name() (in module lmi.scripts.networking)

 	get_device_format_label() (in module lmi.scripts.storage.fs)

 	get_devices() (in module lmi.scripts.storage.common)

 	get_directory_instance() (in module lmi.scripts.logicalfile.logicalfile)

 	get_directory_name_properties() (in module lmi.scripts.logicalfile.logicalfile)

 	get_disk_partition_table() (in module lmi.scripts.storage.partition)

 	get_disk_partitions() (in module lmi.scripts.storage.partition)

 	get_dns_servers() (in module lmi.scripts.networking)

 	get_enabled_string() (in module lmi.scripts.service)

 	get_file_identification() (in module lmi.scripts.logicalfile.logicalfile)

 	get_format_label() (in module lmi.scripts.storage.fs)

 	get_format_on_device() (in module lmi.scripts.storage.fs)

 	get_formats() (in module lmi.scripts.storage.fs)

 	get_group() (in module lmi.scripts.account)

 	get_hostname() (in module lmi.scripts.hardware)

 	

 	(in module lmi.scripts.system)

 	get_hwinfo() (in module lmi.scripts.system)

 	get_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_instance_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_instances() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_ip_addresses() (in module lmi.scripts.networking)

 	get_ipv4_addresses() (in module lmi.scripts.networking)

 	get_ipv6_addresses() (in module lmi.scripts.networking)

 	get_largest_partition_size() (in module lmi.scripts.storage.partition)

 	get_locale() (in module lmi.scripts.locale)

 	get_logger() (in module lmi.scripts.common.lmi_logging)

 	

 	get_luks_device() (in module lmi.scripts.storage.luks)

 	get_luks_list() (in module lmi.scripts.storage.luks)

 	get_lv_vg() (in module lmi.scripts.storage.lvm)

 	get_lvs() (in module lmi.scripts.storage.lvm)

 	get_mac() (in module lmi.scripts.networking)

 	get_memory_info() (in module lmi.scripts.hardware)

 	get_module_name() (in module lmi.scripts.common.command.util)

 	get_motherboard_info() (in module lmi.scripts.hardware)

 	get_namespace() (lmi.shell.LMIConnection.LMIConnection method)

 	get_networkinfo() (in module lmi.scripts.system)

 	get_osinfo() (in module lmi.scripts.system)

 	get_package_nevra() (in module lmi.scripts.software)

 	get_parents() (in module lmi.scripts.storage.common)

 	get_partition_disk() (in module lmi.scripts.storage.partition)

 	get_partition_tables() (in module lmi.scripts.storage.partition)

 	get_partitions() (in module lmi.scripts.storage.partition)

 	get_passphrase_count() (in module lmi.scripts.storage.luks)

 	get_profile_version() (in module lmi.scripts.common.versioncheck)

 	get_raid_members() (in module lmi.scripts.storage.raid)

 	get_raids() (in module lmi.scripts.storage.raid)

 	get_reference_names() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_references() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_repository() (in module lmi.scripts.software)

 	get_service() (in module lmi.scripts.service)

 	get_servicesinfo() (in module lmi.scripts.system)

 	get_setting_by_caption() (in module lmi.scripts.networking)

 	get_setting_ip4_method() (in module lmi.scripts.networking)

 	get_setting_ip6_method() (in module lmi.scripts.networking)

 	get_setting_type() (in module lmi.scripts.networking)

 	get_single_instance() (in module lmi.scripts.hardware)

 	

 	(in module lmi.scripts.system)

 	get_static_routes() (in module lmi.scripts.networking)

 	get_status_string() (in module lmi.scripts.service)

 	get_sub_setting() (in module lmi.scripts.networking)

 	get_superclass() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIShellCache.LMIShellCache method)

 	(lmi.shell.LMIShellClient.LMIShellClient method)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	get_system_info() (in module lmi.scripts.hardware)

 	

 	(in module lmi.scripts.system)

 	get_terminal_width() (in module lmi.scripts.common.formatter)

 	get_tp_vgs() (in module lmi.scripts.storage.lvm)

 	get_tps() (in module lmi.scripts.storage.lvm)

 	get_unconnected() (lmi.scripts.common.session.Session method)

 	get_usage() (lmi.scripts.common.command.base.LmiBaseCommand method)

 	

 	(lmi.scripts.common.command.select.LmiSelectCommand method)

 	get_user() (in module lmi.scripts.account)

 	get_users_in_group() (in module lmi.scripts.account)

 	get_vg_lvs() (in module lmi.scripts.storage.lvm)

 	get_vg_pvs() (in module lmi.scripts.storage.lvm)

 	get_vg_tps() (in module lmi.scripts.storage.lvm)

 	get_vgs() (in module lmi.scripts.storage.lvm)

 	global_matches() (lmi.shell.LMICompleter.LMICompleter method)

H

 	

 	has_own_usage() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	has_superclass() (lmi.shell.LMIShellCache.LMIShellCache method)

 	history_file (lmi.scripts.common.configuration.Configuration attribute)

 	

 	(lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	history_length (lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	history_max_length (lmi.scripts.common.configuration.Configuration attribute)

 	

 	host_counter (lmi.scripts.common.formatter.Formatter attribute)

 	hostname (lmi.shell.LMICIMXMLClient.LMICIMXMLClient attribute)

 	

 	(lmi.shell.LMIConnection.LMIConnection attribute)

 	(lmi.shell.LMIInstanceName.LMIInstanceName attribute)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient attribute)

 	hostnames (lmi.scripts.common.session.Session attribute)

 	human_friendly (lmi.scripts.common.configuration.Configuration attribute)

I

 	

 	info() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	init_result() (in module lmi.scripts.hardware)

 	install_from_uri() (in module lmi.scripts.software)

 	install_package() (in module lmi.scripts.software)

 	instance_names() (lmi.shell.LMIClass.LMIClass method)

 	InstanceListerMetaClass (class in lmi.scripts.common.command.meta)

 	instances() (lmi.shell.LMIClass.LMIClass method)

 	interact (lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	interact() (lmi.shell.LMIConsole.LMIConsole method)

 	interactive (lmi.shell.LMIShellClient.LMIShellClient attribute)

 	

 	(lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	interpret() (lmi.shell.LMIConsole.LMIConsole method)

 	

 	invoke_on_service() (in module lmi.scripts.service)

 	is_abstract_method() (in module lmi.scripts.common.command.util)

 	is_deleted (lmi.shell.LMIInstance.LMIInstance attribute)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName attribute)

 	is_end_point() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	is_fetched() (lmi.shell.LMIClass.LMIClass method)

 	is_in_group() (in module lmi.scripts.account)

 	is_multiplexer() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	is_selector() (lmi.scripts.common.command.base.LmiBaseCommand class method)

 	is_setting_active() (in module lmi.scripts.networking)

 	is_wsman() (lmi.shell.LMIConnection.LMIConnection method)

J

 	

 	join() (in module lmi.scripts.realmd)

K

 	

 	key_file (lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	key_properties() (lmi.shell.LMIInstanceName.LMIInstanceName method)

 	

 	key_properties_dict() (lmi.shell.LMIInstanceName.LMIInstanceName method)

 	key_property_value() (lmi.shell.LMIInstanceName.LMIInstanceName method)

L

 	

 	leave() (in module lmi.scripts.realmd)

 	LevelDispatchingFormatter (class in lmi.scripts.common.lmi_logging)

 	lf_createdir() (in module lmi.scripts.logicalfile.logicalfile)

 	lf_deletedir() (in module lmi.scripts.logicalfile.logicalfile)

 	lf_list() (in module lmi.scripts.logicalfile.logicalfile)

 	lf_show() (in module lmi.scripts.logicalfile.logicalfile)

 	line_counter (lmi.scripts.common.formatter.Formatter attribute)

 	list_available_packages() (in module lmi.scripts.software)

 	list_devices() (in module lmi.scripts.networking)

 	list_groups() (in module lmi.scripts.account)

 	list_installed_packages() (in module lmi.scripts.software)

 	list_messages() (in module lmi.scripts.journald)

 	list_package_files() (in module lmi.scripts.software)

 	list_power_states() (in module lmi.scripts.powermanagement)

 	list_repositories() (in module lmi.scripts.software)

 	list_services() (in module lmi.scripts.service)

 	list_settings() (in module lmi.scripts.networking)

 	list_users() (in module lmi.scripts.account)

 	lister_format (lmi.scripts.common.configuration.Configuration attribute)

 	ListerMetaClass (class in lmi.scripts.common.command.meta)

 	ListFormatter (class in lmi.scripts.common.formatter)

 	lmi.scripts.account (module)

 	lmi.scripts.common (module)

 	lmi.scripts.common.command (module)

 	lmi.scripts.common.command.base (module)

 	lmi.scripts.common.command.checkresult (module)

 	lmi.scripts.common.command.endpoint (module)

 	lmi.scripts.common.command.helper (module)

 	lmi.scripts.common.command.lister (module)

 	lmi.scripts.common.command.meta (module)

 	lmi.scripts.common.command.multiplexer (module)

 	lmi.scripts.common.command.select (module)

 	lmi.scripts.common.command.session (module)

 	lmi.scripts.common.command.show (module)

 	lmi.scripts.common.command.util (module)

 	lmi.scripts.common.configuration (module)

 	lmi.scripts.common.errors (module)

 	lmi.scripts.common.formatter (module)

 	lmi.scripts.common.formatter.command (module)

 	lmi.scripts.common.lmi_logging (module)

 	lmi.scripts.common.session (module)

 	lmi.scripts.common.util (module)

 	lmi.scripts.common.versioncheck (module)

 	lmi.scripts.common.versioncheck.parser (module)

 	lmi.scripts.hardware (module)

 	lmi.scripts.journald (module)

 	lmi.scripts.locale (module)

 	lmi.scripts.logicalfile.logicalfile (module)

 	lmi.scripts.networking (module)

 	lmi.scripts.powermanagement (module)

 	lmi.scripts.realmd (module)

 	lmi.scripts.service (module)

 	lmi.scripts.software (module)

 	lmi.scripts.sssd (module)

 	lmi.scripts.storage.common (module)

 	lmi.scripts.storage.fs (module)

 	lmi.scripts.storage.luks (module)

 	lmi.scripts.storage.lvm (module)

 	lmi.scripts.storage.partition (module)

 	lmi.scripts.storage.raid (module)

 	lmi.scripts.storage.show (module)

 	lmi.scripts.system (module)

 	lmi.shell.LMIBaseObject (module)

 	lmi.shell.LMICIMXMLClient (module)

 	lmi.shell.LMIClass (module)

 	lmi.shell.LMICompleter (module)

 	lmi.shell.LMIConnection (module)

 	lmi.shell.LMIConsole (module)

 	lmi.shell.LMIConstantValues (module)

 	lmi.shell.LMIDecorators (module)

 	lmi.shell.LMIExceptions (module)

 	lmi.shell.LMIFormatter (module)

 	lmi.shell.LMIHelper (module)

 	lmi.shell.LMIIndicationListener (module)

 	lmi.shell.LMIInstance (module)

 	lmi.shell.LMIInstanceName (module)

 	lmi.shell.LMIJob (module)

 	lmi.shell.LMIMethod (module)

 	lmi.shell.LMINamespace (module)

 	lmi.shell.LMIObjectFactory (module)

 	lmi.shell.LMIReturnValue (module)

 	lmi.shell.LMIShellCache (module)

 	lmi.shell.LMIShellClient (module)

 	lmi.shell.LMIShellConfig (module)

 	lmi.shell.LMIShellLogger (module)

 	lmi.shell.LMIShellOptions (module)

 	lmi.shell.LMIShellVersion (module)

 	lmi.shell.LMISubscription (module)

 	lmi.shell.LMIUtil (module)

 	lmi.shell.LMIWSMANClient (module)

 	lmi_associators() (in module lmi.shell.LMIUtil)

 	lmi_cast_to_cim() (in module lmi.shell.LMIUtil)

 	lmi_cast_to_lmi() (in module lmi.shell.LMIUtil)

 	lmi_class_fetch_lazy (class in lmi.shell.LMIDecorators)

 	lmi_get_logger() (in module lmi.shell.LMIShellLogger)

 	lmi_get_use_exceptions() (in module lmi.shell.LMIUtil)

 	lmi_init_logger() (in module lmi.shell.LMIShellLogger)

 	lmi_instance_name_fetch_lazy (class in lmi.shell.LMIDecorators)

 	lmi_instance_to_path() (in module lmi.shell.LMIUtil)

 	lmi_is_job_completed() (in module lmi.shell.LMIJob)

 	lmi_is_job_exception() (in module lmi.shell.LMIJob)

 	lmi_is_job_finished() (in module lmi.shell.LMIJob)

 	lmi_is_job_killed() (in module lmi.shell.LMIJob)

 	lmi_is_job_terminated() (in module lmi.shell.LMIJob)

 	lmi_is_localhost() (in module lmi.shell.LMIUtil)

 	lmi_isinstance() (in module lmi.shell.LMIUtil)

 	

 	lmi_parse_uri() (in module lmi.shell.LMIUtil)

 	lmi_possibly_deleted (class in lmi.shell.LMIDecorators)

 	lmi_process_cim_exceptions (class in lmi.shell.LMIDecorators)

 	lmi_process_cim_exceptions_rval (class in lmi.shell.LMIDecorators)

 	lmi_process_wsman_exceptions (class in lmi.shell.LMIDecorators)

 	lmi_process_wsman_exceptions_rval (class in lmi.shell.LMIDecorators)

 	lmi_raise_or_dump_exception() (in module lmi.shell.LMIUtil)

 	lmi_return_expr_if_fail (class in lmi.shell.LMIDecorators)

 	lmi_return_if_fail (class in lmi.shell.LMIDecorators)

 	lmi_return_val_if_fail (class in lmi.shell.LMIDecorators)

 	lmi_set_use_exceptions() (in module lmi.shell.LMIUtil)

 	lmi_setup_logger() (in module lmi.shell.LMIShellLogger)

 	lmi_transform_to_cim_param() (in module lmi.shell.LMIUtil)

 	lmi_transform_to_lmi() (in module lmi.shell.LMIUtil)

 	lmi_wrap_cim_class() (in module lmi.shell.LMIUtil)

 	lmi_wrap_cim_instance() (in module lmi.shell.LMIUtil)

 	lmi_wrap_cim_instance_name() (in module lmi.shell.LMIUtil)

 	lmi_wrap_cim_method() (in module lmi.shell.LMIUtil)

 	lmi_wrap_cim_namespace() (in module lmi.shell.LMIUtil)

 	LmiBadSelectExpression

 	LmiBaseCommand (class in lmi.scripts.common.command.base)

 	LmiBaseListerCommand (class in lmi.scripts.common.command.lister)

 	LmiCheckResult (class in lmi.scripts.common.command.checkresult)

 	LMICIMXMLClient (class in lmi.shell.LMICIMXMLClient)

 	LMIClass (class in lmi.shell.LMIClass)

 	LMIClassCacheEntry (class in lmi.shell.LMIShellCache)

 	LMIClassFormatter (class in lmi.shell.LMIFormatter)

 	LMIClassNotFound

 	LmiCommandError

 	LmiCommandImportError

 	LmiCommandInvalidCallable

 	LmiCommandInvalidName

 	LmiCommandInvalidProperty

 	LmiCommandMissingCallable

 	LmiCommandMultiplexer (class in lmi.scripts.common.command.multiplexer)

 	LmiCommandNotFound

 	LMICompleter (class in lmi.shell.LMICompleter)

 	LMIConnection (class in lmi.shell.LMIConnection)

 	LMIConsole (class in lmi.shell.LMIConsole)

 	LMIConstantValues (class in lmi.shell.LMIConstantValues)

 	LMIConstantValuesMethodReturnType (class in lmi.shell.LMIConstantValues)

 	LMIConstantValuesParamProp (class in lmi.shell.LMIConstantValues)

 	LMIDeletedObjectError

 	LmiEndPointCommand (class in lmi.scripts.common.command.endpoint)

 	LmiError

 	LmiFailed

 	LMIFilterError

 	LMIFormatter (class in lmi.shell.LMIFormatter)

 	LMIHandlerNamePatternError

 	LMIHelper (class in lmi.shell.LMIHelper)

 	LmiImportCallableFailed

 	LMIIndicationError

 	LMIIndicationListener (class in lmi.shell.LMIIndicationListener)

 	LMIIndicationListenerError

 	LMIInstance (class in lmi.shell.LMIInstance)

 	LMIInstanceFormatter (class in lmi.shell.LMIFormatter)

 	LmiInstanceLister (class in lmi.scripts.common.command.lister)

 	LMIInstanceName (class in lmi.shell.LMIInstanceName)

 	LmiInvalidOptions

 	LmiLister (class in lmi.scripts.common.command.lister)

 	LMIMethod (class in lmi.shell.LMIMethod)

 	LMIMethodCallError

 	LMIMethodFormatter (class in lmi.shell.LMIFormatter)

 	LMIMethodSignalHelper (class in lmi.shell.LMIMethod)

 	LMIMofFormatter (class in lmi.shell.LMIFormatter)

 	LMINamespace (class in lmi.shell.LMINamespace)

 	LMINamespaceNotFound

 	LMINamespaceRoot (class in lmi.shell.LMINamespace)

 	LmiNoConnections

 	LMINoPagerError

 	LMINotSupported

 	LMIObjectFactory (class in lmi.shell.LMIObjectFactory)

 	LMIPassByRef (class in lmi.shell.LMIUtil)

 	LmiResultFailed

 	LMIReturnValue (class in lmi.shell.LMIReturnValue)

 	LmiSelectCommand (class in lmi.scripts.common.command.select)

 	LmiSessionCommand (class in lmi.scripts.common.command.session)

 	LMIShellCache (class in lmi.shell.LMIShellCache)

 	LMIShellClient (class in lmi.shell.LMIShellClient)

 	LMIShellConfig (class in lmi.shell.LMIShellConfig)

 	LMIShellLogger (class in lmi.shell.LMIShellLogger)

 	LMIShellOptionParser (class in lmi.shell.LMIShellOptions)

 	LMIShellOptions (class in lmi.shell.LMIShellOptions)

 	LMIShellOptionsHelpWithVersionFormatter (class in lmi.shell.LMIShellOptions)

 	LmiShowInstance (class in lmi.scripts.common.command.show)

 	LMISignalHelperBase (class in lmi.shell.LMIMethod)

 	LMISubscription (class in lmi.shell.LMISubscription)

 	LMISynchroMethodCallError

 	LMISynchroMethodCallFilterError

 	LmiTerminate

 	LMITextFormatter (class in lmi.shell.LMIFormatter)

 	LmiUnexpectedResult

 	LMIUnknownParameterError

 	LMIUnknownPropertyError

 	LmiUnsatisfiedDependencies

 	LMIUseExceptionsHelper (class in lmi.shell.LMIUtil)

 	LMIWrapperBaseObject (class in lmi.shell.LMIBaseObject)

 	LMIWSMANClient (class in lmi.shell.LMIWSMANClient)

 	load() (lmi.scripts.common.configuration.Configuration method)

 	load_history() (lmi.shell.LMIConsole.LMIConsole method)

 	log (lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	log_file (lmi.scripts.common.configuration.Configuration attribute)

 	LOG_LEVEL_2_COLOR (in module lmi.scripts.common.lmi_logging)

 	log_message() (in module lmi.scripts.journald)

 	LogRecord (class in lmi.scripts.common.lmi_logging)

 	lv_show() (in module lmi.scripts.storage.show)

M

 	

 	make_list_command() (in module lmi.scripts.common.command.helper)

 	methods() (lmi.shell.LMIClass.LMIClass method)

 	

 	(lmi.shell.LMIInstance.LMIInstance method)

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	modify_instance() (lmi.shell.LMICIMXMLClient.LMICIMXMLClient method)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient method)

 	

 	modify_vg() (in module lmi.scripts.storage.lvm)

 	MultiplexerMetaClass (class in lmi.scripts.common.command.meta)

N

 	

 	name (lmi.shell.LMINamespace.LMINamespace attribute)

 	namespace (lmi.shell.LMIClass.LMIClass attribute)

 	

 	(lmi.shell.LMIInstance.LMIInstance attribute)

 	(lmi.shell.LMIInstanceName.LMIInstanceName attribute)

 	namespaces (lmi.shell.LMIConnection.LMIConnection attribute)

 	

 	(lmi.shell.LMINamespace.LMINamespaceRoot attribute)

 	new_instance_name() (lmi.shell.LMIClass.LMIClass method)

 	

 	NewHostCommand (class in lmi.scripts.common.formatter.command)

 	NewTableCommand (class in lmi.scripts.common.formatter.command)

 	NewTableHeaderCommand (class in lmi.scripts.common.formatter.command)

 	no_headings (lmi.scripts.common.configuration.Configuration attribute)

O

 	

 	OP_MAP (in module lmi.scripts.common.versioncheck.parser)

 	open_luks() (in module lmi.scripts.storage.luks)

 	opt_name_sanitize() (in module lmi.scripts.common.command.endpoint)

 	

 	options_dict2kwargs() (in module lmi.scripts.common.command.endpoint)

 	Or (class in lmi.scripts.common.versioncheck.parser)

P

 	

 	PAGER, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	parameters() (lmi.shell.LMIMethod.LMIMethod method)

 	parent (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	partition_show() (in module lmi.scripts.storage.show)

 	partition_table_show() (in module lmi.scripts.storage.show)

 	path (lmi.shell.LMIInstance.LMIInstance attribute)

 	pkg_spec_to_filter() (in module lmi.scripts.software)

 	POWER_STATE_HIBERNATE (in module lmi.scripts.powermanagement)

 	POWER_STATE_POWEROFF (in module lmi.scripts.powermanagement)

 	POWER_STATE_POWEROFF_FORCE (in module lmi.scripts.powermanagement)

 	POWER_STATE_REBOOT (in module lmi.scripts.powermanagement)

 	POWER_STATE_REBOOT_FORCE (in module lmi.scripts.powermanagement)

 	POWER_STATE_SUSPEND (in module lmi.scripts.powermanagement)

 	print_classes() (lmi.shell.LMINamespace.LMINamespace method)

 	print_header() (lmi.scripts.common.formatter.ListFormatter method)

 	print_host() (lmi.scripts.common.formatter.Formatter method)

 	

 	(lmi.scripts.common.formatter.TableFormatter method)

 	print_key_properties() (lmi.shell.LMIInstanceName.LMIInstanceName method)

 	print_line() (lmi.scripts.common.formatter.Formatter method)

 	print_methods() (lmi.shell.LMIClass.LMIClass method)

 	

 	(lmi.shell.LMIInstance.LMIInstance method)

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	print_namespaces() (lmi.shell.LMIConnection.LMIConnection method)

 	

 	(lmi.shell.LMINamespace.LMINamespaceRoot method)

 	print_parameters() (lmi.shell.LMIMethod.LMIMethod method)

 	

 	print_properties() (lmi.shell.LMIClass.LMIClass method)

 	

 	(lmi.shell.LMIInstance.LMIInstance method)

 	print_row() (lmi.scripts.common.formatter.ListFormatter method)

 	

 	(lmi.scripts.common.formatter.TableFormatter method)

 	print_subscribed_indications() (lmi.shell.LMIConnection.LMIConnection method)

 	print_table_title() (lmi.scripts.common.formatter.ListFormatter method)

 	

 	(lmi.scripts.common.formatter.TableFormatter method)

 	print_text_row() (lmi.scripts.common.formatter.ListFormatter method)

 	print_valuemap_parameters() (lmi.shell.LMIMethod.LMIMethod method)

 	print_valuemap_properties() (lmi.shell.LMIClass.LMIClass method)

 	print_values() (lmi.shell.LMIConstantValues.LMIConstantValues method)

 	process_host_result() (lmi.scripts.common.command.session.LmiSessionCommand method)

 	process_session() (lmi.scripts.common.command.session.LmiSessionCommand method)

 	process_session_results() (lmi.scripts.common.command.session.LmiSessionCommand method)

 	processQueue() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	produce_output() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	

 	(lmi.scripts.common.formatter.Formatter method)

 	(lmi.scripts.common.formatter.ListFormatter method)

 	(lmi.scripts.common.formatter.SingleFormatter method)

 	(lmi.scripts.common.formatter.TableFormatter method)

 	properties() (lmi.shell.LMIClass.LMIClass method)

 	

 	(lmi.shell.LMIInstance.LMIInstance method)

 	properties_dict() (lmi.shell.LMIInstance.LMIInstance method)

 	property_value() (lmi.shell.LMIInstance.LMIInstance method)

 	push() (lmi.shell.LMIInstance.LMIInstance method)

 	push_class() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

 	push_literal() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

 	push_profile() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

R

 	

 	raid_show() (in module lmi.scripts.storage.show)

 	RE_COMMAND_NAME (in module lmi.scripts.common.command.util)

 	RE_ENVRA (in module lmi.scripts.software)

 	RE_NA (in module lmi.scripts.software)

 	RE_NEVRA (in module lmi.scripts.software)

 	RE_OPT_BRACKET_ARGUMENT (in module lmi.scripts.common.command.util)

 	RE_OPT_LONG_OPTION (in module lmi.scripts.common.command.util)

 	RE_OPT_SHORT_OPTION (in module lmi.scripts.common.command.util)

 	RE_OPT_UPPER_ARGUMENT (in module lmi.scripts.common.command.util)

 	reference_names() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	references() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIInstanceName.LMIInstanceName method)

 	refresh() (lmi.shell.LMIInstance.LMIInstance method)

 	register() (lmi.shell.LMIObjectFactory.LMIObjectFactory method)

 	register_subcommands() (in module lmi.scripts.common.command.helper)

 	reload_service() (in module lmi.scripts.service)

 	remove_dns_server() (in module lmi.scripts.networking)

 	remove_from_group() (in module lmi.scripts.account)

 	

 	remove_ip_address() (in module lmi.scripts.networking)

 	remove_package() (in module lmi.scripts.software)

 	remove_static_route() (in module lmi.scripts.networking)

 	render() (lmi.scripts.common.command.lister.LmiInstanceLister class method)

 	

 	(lmi.scripts.common.command.show.LmiShowInstance class method)

 	render_failed_flags() (in module lmi.scripts.software)

 	render_value() (lmi.scripts.common.formatter.Formatter method)

 	replace_dns_server() (in module lmi.scripts.networking)

 	replace_ip_address() (in module lmi.scripts.networking)

 	replace_static_route() (in module lmi.scripts.networking)

 	Req (class in lmi.scripts.common.versioncheck.parser)

 	ReqCond (class in lmi.scripts.common.versioncheck.parser)

 	restart_service() (in module lmi.scripts.service)

 	return_type (lmi.shell.LMIMethod.LMIMethod attribute)

 	root (lmi.shell.LMIConnection.LMIConnection attribute)

 	run() (lmi.scripts.common.command.base.LmiBaseCommand method)

 	

 	(lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	(lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer method)

 	(lmi.scripts.common.command.select.LmiSelectCommand method)

 	run_subcommand() (lmi.scripts.common.command.multiplexer.LmiCommandMultiplexer method)

 	run_with_args() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

S

 	

 	save_history() (lmi.shell.LMIConsole.LMIConsole method)

 	script_argv (lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	script_name (lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	select_cmds() (lmi.scripts.common.command.select.LmiSelectCommand method)

 	select_command() (in module lmi.scripts.common.command.helper)

 	SelectMetaClass (class in lmi.scripts.common.command.meta)

 	SemanticGroup (class in lmi.scripts.common.versioncheck.parser)

 	Session (class in lmi.scripts.common.session)

 	session (lmi.scripts.common.command.base.LmiBaseCommand attribute)

 	SessionCommandMetaClass (class in lmi.scripts.common.command.meta)

 	SessionProxy (class in lmi.scripts.common.session)

 	set_classes() (lmi.shell.LMIShellCache.LMIShellCache method)

 	set_locale() (in module lmi.scripts.locale)

 	set_repository_enabled() (in module lmi.scripts.software)

 	set_session_proxy() (lmi.scripts.common.command.base.LmiBaseCommand method)

 	set_vc_keyboard() (in module lmi.scripts.locale)

 	set_verify_server_certificate() (lmi.shell.LMIConsole.LMIConsole method)

 	set_x11_keymap() (in module lmi.scripts.locale)

 	setLevel() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	SETTING_IP_METHOD_DHCP (in module lmi.scripts.networking)

 	SETTING_IP_METHOD_DHCPv6 (in module lmi.scripts.networking)

 	SETTING_IP_METHOD_DISABLED (in module lmi.scripts.networking)

 	SETTING_IP_METHOD_STATELESS (in module lmi.scripts.networking)

 	SETTING_IP_METHOD_STATIC (in module lmi.scripts.networking)

 	SETTING_TYPE_BOND_MASTER (in module lmi.scripts.networking)

 	SETTING_TYPE_BOND_SLAVE (in module lmi.scripts.networking)

 	SETTING_TYPE_BRIDGE_MASTER (in module lmi.scripts.networking)

 	SETTING_TYPE_BRIDGE_SLAVE (in module lmi.scripts.networking)

 	

 	SETTING_TYPE_ETHERNET (in module lmi.scripts.networking)

 	SETTING_TYPE_UNKNOWN (in module lmi.scripts.networking)

 	setup_completer() (lmi.shell.LMIConsole.LMIConsole method)

 	setup_logger() (in module lmi.scripts.common.lmi_logging)

 	ShellFormatter (class in lmi.scripts.common.formatter)

 	show() (in module lmi.scripts.realmd)

 	ShowInstanceMetaClass (class in lmi.scripts.common.command.meta)

 	signal() (lmi.shell.LMIMethod.LMISignalHelperBase static method)

 	signal_attach() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	signal_core() (lmi.shell.LMIMethod.LMISignalHelperBase static method)

 	signal_detach() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	signal_handled() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	signal_handler() (lmi.shell.LMIMethod.LMIMethodSignalHelper method)

 	silent (lmi.scripts.common.configuration.Configuration attribute)

 	SingleFormatter (class in lmi.scripts.common.formatter)

 	size2str() (in module lmi.scripts.storage.common)

 	start_service() (in module lmi.scripts.service)

 	stop_service() (in module lmi.scripts.service)

 	str2device() (in module lmi.scripts.storage.common)

 	str2format() (in module lmi.scripts.storage.fs)

 	str2obj() (in module lmi.scripts.storage.common)

 	str2size() (in module lmi.scripts.storage.common)

 	str2vg() (in module lmi.scripts.storage.common)

 	Subexpr (class in lmi.scripts.common.versioncheck.parser)

 	subexpr() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

 	subscribe_indication() (lmi.shell.LMIConnection.LMIConnection method)

 	subscribed_indications() (lmi.shell.LMIConnection.LMIConnection method)

 	switch_power_state() (in module lmi.scripts.powermanagement)

T

 	

 	table_counter (lmi.scripts.common.formatter.Formatter attribute)

 	TableFormatter (class in lmi.scripts.common.formatter)

 	take_action() (lmi.scripts.common.command.checkresult.LmiCheckResult method)

 	

 	(lmi.scripts.common.command.lister.LmiInstanceLister method)

 	(lmi.scripts.common.command.lister.LmiLister method)

 	(lmi.scripts.common.command.session.LmiSessionCommand method)

 	(lmi.scripts.common.command.show.LmiShowInstance method)

 	Term (class in lmi.scripts.common.versioncheck.parser)

 	term() (lmi.scripts.common.versioncheck.parser.TreeBuilder method)

 	timeout (lmi.shell.LMIConnection.LMIConnection attribute)

 	

 	tlv_show() (in module lmi.scripts.storage.show)

 	to_instance() (lmi.shell.LMIInstanceName.LMIInstanceName method)

 	tomof() (lmi.shell.LMIInstance.LMIInstance method)

 	

 	(lmi.shell.LMIMethod.LMIMethod method)

 	trace (lmi.scripts.common.configuration.Configuration attribute)

 	transform_options() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	TreeBuilder (class in lmi.scripts.common.versioncheck.parser)

U

 	

 	unsubscribe_all_indications() (lmi.shell.LMIConnection.LMIConnection method)

 	unsubscribe_indication() (lmi.shell.LMIConnection.LMIConnection method)

 	uri (lmi.shell.LMICIMXMLClient.LMICIMXMLClient attribute)

 	

 	(lmi.shell.LMIConnection.LMIConnection attribute)

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient attribute)

 	use_cache (lmi.shell.LMIShellClient.LMIShellClient attribute)

 	

 	(lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	

 	use_cache() (lmi.shell.LMIConnection.LMIConnection method)

 	use_exceptions (lmi.shell.LMIShellConfig.LMIShellConfig attribute)

 	

 	(lmi.shell.LMIUtil.LMIUseExceptionsHelper attribute)

 	username (lmi.shell.LMICIMXMLClient.LMICIMXMLClient attribute)

 	

 	(lmi.shell.LMIWSMANClient.LMIWSMANClient attribute)

V

 	

 	value (lmi.shell.LMIUtil.LMIPassByRef attribute)

 	value() (lmi.shell.LMIConstantValues.LMIConstantValues method)

 	value_name() (lmi.shell.LMIConstantValues.LMIConstantValues method)

 	valuemap_parameters() (lmi.shell.LMIMethod.LMIMethod method)

 	valuemap_properties() (lmi.shell.LMIClass.LMIClass method)

 	values() (lmi.shell.LMIConstantValues.LMIConstantValues method)

 	values_dict() (lmi.shell.LMIConstantValues.LMIConstantValues method)

 	

 	verbose (lmi.scripts.common.configuration.Configuration attribute)

 	verbosity (lmi.scripts.common.configuration.Configuration attribute)

 	verify_options() (lmi.scripts.common.command.endpoint.LmiEndPointCommand method)

 	verify_package() (in module lmi.scripts.software)

 	verify_server_cert (lmi.scripts.common.configuration.Configuration attribute)

 	

 	(lmi.shell.LMIShellOptions.LMIShellOptions attribute)

 	vg_show() (in module lmi.scripts.storage.show)

W

 	

 	walk_cim_directory() (in module lmi.scripts.logicalfile.logicalfile)

 	warning() (lmi.shell.LMIShellLogger.LMIShellLogger method)

 	watch() (in module lmi.scripts.journald)

 	

 	wql() (lmi.shell.LMINamespace.LMINamespace method)

 	wrapped_object (lmi.shell.LMIClass.LMIClass attribute)

 	

 	(lmi.shell.LMIInstance.LMIInstance attribute)

 	(lmi.shell.LMIInstanceName.LMIInstanceName attribute)

 	(lmi.shell.LMIMethod.LMIMethod attribute)

 Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

 mof/LMI_ExtendedStaticIPAssignmentSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ExtendedStaticIPAssignmentSettingData

Class reference

Subclass of CIM_ExtendedStaticIPAssignmentSettingData

CIM_ExtendedStaticIPAssignmentSettingData defines a IP configuration which could be statically assigned to a Network Interface / LANEndpoint.

Key properties

InstanceID

Local properties

string[] SubnetMasks

The mask for the IPv4 address.

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		4096
		IPv4

		4097
		IPv6

uint16[] IPv6SubnetPrefixLengths

IPv6SubnetPrefixLengths is used to identify the prefix length of the IPv6Addresses

string[] IPAddresses

IP addresses to be statically assigned. Either IPv4 address array or IPv6 address array shall be represented by this property. If it is IPv6 array, then for each element, there will be a corresponding element in IPv6SubnetPrefixLengths array. If it is IPv4 array, then for each element, there will be a corresponding element in SubnetMasks array.

string[] GatewayAddresses

IP Addresses for the Gateways

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint. A value of 2 indicates that the application of the IPAssignmentSettingData instance does not affect these properties.

		ValueMap
		Values

		3
		Static

Local methods

None

Inherited properties

string SoOrgID

string ElementName

string OtherAddressSuffixOriginDescription

string OtherAddressPrefixOriginDescription

uint16 ChangeableType

string InstanceID

string[] ComponentSetting

string Caption

uint16 AddressPrefixOrigin

string ConfigurationName

string SoID

uint64 Generation

uint16 AddressSuffixOrigin

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPElementSettingData

Class reference

Subclass of CIM_ElementSettingData

IPElementSettingData represents the association between ManagedElement (IPNetworkConnection or LinkAggregator8023ad) and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent and IsNext, further qualify those setting values.

Note

The referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent has value 1 (Is Current).

Key properties

SettingData

ManagedElement

SettingData

ManagedElement

Local properties

CIM_IPAssignmentSettingData SettingData

The SettingData object associated with the element.

uint16 IsNext

An enumerated integer indicating whether or not the referenced setting is the next setting to be applied. For example, the application could take place on a re-initialization, reset, reconfiguration request.

		ValueMap
		Values

		1
		Is Next

		2
		Is Not Next

uint16 IsCurrent

An enumerated integer that indicates that the referenced SettingData represents currently active configuration.

		ValueMap
		Values

		1
		Is Current

		2
		Is Not Current

CIM_ManagedElement ManagedElement

The managed element.

uint16 IsDefault

An enumerated integer that indicates that the referenced setting is a default setting for the element.

		ValueMap
		Values

		1
		Is Default

		2
		Is Not Default

Local methods

None

Inherited properties

uint16 IsMinimum

uint16 IsPending

uint16 IsMaximum

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStatisticsManifestCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStatisticsManifestCollection

Class reference

Subclass of CIM_BlockStatisticsManifestCollection

The BlockStatisticsManifestCollection class aggregates, via MemberOfCollection, a set of BlockStatisticsManifests. This collection is associated via AssociatedBlockStatisticsManifestCollection to exactly one StatisticsCollection. The BlockStatisticsManifestCollection is used to filter the retrieval of statistics. For example, a BlockStatisticsManifestCollection is specified as part of the StatisticsService.GetStatisticsCollection method to filter the statistics returned by that method.

Key properties

InstanceID

Local properties

string ElementName

A user-friendly name for the BlockStatisticsManifestCollection. It can be set through the ElementName parameter of the StatisticsService.CreateManifestCollection method.

boolean IsDefault

Denotes whether or not this BlockStatisticsManifestCollection is a provider defined default BlockStatisticsManifestCollection.

Local methods

None

Inherited properties

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LinkAggregator8023ad.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LinkAggregator8023ad

Class reference

Subclass of CIM_ProtocolEndpoint

The LinkAggregator8023ad class represents an instance of an 802.3ad aggregator in a system. The word actor is used in property names to refer to the local entity of an aggregation.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string ActorSystemID

A 6-octet MAC address value used as a unique identifier for the System that contains this Aggregator. NOTE: From the perspective of the Link Aggregation mechanisms described in Clause 43 (IEEE 802.3ad), only a single combination of Actor’s System ID and System Priority are considered, and no distinction is made between the values of these parameters for an Aggregator and the port(s) that are associated with it; i.e., the protocol is described in terms of the operation of aggregation within a single System. However, the managed objects provided for the Aggregator and the port both allow management of these parameters. The result of this is to permit a single piece of equipment to be configured by management to contain more than one System from the point of view of the operation of Link Aggregation. This may be of particular use in the configuration of equipment that has limited aggregation capability. Note that the MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469.

uint16 ActorAdminKey

The current administrative value of the 16-bit Key for the Aggregator (Actor). The administrative Key value may differ from the operational Key value for reasons discussed in the IEEE 802.3ad document, Section 43.6.2. The meaning of particular Key values is of local significance.

datetime TimeOfLastOperChange

This object indicates the time of the most recent change to this aggregator, its list of aggregated ports, or configuration of a aggregation port member.

uint16 ProtocolIFType

ProtocolIFType’s enumeration is limited to 802.3 LinkAggregation and reserved values for this subclass of ProtocolEndpoint.

		ValueMap
		Values

		1
		Other

		161
		IEEE8023adLAG

		225..4095
		IANA Reserved

		4301..32767
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 ActorSystemPriority

A 2-octet value indicating the priority value associated with the Actor’s System ID. The system with the lower value has the higher priority. Guidelines for the use of system and port priorities is given in IEEE 802.3ad document, Section 43.6.

datetime CollectorMaxDelay

The value of this datetime property (expressed using an interval format) defines the maximum delay that may be imposed by the Frame Collector between receiving a frame from an Aggregator Parser, and either delivering the frame to its MAC Client or discarding the frame.

boolean RepresentsAggregate

A Boolean value indicating whether the Aggregator represents an Aggregate (TRUE) or an Individual link (FALSE).

string MACAddress

A 6-octet value carrying the individual MAC address assigned to the Aggregator. Note that the MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469.

uint16 ActorOperKey

The current operational value of the 16-bit Key forthe Aggregator (Actor). The administrative Key value may differ from the operational Key value for reasons discussed in the IEEE 802.3ad document, Section 43.6.2. The meaning of particular Key values is of local significance.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_TransientFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_TransientFileSystem

Class reference

Subclass of CIM_LocalFileSystem

Base class for nonpersistent filesystems of this system, such as tmpfs, cgroups, procfs etc.

Key properties

CSName

Name

CSCreationClassName

CreationClassName

Local properties

uint32 MaxFileNameLength

Integer indicating the maximum length of a file name within the FileSystem. 0 indicates that there is no limit on file name length.

boolean CasePreserved

Indicates that the case of file names are preserved.

boolean CaseSensitive

Indicates that case sensitive file names are supported.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint64 FileSystemSize

The FileSystemSize property stores the total size of the File System in bytes. If unknown, enter 0.

uint16 IsFixedSize

Indicates whether the File size is fixed at creation time (value = 1) - the file size is fixed, (value = 2) - the file is not a fixed size. The default (value = 0) indicates that this information is not specified. If the File size is not fixed, the ResizeIncrement property should specify the growth increment, in bytes.

		ValueMap
		Values

		0
		Not Specified

		1
		Fixed Size

		2
		Not Fixed Size

string Name

Unique identifier of the filesystem on computer system.

uint64 BlockSize

FileSystems can read/write data in blocks which are defined independently of the underlying StorageExtents. This property captures the FileSystem’s block size for data storage and retrieval.

string Root

Path name or other information defining the root of the FileSystem.

uint16 PersistenceType

An enumerated value representing the FileSystem’s perception of its own persistence characteristics. This property would typically be set at the time the FileSystem is instantiated and would not be changed by external actions. A value of “Persistent” indicates that the FileSystem is persistent, will be preserved through an orderly shutdown and should be protected. A value of “Temporary” indicates that the FileSystem is non-persistent, should not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem is controlled outside of the scope of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the OtherPersistenceType attribute, and is expected to be rarely, if ever, used. A value of “Unknown” indicates that the persistence of the FileSystem can not be determined.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

string FileSystemType

String describing the type of FileSystem and therefore, its conventions. For example, “NTFS” or “S5” may be listed as well as any additional information on the FileSystem’s implementation. Since various flavors of FileSystems (like S5) exist, this property is defined as a string.

boolean ReadOnly

Indicates that the FileSystem is designated as read only.

uint64 AvailableSpace

AvailableSpace indicates the total amount of free space for the FileSystem, in bytes. If unknown, enter 0.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

uint16 CommunicationStatus

uint32 ClusterSize

string EncryptionMethod

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 ResizeIncrement

datetime TimeOfLastStateChange

uint16 PrimaryStatus

string OtherPersistenceType

string CompressionMethod

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint64 NumberOfFiles

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string CSCreationClassName

string OtherEnabledState

uint16 OperatingStatus

uint16[] CodeSet

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemoryPhysicalPackageInConnector.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemoryPhysicalPackageInConnector

Class reference

Subclass of CIM_PackageInConnector

Adapter cards and other ‘packaging’ are plugged into System Connectors for power and/or to transfer data. This relationship is defined by PackageInConnector. For example, it would be used to describe the insertion of a daughtercard onto another Card. Various subclasses of PackageInConnector are also defined. PackageInSlot and its subclass, CardInSlot, are two examples of subclasses.

Key properties

Dependent

Antecedent

Local properties

LMI_MemoryPhysicalPackage Dependent

The Package in the Connector.

LMI_MemorySlot Antecedent

The Connector into which the Package is inserted.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ForwardingService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ForwardingService

Class reference

Subclass of CIM_NetworkService

This class represents the functions used in forwarding network traffic. Its instances act on packets received from one or more ProtocolEndpoints or Services, and drop (discard), or send those packets to one or more other ProtocolEndpoints or Services. The explicit Endpoints being forwarded between, are described using the ForwardsAmong association (or one of its subclasses). Generally, the Endpoints are at the same protocol layer and are usually of similar types, or of the same type. ForwardingService is different than RouteCalculation Service in that it represents the function of forwarding traffic independent of calculating routing information.

Examining the ForwardingService class definition, note that its superclass NetworkService is deprecated. Therefore, NetworkService’s properties need not be implemented in an instance of ForwardingService. Unfortunately, NetworkService cannot be removed from the object hierarchy without a major Schema release. When/if this occurs, the NetworkService superclass will be removed, and ForwardingService will subclass from CIM_Service directly. Also note that there are a large number of additional protocols that are not currently modeled. These will be added over time.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 ProtocolType

This defines the type of protocol that is being forwarded.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		IPv4

		3
		IPv6

		4
		IPv4/IPv6

		5
		IPX

		6
		AppleTalk

		7
		DECnet

		8
		SNA

		9
		CONP

		10
		CLNP

		11
		VINES

		12
		XNS

		13
		ATM

		14
		Frame Relay

		15
		Ethernet

		16
		TokenRing

		17
		FDDI

		18
		Infiniband

		19
		Fibre Channel

string OtherProtocolType

This defines the type of protocol that is being forwarded when the value of the ProtocolType attribute is 1 (i.e., “Other”). This provides for future extensibility.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string[] StartupConditions

string Caption

string StartMode

uint16[] AvailableRequestedStates

string[] StartupParameters

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string ServiceURL

string[] Keywords

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Realizes.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Realizes

Class reference

Subclass of CIM_Dependency

CIM_Realizes is the association that defines the mapping between LogicalDevices and the PhysicalElements that implement them.

Key properties

Dependent

Antecedent

Local properties

CIM_LogicalDevice Dependent

The LogicalDevice.

CIM_PhysicalElement Antecedent

The physical component that implements the Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BridgingMasterSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BridgingMasterSettingData

Class reference

Subclass of LMI_IPAssignmentSettingData

Master SettingData for bridging

Key properties

InstanceID

Local properties

string InterfaceName

The name of the virtual in-kernel bridging network interface

uint32 Priority

Sets the Spanning Tree Protocol (STP) priority for this bridge. Lower values are ‘better’; the lowest priority bridge will be elected the root bridge.

uint32 MaxAge

The Spanning Tree Protocol (STP) maximum message age.

uint32 AgeingTime

The ethernet MAC address aging time.

uint32 ForwardDelay

The Spanning Tree Protocol (STP) forwarding delay.

boolean STP

Controls whether Spanning Tree Protocol (STP) is enabled for this bridge.

uint32 HelloTime

The Spanning Tree Protocol (STP) hello time.

Local methods

None

Inherited properties

string InstanceID

string ElementName

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

uint16 AddressPrefixOrigin

uint16 IPv6Type

uint16 AddressSuffixOrigin

string Description

string SoID

uint16 ChangeableType

string Caption

uint64 Generation

string[] ComponentSetting

uint16 IPv4Type

uint16 AddressOrigin

Inherited methods

LMI_AddStaticIPRoute

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageJob

Class reference

Subclass of LMI_ConcreteJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

uint16 JobState

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

boolean DeleteOnCompletion

datetime ElapsedTime

string Caption

string JobStatus

datetime TimeSubmitted

string MethodName

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/software/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Software Scripts documentation

Contents:

		Software command line reference
		sw

		sw list

		sw show

		Service Script python reference
		Package specification

		Regular expressions

		Functions

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/account/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Account Scripts documentation

Contents:

		Account command line reference
		user

		group

		Account Script python reference

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SystemPackaging.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SystemPackaging

Class reference

Subclass of CIM_Dependency

Similar to the way that LogicalDevices are ‘Realized’ by PhysicalElements, Systems can be associated with specific packaging or PhysicalElements. This association explicitly defines the relationship between a System and its packaging.

Key properties

Dependent

Antecedent

Local properties

CIM_System Dependent

The System whose packaging is described.

CIM_PhysicalElement Antecedent

The PhysicalElements that provide the packaging of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGStorageSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGStorageSetting

Class reference

Subclass of LMI_StorageSetting

This class defines characteristics of LMI_VGStoragePool which is created or modified by CreateOrModifyStoragePool method in the LMI_StorageConfigurationService.

Currently only ExtentSize property is supported.

Key properties

InstanceID

Local properties

uint64 ExtentSize

Size of extents of the Volume Group. The default is 4 MiB and it must be at least 1 MiB and a power of 2. Once this value has been set, it is difficult to change it without recreating the volume group which would involve backing up and restoring data on any logical volumes.

If the volume group metadata uses lvm1 format, extents can vary in size from 8KB to 16GB and there is a limit of 65534 extents in each logical volume. The default of 4 MiB leads to a maximum logical volume size of around 256GiB.

If the volume group metadata uses lvm2 format those restrictions do not apply, but having a large number of extents will slow down the tools but have no impact on I/O performance to the logical volume. The smallest PE is 1KiB.

Local methods

None

Inherited properties

uint64 InterconnectSpeed

uint16 InterconnectType

uint8 DeltaReservationGoal

uint16 DataRedundancyMin

uint16 UseReplicationBuffer

string InstanceID

uint16 LowSpaceWarningThreshold

uint16 DiskType

boolean NoSinglePointOfFailure

string SubsystemID

string Description

uint16 ParityLayout

uint16 DataOrganization

uint16 PackageRedundancyMax

uint64 UserDataStripeDepthMin

string EmulatedDevice

uint16 CompressionRate

uint16 ThinProvisionedPoolType

uint16 FormFactorType

string ConfigurationName

uint16 ExtentStripeLength

boolean CompressedElement

string CUImage

string SoOrgID

boolean PersistentReplica

uint16 InitialSynchronization

string SoID

uint16 Encryption

uint16 StorageExtentInitialUsage

uint16 ExtentStripeLengthMin

string ElementName

uint64 ThinProvisionedInitialReserve

string Caption

uint16 DataRedundancyGoal

uint16 PortType

boolean IncrementalDeltas

uint16 StoragePoolInitialUsage

uint16 ReplicationPriority

uint16 ChangeableType

uint8 DeltaReservationMin

uint64 Generation

uint32 RPM

uint64 UserDataStripeDepthMax

uint64 SpaceLimit

uint16 SpaceLimitWarningThreshold

uint16 ExtentStripeLengthMax

string[] ComponentSetting

uint16 PackageRedundancyGoal

uint8 DeltaReservationMax

uint16 DataRedundancyMax

uint64 UserDataStripeDepth

uint16 PackageRedundancyMin

Inherited methods

CloneSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PortPhysicalConnector.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PortPhysicalConnector

Class reference

Subclass of CIM_PhysicalConnector

The PhysicalConnector class represents any PhysicalElement that is used to connect to other Elements. Any object that can be used to connect and transmit signals or power between two or more PhysicalElements is a descendant (or member) of this class. For example, Slots and D-shell connectors are types of PhysicalConnectors.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 ConnectorGender

Describes the gender of the connector.

		ValueMap
		Values

		0
		Unknown

		2
		Male

		3
		Female

string ConnectorDescription

A string describing the Connector - used when the ConnectorLayout property is set to 1 (“Other”). Connector Description should be set to NULL when ConnectorLayout is any value other than 1.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint16 ConnectorLayout

Describes the type of packaging normally associated with this type of connector.16 (PCI) - describes the generic PCI connector layout. 17 (PCI-X) - describes the PCI Extended connector layout. 18 (PCI-E) - describes the PCI Express connector layout, where the actual layout as far as the length is concerned is unknown. 19 - 25 (PCI-E xN) - describes the PCI Express connector layout, where N is the lane count that appropriately descirbes the length of the PCI-E connector.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		RS232

		3
		BNC

		4
		RJ11

		5
		RJ45

		6
		DB9

		7
		Slot

		8
		SCSI High Density

		9
		SCSI Low Density

		10
		Ribbon

		11
		AUI

		12
		Fiber SC

		13
		Fiber ST

		14
		FDDI-MIC

		15
		Fiber-RTMJ

		16
		PCI

		17
		PCI-X

		18
		PCI-E

		19
		PCI-E x1

		20
		PCI-E x2

		21
		PCI-E x4

		22
		PCI-E x8

		23
		PCI-E x16

		24
		PCI-E x32

		25
		PCI-E x64

		26..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

string Description

A textual description of the PhysicalElement.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string[] OtherElectricalCharacteristics

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

uint16 CommunicationStatus

string Version

string PartNumber

string Status

boolean CanBeFRUed

uint16[] ConnectorElectricalCharacteristics

uint16[] OperationalStatus

uint16[] ConnectorType

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

string OtherTypeDescription

string Model

uint16 PrimaryStatus

uint32 NumPhysicalPins

uint64 Generation

uint16 OperatingStatus

string ConnectorPinout

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSELinuxService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSELinuxService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_SELinuxService Dependent

The Service hosted on the System.

CIM_System Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Memory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Memory

Class reference

Subclass of CIM_StorageExtent

Capabilities and management of Memory-related LogicalDevices.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 ErrorResolution

Deprecated!
Specifies the range, in bytes, to which the last error can be resolved. For example, if error addresses are resolved to bit 11 (ie, on a typical page basis), then errors can be resolved to 4K boundaries and this property is set to 4000. If the ErrorInfo property is equal to 3, “OK”, then this property has no meaning.

uint16 ErrorAccess

Deprecated!
An integer enumeration indicating the memory access operation that caused the last error. The type of error is described by the ErrorInfo property. If the ErrorInfo property is equal to 3, “OK”, then this property has no meaning.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Read

		4
		Write

		5
		Partial Write

boolean Volatile

Volatile is a property that indicates whether this memory is volatile or not.

boolean CorrectableError

Deprecated!
Boolean indicating that the most recent error was correctable. If the ErrorInfo property is equal to 3, “OK”, then this property has no meaning.

uint8[] AdditionalErrorData

Deprecated!
An array of octets holding additional error information. An example is ECC Syndrome or the return of the check bits if a CRC-based ErrorMethodology is used. In the latter case, if a single bit error is recognized and the CRC algorithm is known, it is possible to determine the exact bit that failed. This type of data (ECC Syndrome, Check Bit or Parity Bit data, or other vendor supplied information) is included in this field. If the ErrorInfo property is equal to 3, “OK”, then AdditionalErrorData has no meaning.

boolean SystemLevelAddress

Deprecated!
Boolean indicating whether the address information in the property, ErrorAddress, is a system-level address (TRUE) or a physical address (FALSE). If the ErrorInfo property is equal to 3, “OK”, then this property has no meaning.

uint16 ErrorDataOrder

The ordering for data stored in the ErrorData property. “Least Significant Byte First” (value=1) or “Most Significant Byte First” (2) can be specified. If ErrorTransferSize is 0, then this property has no meaning.

		ValueMap
		Values

		0
		Unknown

		1
		Least Significant Byte First

		2
		Most Significant Byte First

uint32 ErrorTransferSize

The size of the data transfer in bits that caused the last error. 0 indicates no error. If the ErrorInfo property is equal to 3, “OK”, then this property should be set to 0.

uint64 ErrorAddress

Specifies the address of the last memory error. The type of error is described by the ErrorInfo property. If the ErrorInfo property is equal to 3, “OK”, then this property has no meaning.

uint8[] ErrorData

Data captured during the last erroneous mebmory access. The data occupies the first n octets of the array necessary to hold the number of bits specified by the ErrorTransferSize property. If ErrorTransferSize is 0, then this property has no meaning.

uint64 EndingAddress

The ending address, referenced by an application or operating system and mapped by a memory controller, for this Memory object. The ending address is specified in KBytes.

string OtherErrorDescription

Free form string providing more information if the Error Type property is set to 1, “Other”. If not set to 1, this string has no meaning.

uint16 ErrorInfo

An integer enumeration describing the type of error that occurred most recently. For example, single (value=6) or double bit errors (7) can be specified using this property. The values, 12-14, are undefined in the CIM Schema since in DMI, they mix the semantics of the type of error and whether it was correctable or not. The latter is indicated in the property, CorrectableError.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		OK

		4
		Bad Read

		5
		Parity Error

		6
		Single-Bit Error

		7
		Double-Bit Error

		8
		Multi-Bit Error

		9
		Nibble Error

		10
		Checksum Error

		11
		CRC Error

		12
		Undefined

		13
		Undefined

		14
		Undefined

datetime ErrorTime

The time that the last memory error occurred. The type of error is described by the ErrorInfo property. If the Error Info property is equal to 3, “OK”, then this property has no meaning.

string ErrorMethodology

ErrorMethodology for Memory is a string property that indicates whether parity or CRC algorithms, ECC or other mechanisms are used. Details on the algorithm can also be supplied.

uint64 StartingAddress

The beginning address, referenced by an application or operating system and mapped by a memory controller, for this Memory object. The starting address is specified in KBytes.

Local methods

None

Inherited properties

uint8 DeltaReservation

boolean IsBasedOnUnderlyingRedundancy

uint16 HealthState

datetime TimeOfLastStateChange

string[] StatusDescriptions

uint16 RequestedState

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string CreationClassName

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

uint16 DataRedundancy

string Name

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint16 CompressionRate

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

string InstanceID

uint16[] OperationalStatus

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

boolean IsCompressed

uint64 ExtentInterleaveDepth

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 NameNamespace

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string SystemName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DiskDrive.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DiskDrive

Class reference

Subclass of CIM_MediaAccessDevice

Capabilities and managment of a DiskDrive, a subtype of MediaAccessDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 InterconnectSpeed

This property identifies the port speed in bit/second. If the speed is unknown the property should be set to 0.

uint16 InterconnectType

This property identifies the drive interface type.

ATA: Advanced Technology Attachment

SATA: Serial ATA

SAS: Serial Attached SCSI

FC: Fibre Channel

SOP: SCSI Over PCIe – Peripheral Component Interconnect express.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		ATA

		4
		SATA

		5
		SAS

		6
		FC

		7
		SOP

uint16 Encryption

This property reflects the state of the encryption feature implemented by some disk drives as defined by SCSI. The Unlocked state means the drive is capable of encryption but it is disabled. The Locked state means the drive is currently encrypted

		ValueMap
		Values

		0
		Unknown

		1
		Not Supported

		2
		Unlocked

		3
		Locked

uint16 DiskType

The technology used to store data. the hybrid uses a combination of HDD and SSD in the same drive.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Hard Disk Drive

		3
		Solid State Drive

		4
		Hybrid

string OtherInterconnectType

This property identifies other interconnect types.

uint16 FormFactor

The Physical size of the disk drive.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Reported

		3
		5.25 inch

		4
		3.5 inch

		5
		2.5 inch

		6
		1.8 inch

uint32 RPM

This property identifies how fast the drive media spins in Rotations Per Minute. Solid State drives should set this property to 0. If the RPM is unknown the property should be set to 0xFFFFFFFF

Local methods

None

Inherited properties

uint16 HealthState

boolean MediaIsLocked

string[] StatusDescriptions

uint64 MaxAccessTime

uint16 RequestedState

boolean PowerManagementSupported

string SystemName

uint16[] PowerManagementCapabilities

datetime TimeOfLastMount

uint16[] Capabilities

uint16 CommunicationStatus

string CreationClassName

uint64 UnloadTime

datetime TimeOfLastStateChange

uint64 TotalMountTime

uint16 PrimaryStatus

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

string InstanceID

string UnitsDescription

uint32 UncompressedDataRate

uint16 OperatingStatus

datetime LastCleaned

string CompressionMethod

uint16 LocationIndicator

string[] OtherIdentifyingInfo

uint64 UnitsUsed

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint32 NumberOfMediaSupported

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 DetailedStatus

uint64 DefaultBlockSize

uint16 StatusInfo

string[] CapabilityDescriptions

string ErrorMethodology

uint64 MinBlockSize

uint16 Security

uint64 MaxUnitsBeforeCleaning

uint64 MountCount

string Caption

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint64 LoadTime

string ErrorDescription

boolean NeedsCleaning

string OtherEnabledState

uint64 MaxBlockSize

uint16[] OperationalStatus

uint32 LastErrorCode

uint64 MaxMediaSize

uint16 Availability

string SystemCreationClassName

string DeviceID

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

LockMedia

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDStorageCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDStorageCapabilities

Class reference

Subclass of CIM_StorageCapabilities

This class represents capability of LMI_StorageConfigurationService to create MD RAID arrays. It describes, which properties and which values can be used in LMI_MDRAIDStorageSetting.

There are no additional properties for now.

Key properties

InstanceID

Local properties

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the maximum is defined by PackageRedundancyMax.

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the maximum is defined by DataRedundancyMax.

boolean NoSinglePointOfFailure

Indicates whether or not the associated element supports no single point of failure. Values are: FALSE = does not support no single point of failure, and TRUE = supports no single point of failure.

uint16 PackageRedundancyDefault

PackageRedundancyDefault describes the default number of redundant packages that will be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds for redundancy are specified using the properties, PackageRedundancyMax and PackageRedundancyMin.

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

uint16 DataRedundancyDefault

DataRedundancyDefault describes the default number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds for the redundancy (max and min) are defined by DataRedundancyMax and DataRedundancyMin.

boolean NoSinglePointOfFailureDefault

Indicates the default value for the NoSinglePointOfFailure property.

uint16 ExtentStripeLengthDefault

Extent Stripe Length describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’.

A NULL value for ExtentStripeLengthDefault indicates that the system does not support configuration of storage by specifying Stripe Length.

If Extent Stripe Length is supported, and this Capabilities instance is associated with a pool that was created with a range of QOS then ExtentStripeLengthDefault represents the default value. Other available values(such as min, max, and discrete values) can be determined by using the ‘GetSupportedStripeLengths’ and ‘GetSupportedStripeLengthRange’ methods.

If Extent Stripe Length is supported and the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and Extent Stripe Length is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedStripeLength’ methods cannot be used, and in a StorageSetting instance used as a goal when creating or modifying a child element of the pool, ExtentStripeLengthGoal, ExtentStripeLengthMin, and ExtentStripeLengthMax MUST be set to NULL.

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data that can be maintained. Examples would be RAID 5 (where 1 copy is maintained) and RAID 1 (where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the minimum is defined by DataRedundancyMin.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the minimum is defined by PackageRedundancyMin.

Local methods

uint32 CreateMDRAIDStorageSetting (uint16 Level, CIM_StorageExtent[] InExtents, LMI_StorageSetting Setting)

This method creates new instance of LMI_MDRAIDStorageSetting, which will represent given RAID level. Applications then do not need to calculate DataRedundancy, PackageRedundancy and ExtentStripeLength.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		IN uint16 Level

		Requested level.

		ValueMap
		Values

		0
		RAID0

		1
		RAID1

		4
		RAID4

		5
		RAID5

		6
		RAID6

		10
		RAID10

		IN CIM_StorageExtent[] InExtents

		List of devices, from which the new device will be created. The created LMI_MDRAIDStorageSetting will take redundancy and striping of these devices into account.

For example, if the application wants to create RAID0 on top of two RAID1 devices, it passes InExtents = (FirstRAID1Extent, SecondRAID1Extent) and Level=0. Resulting LMI_MDRAIDStorageSetting will have DataRedundancy and PackageRedundancy as the minimum of the first and the second RAID1 extents and ExtentStripeLength will be 2 to indicate RAID0 with two devices.

		OUT LMI_StorageSetting Setting

		Created LMI_StorageSetting.

Inherited properties

uint16[] SupportedDataOrganizations

uint32[] AvailableRPM

string InstanceID

uint16 Encryption

uint16 ParityLayoutDefault

string Description

uint16[] AvailableDiskType

uint64 Generation

uint64[] AvailableInterconnectSpeed

string Caption

uint16[] SupportedCompressionRates

uint16 ElementType

uint16 DeltaReservationMin

uint16 DeltaReservationDefault

uint16 DeltaReservationMax

uint16[] AvailableInterconnectType

uint16[] AvailableFormFactorType

uint64 UserDataStripeDepthDefault

Inherited methods

GetSupportedStripeLengths

GetSupportedParityLayouts

GetSupportedStripeDepthRange

CreateGoalSettings

GetSupportedStripeLengthRange

GetSupportedStripeDepths

CreateSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSoftwareCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSoftwareCollection

Class reference

Subclass of CIM_HostedCollection

HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that has meaning only in the context of a System, a Collection whose elements are restricted by the definition of the System, or both of these types of Collections.

Key properties

Dependent

Antecedent

Local properties

LMI_SystemSoftwareCollection Dependent

The collection defined in the context of a system.

CIM_ComputerSystem Antecedent

The scoping system.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OrderedIPAssignmentComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OrderedIPAssignmentComponent

Class reference

Subclass of CIM_OrderedComponent

LMI_OrderedIPAssignmentComponent is association between LMI_IPAssignmentSettingData representing group of setting and subclasses of LMI_IPAssignmentSettingData representing detailed part of the setting.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_IPAssignmentSettingData GroupComponent

The parent element in the association.

LMI_IPAssignmentSettingData PartComponent

The child element in the association.

Local methods

None

Inherited properties

uint64 AssignedSequence

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NetworkPipe.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NetworkPipe

Class reference

Subclass of CIM_EnabledLogicalElement

NetworkPipe is a subclass of EnabledLogicalElement, representing the state and management of a connection or trail between endpoints. This object is different than the association between the endpoints (CIM_ActiveConnection) since the emphasis is NOT on the endpoints but on the management of the pipe itself - its state, configuration, etc. NetworkPipes are defined in the context of a CIM_Network and represent the ‘transfer of information . . . between . . . endpoints’. These concepts are aligned with the definition of the Pipe object in ITU’s M.3100 specification.

Key properties

InstanceID

Local properties

uint16 RequestedState

RequestedState is an integer enumeration that indicates the last requested or desired state for the element, irrespective of the mechanism through which it was requested. The actual state of the element is represented by EnabledState. This property is provided to compare the last requested and current enabled or disabled states. Note that when EnabledState is set to 5 (“Not Applicable”), then this property has no meaning. Refer to the EnabledState property description for explanations of the values in the RequestedState enumeration.

“Unknown” (0) indicates the last requested state for the element is unknown.

Note that the value “No Change” (5) has been deprecated in lieu of indicating the last requested state is “Unknown” (0). If the last requested or desired state is unknown, RequestedState should have the value “Unknown” (0), but may have the value “No Change” (5).Offline (6) indicates that the element has been requested to transition to the Enabled but Offline EnabledState.

It should be noted that there are two new values in RequestedState that build on the statuses of EnabledState. These are “Reboot” (10) and “Reset” (11). Reboot refers to doing a “Shut Down” and then moving to an “Enabled” state. Reset indicates that the element is first “Disabled” and then “Enabled”. The distinction between requesting “Shut Down” and “Disabled” should also be noted. Shut Down requests an orderly transition to the Disabled state, and might involve removing power, to completely erase any existing state. The Disabled state requests an immediate disabling of the element, such that it will not execute or accept any commands or processing requests.

This property is set as the result of a method invocation (such as Start or StopService on CIM_Service), or can be overridden and defined as WRITEable in a subclass. The method approach is considered superior to a WRITEable property, because it allows an explicit invocation of the operation and the return of a result code.

If knowledge of the last RequestedState is not supported for the EnabledLogicalElement, the property shall be NULL or have the value 12 “Not Applicable”.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Deferred

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority. (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>. (For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.)

<LocalID> MUST include either a vendor specified unique identifier, or if mapping from an ITU M.3100 environment, the trailID, connectionID or subNetworkConnectionID of the instances of PipeR2.

uint16 AggregationBehavior

Indicates whether the pipe is composed of lower-level pipes, and if so, how these lower-level pipes are aggregated (in parallel or in sequence). The specific instances of NetworkPipe that are combined are described using the NetworkPipeComposition association.

In the context of M.3100, the ability to be composed of lower-level pipes is modeled as a Trail. A Trail is made up of one or more Connections. (Note that both Trails and Connections are subclasses of Pipe). Because of the flexibility of the NetworkPipeComposition association, there is no need to subclass NetworkPipe, as was done in M.3100, but merely to instantiate the NetworkPipeComposition association to describe the bundling of the lower-level pipes (i.e., the connections), or the sequencing of them.

		ValueMap
		Values

		0
		Unknown

		2
		No Lower-Level Composition

		3
		Combined In Parallel

		4
		Combined In Sequence

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 Directionality

Indicates whether the pipe is bi-directional (value = 2), unidirectional (value = 3), or this information is not known (value = 0). For unidirectional pipes, the source and sink are indicated by a property (SourceOrSink) of the association, EndpointOfNetworkPipe.

		ValueMap
		Values

		0
		Unknown

		2
		Bi-Directional

		3
		Unidirectional

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EthernetPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EthernetPort

Class reference

Subclass of CIM_EthernetPort

Capabilities and management of an EthernetPort.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 MaxSpeed

The maximum bandwidth of the Port in Bits per Second.

string ElementName

A user-friendly name for the object.

uint16 LinkTechnology

An enumeration of the types of links. When set to 1 (“Other”), the related property OtherLinkTechnology contains a string description of the type of link.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Ethernet

		3
		IB

		4
		FC

		5
		FDDI

		6
		ATM

		7
		Token Ring

		8
		Frame Relay

		9
		Infrared

		10
		BlueTooth

		11
		Wireless LAN

string[] NetworkAddresses

Ethernet/802.3 MAC addresses formatted as twelve hexadecimal digits (for example, 010203040506), with each pair representing one of the six octets of the MAC address in canonical bit order. (Therefore, the Group address bit is found in the low order bit of the first character of the string.)

string PermanentAddress

PermanentAddress defines the network address that is hardcoded into a port. This ‘hardcoded’ address can be changed using a firmware upgrade or a software configuration. When this change is made, the field should be updated at the same time. PermanentAddress should be left blank if no ‘hardcoded’ address exists for the NetworkAdapter.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string OtherNetworkPortType

boolean PowerManagementSupported

string[] OtherIdentifyingInfo

uint16[] Capabilities

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

uint64 SupportedMaximumTransmissionUnit

string Name

string Status

string[] StatusDescriptions

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

uint16 PoEPowerEntityType

uint16 PVID

string InstanceID

uint16 PortNumber

string DeviceID

uint16 OperatingStatus

uint16 LocationIndicator

uint32 MaxDataSize

uint16 DetailedStatus

uint16[] EnabledCapabilities

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string[] CapabilityDescriptions

string[] PortDiscriminator

uint16[] PowerManagementCapabilities

uint16 PortType

uint16[] AvailableRequestedStates

boolean FullDuplex

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 UsageRestriction

string OtherPortType

uint64 RequestedSpeed

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint64 ActiveMaximumTransmissionUnit

boolean AutoSense

string CreationClassName

string OtherLinkTechnology

uint64 Speed

uint16 Availability

string SystemCreationClassName

string[] OtherEnabledCapabilities

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BlockStatisticsService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BlockStatisticsService

Class reference

Subclass of CIM_StatisticsService

A subclass of StatisticsService that provides services for filtering and retrieving statistics from a StatisticsManifestCollection that contains instances of BlockStatisticalData.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 RemoveManifests (CIM_BlockStatisticsManifestCollection ManifestCollection, CIM_BlockStatisticsManifest[] Manifests)

Extrinsic method that removes manifests from a BlockStatisticsManifestCollection.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		Method Reserved

		4096
		Manifest not found

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_BlockStatisticsManifestCollection ManifestCollection

		BlockStatisticsManifestCollection from which the BlockStatisticsManifests will be removed.

		IN CIM_BlockStatisticsManifest[] Manifests

		List of BlockStatisticsManifests to be removed from the BlockStatisticsManifestCollection.

uint32 GetStatisticsCollection (CIM_ConcreteJob Job, uint16[] ElementTypes, CIM_BlockStatisticsManifestCollection ManifestCollection, uint16 StatisticsFormat, string[] Statistics)

Retrieves statistics in a well-defined bulk format. The collection of statistics returned is determined by the list of element types passed in to the method and the manifests for those types contained in the supplied BlockStatisticsManifestCollection. If both the Elements and BlockStatisticsManifestCollection parameters are supplied, then the types of elements returned is an intersection of the element types listed in the Elements parameter and the types for which BlockStatisticsManifest instances exist in the supplied BlockStatisticsManifestCollection. The statistics are returned through a well-defined array of strings, whose format is specified by the StatisticsFormat parameter, that can be parsed to retrieve the desired statistics as well as limited information about the elements that those metrics describe.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		Method Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Element Not Supported

		4098
		Statistics Format Not Supported

		4099..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint16[] ElementTypes

		Element types for which statistics should be returned. If not supplied (i.e. parameter is null) this parameter is not considered when filtering the instances of StatisticalData that will populate the Statistics output parameter. If the array is not null, but is empty, then no statistics will be returned by this method. A client SHOULD NOT specify this parameter if it is not meaningful (i.e. the service only provides statistics for a single type of element).

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

		IN CIM_BlockStatisticsManifestCollection ManifestCollection

		The BlockStatisticsManifestCollection that contains the manifests that list the metrics to be returned for each element type. If not supplied (i.e. parameter is null), then all available statistics will be returned unfiltered. Only elements that match the element type properties (if meaningful) of the BlockStatisticsManifest instances contained within the BlockStatisticsManifestCollection will have data returned by this method. If the supplied BlockStatisticsManifestCollection does not contain any BlockStatisticsManifest instances, then no statistics will be returned by this method.

		IN uint16 StatisticsFormat

		Specifies the format of the Statistics output parameter.

		CSV = Comma Separated Values.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		CSV

		
		DMTF Reserved

		0x8000..
		Vendor Specific

		OUT string[] Statistics

		The statistics for all the elements as determined by the Elements, ManifestCollection parameters, and StatisticsFormat parameters.

uint32 AddOrModifyManifest (CIM_BlockStatisticsManifestCollection ManifestCollection, uint16 ElementType, string ElementName, string[] StatisticsList, CIM_BlockStatisticsManifest Manifest)

Method that creates or modifies a BlockStatisticsManifest for this statistics service. A client supplies a BlockStatisticsManifestCollection in which the new BlockStatisticsManifest will be placed or an existing BlockStatisticsManifest will be modified, the element type of the statistics that the BlockStatisticsManifest will filter, and a list of metrics, which serves as a filter for statistical data of that element type.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		Method Reserved

		4096
		Element Not Supported

		4097
		Metric not supported

		4098
		ElementType Parameter Missing

		4099..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_BlockStatisticsManifestCollection ManifestCollection

		BlockStatisticsManifestCollection that the BlockStatisticsManifest is or should be a member of.

		IN uint16 ElementType

		The type of elements whose statistics the BlockStatisticsManifest will filter.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

		IN string ElementName

		A client-defined string that identifies the BlockStatisticsManifest created or modified by this method.

		IN string[] StatisticsList

		The metrics that will be included by the filter. The metrics supplied here are the properties of CIM_StatisticalData or one of its subclasses that will remain after the BlockStatisticsManifest filter is applied.

		OUT CIM_BlockStatisticsManifest Manifest

		The BlockStatisticsManifest that is created or modified on successful execution of the method.

uint32 CreateManifestCollection (CIM_StatisticsCollection Statistics, string ElementName, CIM_BlockStatisticsManifestCollection ManifestCollection)

Creates a new BlockStatisticsManifestCollection instance, whose members can serve as a filter for metrics retrieved through the GetStatisticsCollection method.

		ValueMap
		Values

		0
		Ok

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_StatisticsCollection Statistics

		The collection of statistics that will be filtered using the new BlockStatisticsManifestCollection.

		IN string ElementName

		Client-defined name for the new BlockStatisticsManifestCollection.

		OUT CIM_BlockStatisticsManifestCollection ManifestCollection

		Reference to the new BlockStatisticsManifestCollection.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

ChangeAffectedElementsAssignedSequence

StopService

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveATAProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveATAProtocolEndpoint

Class reference

Subclass of CIM_ATAProtocolEndpoint

An ATAProtocolEndpoint represents the protocol (command) aspects of a logical ATA port, independent of the connection/transport. ATAProtocolEndpoint is either directly or indirectly associated to one or more instances of LogicalPort depending on the underlying transport.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SystemName

The Name of the scoping System.

uint16 Role

This property indicates which role this ProtocolEndpoint implements.

		ValueMap
		Values

		0
		Unknown

		2
		Initiator

		3
		Target

		4
		Both Initiator and Target

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string Name

The ATA identifier for the target or initiator device, in the format appropriate for the ConnectionType. If a ConnectionType specific subclass is defined, the subclass may override Name to define the format. For other ConnectionTypes, the format (and content) should match that of PermanentAddress of the corresponding port if the port is is subclassed from NetworkPort.

uint16 ConnectionType

The supported connection type for this endpoint. The connection type may be needed before the port(s) are associated and also is used in some ATA commands.

		ValueMap
		Values

		1
		Other

		2
		ATA

		3
		SATA

string Caption

The Caption property is a short textual description (one- line string) of the object.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping System.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

string NameFormat

string Status

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string OtherConnectionType

string OtherTypeDescription

uint16[] AvailableRequestedStates

uint16 ProtocolType

boolean BroadcastResetSupported

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedComponentExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedComponentExtent

Class reference

Subclass of CIM_Component

This association defines the capacity, expressed in StorageExtents, that together represents the entire capacity collected in a StoragePool. The capacity represented by StorageExtents may represent capacity that is allocated or unallocated.

StorageExtents associated to a StoragePool using this association shall not be also be associated to that StoragePool using the CIM_AssociatedRemainingExtent association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_StoragePool GroupComponent

The parent StoragePool in the association.

CIM_StorageExtent PartComponent

The component StorageExtent in the association.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NetworkService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NetworkService

Class reference

Subclass of CIM_Service

This is an abstract base class, derived from the Service class. It is deprecated in Version 2.7 with the recommendation that the Service class be subclassed instead. Distinguishing between services that modify traffic versus supporting basic communication has not proved useful.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

string[] StartupConditions

Deprecated!
This is a free-form array of strings that specify any specific pre-conditions that must be met in order for this service to start correctly. It was expected that subclasses would refine the inherited StartService() method to suit their specific needs. To-date, this refinement has not been necessary. Also, the property is not very useful, since it is not standardized. If this was a necessary construct, then it would be required higher in the inheritance hierarchy (on Service). The latter has not proven true. Therefore, the property is deprecated.

string[] StartupParameters

This is a free-form array of strings that specify any specific parameters that must be supplied to the StartService() method in order for this service to start correctly. It was expected that subclasses would refine the inherited StartService() methods to suit their specific needs. To-date, this refinement has not been necessary. If indeed the method were refined, then its parameters would more formally convey this information. Therefore, the property is deprecated.

string ServiceURL

This is a URL that provides the protocol, network location, and other service-specific information required in order to access the service. It is deprecated with the recommendation that ServiceAccessURI be instantiated instead. This new class correctly positions the semantics of the service access, and clarifies the format of the information.

string[] Keywords

Deprecated!
This is a free-form array of strings that provide descriptive words and phrases that can be used in queries. To-date, this property has not been implemented, since it is not standardized. Also, if this was a necessary query construct, then it would be required higher in the inheritance hierarchy. The latter has not proven necessary. Therefore, the property is deprecated.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareIdentityFileCheck.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareIdentityFileCheck

Class reference

Subclass of CIM_FileSpecification

Identifies both a physical file installed from RPM package and its original source in package. It represents a set of checks made to a single installed file provided by RPM package.

Key properties

CheckID

TargetOperatingSystem

Name

SoftwareElementID

Version

SoftwareElementState

Local properties

boolean CheckMode

The CheckMode property is used to indicate whether the condition is expected to exist or not exist in the environment. When the value is True, the condition is expected to exist (e.g., a file is expected to be on a system), so the Invoke methods are expected to return True. When the value is False, the condition is not expected to exist (e.g., a file is not to be on a system), so the Invoke methods are expected to return False.

boolean FileExists

True, if file is present on file system.

uint32 UserID

User ID of installed file.

string Version

Version of RPM package in EVRA form. It stands for Epoch, Version, Revision and Architecture. It has a specific format: <epoch>-<version>-<release>.<architecture>.

uint64 FileSizeOriginal

File size in Bytes from RPM database.

string FileName

File name of verified file without any directory prefix.

uint16 ChecksumType

Number of hash algorithm according to RFC4880. This algorithm is used for making checksums of RPM files and packages. This algorithm is same for the whole RPM database.

		ValueMap
		Values

		0
		UNKNOWN

		1
		MD5

		2
		SHA-1

		3
		RIPE-MD/160

		8
		SHA256

		9
		SHA384

		10
		SHA512

		11
		SHA224

uint64 LastModificationTime

Time of last modification of installed file as number a of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). NULL if file does not exist.

string LinkTargetOriginal

Target destination of symbolic link from RPM database as returned by readlink. If file is not a symbolic link, NULL is returned.

uint8[] FileModeFlags

File mode of installed file as an array of permissions. Each value represents a bit position in file mode.

		ValueMap
		Values

		0
		Execute Other

		1
		Write Other

		2
		Read Other

		3
		Execute Group

		4
		Write Group

		5
		Read Group

		6
		Execute User

		7
		Write User

		8
		Read User

		9
		Sticky

		10
		SGID

		11
		SUID

uint8[] FileModeFlagsOriginal

File mode as an array of permissions of file from RPM database. Each value represents a bit position in file mode.

		ValueMap
		Values

		0
		Execute Other

		1
		Write Other

		2
		Read Other

		3
		Execute Group

		4
		Write Group

		5
		Read Group

		6
		Execute User

		7
		Write User

		8
		Read User

		9
		Sticky

		10
		SGID

		11
		SUID

uint32 FileModeOriginal

File mode as a number given by RPM database.

uint32 FileMode

File mode of installed file as a number. NULL if file does not exist.

uint32 GroupIDOriginal

Group ID of file from RPM database.

uint16 FileTypeOriginal

File type of file in RPM database.

		ValueMap
		Values

		0
		Unknown

		1
		File

		2
		Directory

		3
		Symlink

		4
		FIFO

		5
		Character Device

		6
		Block Device

uint16 TargetOperatingSystem

The Target Operating System of the SoftwareElement being checked.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		MACOS

		3
		ATTUNIX

		4
		DGUX

		5
		DECNT

		6
		Tru64 UNIX

		7
		OpenVMS

		8
		HPUX

		9
		AIX

		10
		MVS

		11
		OS400

		12
		OS/2

		13
		JavaVM

		14
		MSDOS

		15
		WIN3x

		16
		WIN95

		17
		WIN98

		18
		WINNT

		19
		WINCE

		20
		NCR3000

		21
		NetWare

		22
		OSF

		23
		DC/OS

		24
		Reliant UNIX

		25
		SCO UnixWare

		26
		SCO OpenServer

		27
		Sequent

		28
		IRIX

		29
		Solaris

		30
		SunOS

		31
		U6000

		32
		ASERIES

		33
		HP NonStop OS

		34
		HP NonStop OSS

		35
		BS2000

		36
		LINUX

		37
		Lynx

		38
		XENIX

		39
		VM

		40
		Interactive UNIX

		41
		BSDUNIX

		42
		FreeBSD

		43
		NetBSD

		44
		GNU Hurd

		45
		OS9

		46
		MACH Kernel

		47
		Inferno

		48
		QNX

		49
		EPOC

		50
		IxWorks

		51
		VxWorks

		52
		MiNT

		53
		BeOS

		54
		HP MPE

		55
		NextStep

		56
		PalmPilot

		57
		Rhapsody

		58
		Windows 2000

		59
		Dedicated

		60
		OS/390

		61
		VSE

		62
		TPF

		63
		Windows (R) Me

		64
		Caldera Open UNIX

		65
		OpenBSD

		66
		Not Applicable

		67
		Windows XP

		68
		z/OS

		69
		Microsoft Windows Server 2003

		70
		Microsoft Windows Server 2003 64-Bit

		71
		Windows XP 64-Bit

		72
		Windows XP Embedded

		73
		Windows Vista

		74
		Windows Vista 64-Bit

		75
		Windows Embedded for Point of Service

		76
		Microsoft Windows Server 2008

		77
		Microsoft Windows Server 2008 64-Bit

		78
		FreeBSD 64-Bit

		79
		RedHat Enterprise Linux

		80
		RedHat Enterprise Linux 64-Bit

		81
		Solaris 64-Bit

		82
		SUSE

		83
		SUSE 64-Bit

		84
		SLES

		85
		SLES 64-Bit

		86
		Novell OES

		87
		Novell Linux Desktop

		88
		Sun Java Desktop System

		89
		Mandriva

		90
		Mandriva 64-Bit

		91
		TurboLinux

		92
		TurboLinux 64-Bit

		93
		Ubuntu

		94
		Ubuntu 64-Bit

		95
		Debian

		96
		Debian 64-Bit

		97
		Linux 2.4.x

		98
		Linux 2.4.x 64-Bit

		99
		Linux 2.6.x

		100
		Linux 2.6.x 64-Bit

		101
		Linux 64-Bit

		102
		Other 64-Bit

		103
		Microsoft Windows Server 2008 R2

		104
		VMware ESXi

		105
		Microsoft Windows 7

		106
		CentOS 32-bit

		107
		CentOS 64-bit

		108
		Oracle Linux 32-bit

		109
		Oracle Linux 64-bit

		110
		eComStation 32-bitx

		111
		Microsoft Windows Server 2011

		113
		Microsoft Windows Server 2012

		114
		Microsoft Windows 8

		115
		Microsoft Windows 8 64-bit

		116
		Microsoft Windows Server 2012 R2

string Name

Absolute path of file being checked.

uint32 UserIDOriginal

User ID of file from RPM database.

uint16 FileType

File type of installed file. NULL if file does not exist.

		ValueMap
		Values

		0
		Unknown

		1
		File

		2
		Directory

		3
		Symlink

		4
		FIFO

		5
		Character Device

		6
		Block Device

uint64 LastModificationTimeOriginal

Time of last modification of file from RPM database as a number of secodns since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

string FileChecksumOriginal

Checksum of file from RPM database. Hash algorithm used can be obtained with ChecksumType property. It contains NULL for all file types but regular file.

string LinkTarget

Target destination of symbolic link as returned by readlink. If file is not a symbolic link or it’s missing, NULL is returned.

uint16 SoftwareElementState

The SoftwareElementState of the SoftwareElement being checked.

		ValueMap
		Values

		0
		Deployable

		1
		Installable

		2
		Executable

		3
		Running

uint32 GroupID

Group ID of installed file.

string MD5Checksum

MD5 checksum of installed file. It’s computed only for regular files.

uint16[] FailedFlags

Returns array of flags representing test that did not pass. Note that not all tests are run on every file. Tests are selected depending on file type stored in package database. If the file is missing, no other tests are run. Flag is present in the output array if the test has been run and file did not pass it. Values representing tests being run are: “Existence” - it applies to every file type; “FileSize” - applies only to regular files and symbolic links; “FileMode” - includes check for permissions and file type. Permissions are not checked for symbolic links. “Checksum” - applies only to regular files; “Device Number” - tests major/minor device number; “LinkTarget” - tested only on symbolic links; “UserID” and “GroupID” - apply to every file type; “Last Modification Time” is tested only on regular files.

		ValueMap
		Values

		0
		Existence

		1
		FileSize

		2
		FileMode

		3
		Checksum

		4
		Device Number

		5
		LinkTarget

		6
		UserID

		7
		GroupID

		8
		Last Modification Time

string CheckID

This contains InstanceID of asynchronous job if this check is a result of job invocation. Otherwise “LMI:LMI_SoftwareIdentityFileCheck” will be present. In former case, the format of value will be: “LMI:LMI_SoftwareVerificationJob:<id>”, where <id> is job’s identification number in decimal format.

string SoftwareElementID

This is an identifier for the SoftwareElement being checked.

uint64 FileSize

Size of installed file in Bytes. It’s NULL if file does not exist or it’s not a regular file or symbolic link.

string FileChecksum

Checksum of installed file. Hash algorithm used can be obtained with ChecksumType property. This property contains valid value only for regular files. NULL is present if check could not be done.

Local methods

uint32 Invoke ()

The Invoke method evaluates this Check. The details of the evaluation are described by the specific subclasses of CIM_Check. When the SoftwareElement being checked is already installed, the CIM_InstalledSoftwareElement association identifies the CIM_ComputerSystem in whose context the Invoke is executed. If this association is not in place, then the InvokeOnSystem method should be used - since it identifies the TargetSystem as an input parameter of the method.

The results of the Invoke method are based on the return value. A zero is returned if the condition is satisfied. A one is returned if the method is not supported. Any other value indicates the condition is not satisfied.

Parameters

		None

		

uint32 InvokeOnSystem (CIM_ComputerSystem TargetSystem)

The InvokeOnSystem method evaluates this Check. The details of the evaluation are described by the specific subclasses of CIM_Check. The method’s TargetSystem input parameter specifies the ComputerSystem in whose context the method is invoked.

The results of the InvokeOnSystem method are based on the return value. A zero is returned if the condition is satisfied. A one is returned if the method is not supported. Any other value indicates the condition is not satisfied.

Parameters

		IN CIM_ComputerSystem TargetSystem

		Reference to ComputerSystem in whose context the method is to be invoked.

Inherited properties

uint32 CRC1

string InstanceID

string Description

string ElementName

datetime CreateTimeStamp

string Caption

uint64 Generation

uint32 CheckSum

uint32 CRC2

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDMonitor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDMonitor

Class reference

Subclass of LMI_SSSDComponent

SSSD monitor. An SSSD component that executes the other components and makes sure they stay running. This component can not be disabled.

Key properties

Name

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Name

string InstanceID

boolean IsEnabled

uint64 Generation

string Caption

uint16 DebugLevel

uint16 Type

string Description

Inherited methods

SetDebugLevelPermanently

Enable

Disable

SetDebugLevelTemporarily

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DNSSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DNSSettingData

Class reference

Subclass of CIM_DNSSettingData

DNSSettingData defines the DNSconfiguration settings for a single IP network connection. With the exception of the the DNSServerAddresses and the hostname in use, the configuration of a DNSProtocolEndpoint is indicated by the properties of an associated instance of DNSSettingData.

Key properties

InstanceID

Local properties

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		4096
		IPv4

		4097
		IPv6

string[] DNSServerAddresses

The DNS servers to contact. The array ordering correlates to the order in which the DNS servers will be contacted. If using DHCP, DNS servers obtained from DHCP will be prepended to this array.

The RemoteServiceAccessPoints associated with the DNSProtocolEndpoint with the value of the AccessContext property being DNS Server represent the actual DNS Servers being utilized by the DNS client.

string[] DNSSearchDomains

The DNS search domains. The array ordering correlates to the order in which the search domains will be used. If using DHCP, DNS search domains obtained from DHCP will be prepended to this array.

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint. This is independent of the DNS configuration, thus this property has the value of 2 (Not Applicable).

		ValueMap
		Values

		2
		Not Applicable

Local methods

None

Inherited properties

string DomainName

string InstanceID

string ElementName

string OtherAddressPrefixOriginDescription

string ConfigurationName

boolean RegisterThisConnectionsAddress

string SoOrgID

uint16[] DHCPOptionsToUse

string OtherAddressSuffixOriginDescription

uint16 AddressPrefixOrigin

uint16 AddressSuffixOrigin

string Description

string SoID

string Caption

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

string RequestedHostname

boolean UseSuffixWhenRegistering

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxService

Class reference

Subclass of CIM_Service

SELinux on the managed system.

SELinux can be in the following states:

Enforcing - SELinux security policy is enforced.

Permissive - SELinux prints warnings instead of enforcing.

Disabled - No SELinux policy is loaded.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 SELinuxState

Current system-wide state of SELinux.

		ValueMap
		Values

		0
		Disabled

		1
		Permissive

		2
		Enforcing

uint16 SELinuxDefaultState

SELinux system-wide state on next system boot.

		ValueMap
		Values

		0
		Disabled

		1
		Permissive

		2
		Enforcing

uint32 PolicyVersion

Current version of the SELinux system policy.

string PolicyType

SELinux policy type.

Local methods

uint32 SetSELinuxState (uint16 NewState, boolean MakeDefault, LMI_SELinuxJob Job)

Set SELinux state.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

Parameters

		IN uint16 NewState

		New state value.

		ValueMap
		Values

		0
		Disabled

		1
		Permissive

		2
		Enforcing

		IN boolean MakeDefault

		If set to True, makes the new state persistent.

OUT LMI_SELinuxJob Job

uint32 RestoreLabels (LMI_UnixFile Target, uint16 Action, boolean Recursively, LMI_SELinuxJob Job)

Restore default SELinux security contexts on files.

There are two actions that can be taken on the specified files:

Report: List files whose SELinux label is different than the one specified by the policy.

Restore: Restore SELinux label on files to the respective values specified by the policy.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

Parameters

		IN, OUT LMI_UnixFile Target

		SELinux file to change. If it’s not a directory, the Recursively parameter has no effect.

		IN uint16 Action

		Action to take on mislabeled files.

		ValueMap
		Values

		0
		Report

		1
		Restore

		
		OpenLMI Reserved

		IN boolean Recursively

		If True, restore labels recursively in case Target is a directory. If Target is not a directory, this value is ignored.

OUT LMI_SELinuxJob Job

uint32 SetFileLabel (LMI_UnixFile Target, string Label, LMI_SELinuxJob Job)

Set label on an SELinux file.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

Parameters

		IN LMI_UnixFile Target

		An SELinux file to change.

		IN string Label

		New label.

OUT LMI_SELinuxJob Job

uint32 SetPortLabel (LMI_SELinuxPort Target, string PortRange, LMI_SELinuxJob Job)

Set label on an SELinux port.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

Parameters

		IN LMI_SELinuxPort Target

		An SELinux port to change.

		IN string PortRange

		Network ports to change. Can be specified as a single port or as range, for example 1024-2048’.

OUT LMI_SELinuxJob Job

uint32 SetBoolean (LMI_SELinuxBoolean Target, boolean Value, boolean MakeDefault, LMI_SELinuxJob Job)

Set a new value of an SELinux boolean.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

Parameters

		IN LMI_SELinuxBoolean Target

		An SELinux boolean to change.

		IN boolean Value

		New value.

		IN boolean MakeDefault

		If True, makes the new state persistent.

OUT LMI_SELinuxJob Job

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 OperatingStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_IPConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_IPConfigurationService

Class reference

Subclass of CIM_Service

CIM_IPConfigurationService provides management of the IP configuration associated with a LANEndpoint or IPProtocolEndpoint or IPNetworkConnection or the global IP configuration for the ComputerSystem.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 ApplySettingToComputerSystem (CIM_IPVersionSettingData IPVersionSettingData, CIM_ComputerSystem ComputerSystem, uint16 Mode, CIM_ConcreteJob Job)

Apply the IP Version respresented by the CIM_IPVersionSettingData to the specified ComputerSystem. The IP Version may take effect or disable immediatley or may be set to take effect or disable in the next boot, depending on ComputerSystem and the value specified for Mode. This will reflect in the IsCurrent & IsNext property of CIM_ElementSettingData associating the IPVersionSettingData with the ComputerSystem. Refer the description for the Mode parameter for more details.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Failed

		4096
		Job Started

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN CIM_IPVersionSettingData IPVersionSettingData

		The IPVersionSettingData to be apply.

		IN CIM_ComputerSystem ComputerSystem

		The ComputerSystem to which the setting will be applied

		IN uint16 Mode

		The mode in which the configuration need to be applied to the ComputerSystem.

Mode 0 - implies use Mode 1 if allowed, else Mode 2.

Mode 1 - Results in IsNext = 1 (Is Next), IsCurrent = 1 (Is Current) for the CIM_ElementSettingData associating the setting with ComputerSystem.

Mode 2 - Results in IsNext = 1 (Is Next) for the CIM_ElementSettingData associating the setting with ComputerSystem. The value of IsCurrent will not be affected.

Mode 3 - implies use Mode 4 if allowed, else Mode 5.

Mode 4 - Results in IsNext = 2 (Is Not Next), IsCurrent = 2 (Is Not Current) for the CIM_ElementSettingData associating the setting with ComputerSystem.

Mode 5 - Results in IsNext = 2 (Is Not Next) for the CIM_ElementSettingData associating the setting with ComputerSystem. The value of IsCurrent will not be affected.

Mode 6 - Results in IsNext = 3 (Is Next For Single Use)for the CIM_ElementSettingData associating the setting with ComputerSystem. The value of IsCurrent will not be affected. To change the IsNext=3 (Is Next For Single Use) for a Setting, invoke the method with any of the other values for the mode.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (may be null if task completed).

uint32 AddStaticIPv4Interface (CIM_IPAssignmentSettingData Configuration, CIM_StaticIPAssignmentSettingData StaticSetting, string Address, string SubnetMask, string Gateway)

Add a CIM_StaticIPAssignmentSettingData configuration to the specified IPAssignmentSettingData instance. This will also create an instance of CIM_ConcreteDependency which associates the specified CIM_IPAssignmentSettingData instance with the newly created CIM_StaticIPAssignmentSettingData instance. The newly created instance of StaticIPAssignmentSettingData contains the IP configuration of an additional CIM_IPProtocolEndpoint which will be created. When the CIM_IPProtocolEndpoint is created depends on the value of the IsCurrent property of the CIM_ElementSettingData association which associates the CIM_IPAssignmentSettingData instance with the the CIM_LANEndpoint instance. If the IsCurrent property has a value of “true”, the CIM_IPProtocolEndpoint will be created immediately. The instance of CIM_StaticIPAssignmentSettingData identified by the StaticSetting parameter will be associated with the newly created instance of CIM_IPProtocolEndpoint via an instance of CIM_ElementSettingData. If the the value of the IsCurrent property is “false”, the CIM_IPProtocolEndpoint will be created the next time the IPAssignmentSettingData is applied to the LANEndpoint. Note: this method may be deprecated in the future in lieu of intrinsics once the limitations in CIM operations are addressed.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN CIM_IPAssignmentSettingData Configuration

		The IPAssignmentSettingData to which a static IP interface will be added.

		OUT CIM_StaticIPAssignmentSettingData StaticSetting

		The created StaticIPAssignmentSettingData.

		IN string Address

		The IPv4 address requested.

		IN string SubnetMask

		The requested subnet mask.

		IN string Gateway

		The requested default gateway. If “null”, the GatewayIPv4Address property of the created CIM_StaticIPAssignmentSettingData instance will have a value of 0.0.0.0.

uint32 ApplySettingToLANEndpoint (CIM_IPAssignmentSettingData Configuration, CIM_LANEndpoint Endpoint, CIM_ConcreteJob Job)

Apply the configuration represented by the IPAssignmentSettingData to the specified LANEndpoint. This will result in the value of the IsCurrent property of the CIM_ElementSettingData which associates the specified CIM_IPAssignmentSettingData and specified CIM_LANEndpoint have a value of “true”. The IsCurrent property of any other instances of CIM_ElementSettingData which reference the specified CIM_LANEndpoint and an instance of CIM_IPAssignmentSettingData will have a value of “false”. Each instance of CIM_StaticIPAssignmentSettingData which is aggregated into the target CIM_IPAssignmentSettingData instance will result in the creation of an instance of CIM_IPProtocolEndpoint associated with the target CIM_LANEndpoint instance via an instance of the CIM_BindsTo association. The created CIM_IPProtocolEndpoint instance will have the values specified in the CIM_StaticIPAssignmentSettingData instance.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5
		Busy

		4096
		Method Parameters Checked - Job Started

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN CIM_IPAssignmentSettingData Configuration

		The IPAssignmentSettingData to apply.

		IN CIM_LANEndpoint Endpoint

		The LANEndpoint to which the configuration will be applied.

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (may be null if task completed).

uint32 ApplySettingToIPNetworkConnection (CIM_IPAssignmentSettingData SettingData, CIM_IPVersionSettingData IPVersionSettingData, CIM_IPNetworkConnection IPNetworkConnection, uint16 Mode, CIM_ConcreteJob Job)

Apply the IP setting respresented by the CIM_IPAssignmentSettingData and/or the IPVersion Setting respresented by the CIM_IPVersionSettingData to the specified IPNetworkConnection. The settings may take effect or disable immediatley or may be set to take effect or disable in the next boot, depending on system, IPNetworkConnection, Setting and the value specified for Mode. This will reflect in the IsCurrent & IsNext property of instances of CIM_ElementSettingData associating the SettingData and or IPVersionSettingData with the IPNetworkConnection. For cases, enabling one setting can result in automatic disabling of another setting, it will be refelected in the properties of ElementSettingData associating those settings to the IPNetworkConnection.Refer the description for the Mode parameter for more details.

At least one of the SettingData or IPVersionSettingData is required in the method call; both may be specified on the same method call.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Failed

		4096
		Job Started

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN CIM_IPAssignmentSettingData SettingData

		The IPAssignmentSettingData to apply.

		IN CIM_IPVersionSettingData IPVersionSettingData

		The IPVersionSettingData to be apply.

		IN CIM_IPNetworkConnection IPNetworkConnection

		The IPNetworkConnection to which the setting will be applied

		IN uint16 Mode

		The mode in which the configuration need to be applied to the IPNetworkConnection.

Mode 0 - implies use Mode 1 if allowed, else Mode 2.

Mode 1 - Results in IsNext = 1 (Is Next), IsCurrent = 1 (Is Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection.

Mode 2 - Results in IsNext = 1 (Is Next) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected.

Mode 3 - implies use Mode 4 if allowed, else Mode 5.

Mode 4 - Results in IsNext = 2 (Is Not Next), IsCurrent = 2 (Is Not Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection.

Mode 5 - Results in IsNext = 2 (Is Not Next) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected.

Mode 6 - Results in IsNext = 3 (Is Next For Single Use)for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected. To change the IsNext=3 (Is Next For Single Use) for a Setting, invoke the method with any of the other values for the mode.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (may be null if task completed).

uint32 ApplySettingToIPProtocolEndpoint (CIM_IPAssignmentSettingData Configuration, CIM_IPProtocolEndpoint Endpoint, CIM_ConcreteJob Job)

Apply the configuration represented by the CIM_IPAssignmentSettingData to the specified IPProtocolEndpoint. This will result in the value of the IsCurrent property of the CIM_ElementSettingData which associates the specified CIM_IPAssignmentSettingData and specified CIM_IPProtocolEndpoint having a value of “true”. The IsCurrent property of any other instances of CIM_ElementSettingData which reference the specified CIM_IPProtocolEndpoint and an instance of CIM_IPAssignmentSettingData will have a value of “false”. Each instance of CIM_IPAssignmentSettingData which is aggregated into the target CIM_IPAssignmentSettingData instance will be applied to the CIM_ProtocolEndpoint to which it is associated via an instance of CIM_ElementSettingData where the CIM_ProtocolEndpoint is associated with the target CIM_IPProtocolEndpoint via an instance of CIM_EndpointIdentity.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5
		Busy

		4096
		Method Parameters Checked - Job Started

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN CIM_IPAssignmentSettingData Configuration

		The IPAssignmentSettingData to apply.

		IN CIM_IPProtocolEndpoint Endpoint

		The IPProtocolEndpoint to which the configuration will be applied.

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. This parameter MUST NOT be null if a value of 4096 is returned. This parameter MUST be null if any other value is returned by the method.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SymbolicLink.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SymbolicLink

Class reference

Subclass of CIM_LogicalFile

This class is a special type of LogicalFile that represents a Symbolic Link. This convention is useful for some operating systems that want to represent a single file in multiple places or a single file that is represented via multiple names.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

string TargetFile

The target file of the symbolic link.

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AbstractElementAllocatedFromPool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AbstractElementAllocatedFromPool

Class reference

Subclass of CIM_Dependency

AbstractElementAllocatedFromPool associates an instance of CIM_ManagedElement representing an allocated Resource with the CIM_ManagedElement from which it was allocated

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

CIM_ManagedElement Dependent

A reference to the element that is alloocated from the antecedent pool.

CIM_ManagedElement Antecedent

A reference to the ManagedElement that represents a pool from which an element is allocated.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SoftwareInstallationServiceCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SoftwareInstallationServiceCapabilities

Class reference

Subclass of CIM_Capabilities

A subclass of capabilities that defines the capabilities of a SoftwareInstallationService. A single instance of SoftwareInstallationServiceCapabilities is associated with a SoftwareInstallationService using ElementCapabilities.

Key properties

InstanceID

Local properties

uint16[] SupportedExtendedResourceTypes

An array containing a list of the binary format types that this service ‘knows’ how to install. The Values for this property are the subset of CIM_SoftwareIdentityResource.ExtendedResourceTypes that apply to the ‘Installer and Payload’, ‘Installer’ and ‘ Installability Checker’ ResourceTypes. For example, an a Windows system, this property may be set to ‘4’ indicating ‘Windows MSI’. This property should be set to ‘2’ (Not Applicable) if this service is not OS specific.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		Linux RPM

		4
		HP-UX Depot

		5
		Windows MSI

		6
		Solaris Package

		7
		Macintosh Disk Image

		8
		Debian linux Package

		9
		VMware vSphere Installation Bundle

		10
		VMware Software Bulletin

		11
		HP Smart Component

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] SupportedTargetTypes

An array containing a list of SoftwareIdentity.TargetType properties that this service ‘knows’ how to install. TargetType is an application specific string which is invariant across version or name changes of the SoftwareIdentity and so can be used by a client to select Software Identities compatible with this service.

If the service is generic (for example an OS installer), this array will be empty.

uint16[] SupportedExtendedResourceTypesBuildNumbers

This property represents the build number component of the installer version supported by the SoftwareInstallationService.The installer format is represented by the element at the same index in the SupportedExtendedResourceTypes array.

boolean CanAddToCollection

This property indicates whether SoftwareInstallationService.InstallFromSoftwareIdentity supports adding a SoftwareIdentity to a Collection.

uint16[] SupportedURISchemes

This property lists the URI schemes supported by the SoftwareInstallationService.

		ValueMap
		Values

		2
		data

		3
		file

		4
		ftp

		5
		http

		6
		https

		7
		nfs

		8
		tftp

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Specific

uint16[] SupportedInstallOptions

An enumeration indicating the specific install related optionssupported by this service. Since this is an array, multiple values may be specified. See the InstallOptions parameter of theSoftwareInstallationService.InstallFromSoftwareIdentity method for the description of these values.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint16[] SupportedExtendedResourceTypesMajorVersions

This property represents the major number component of the installer version supported by the SoftwareInstallationService.The installer format is represented by the element at the same index in the SupportedExtendedResourceTypes array.

uint16[] SupportedSynchronousActions

Enumeration indicating what operations will be executed without the creation of a job. If an operation is included in both this and SupportedAsynchronousActions then the underlying instrumentation is indicating that it may or may not create a job.

		ValueMap
		Values

		2
		None supported

		3
		Install From Software Identity

		4
		Install from ByteStream

		5
		Install from URI

uint16[] SupportedAsynchronousActions

Enumeration indicating what operations will be executed as asynchronous jobs. If an operation is included in both this and SupportedSynchronousActions then the underlying implementation is indicating that it may or may not create a job. If a Job is created, then the methods in SoftwareInstallationService return a reference to that Job as the Job parameter.

		ValueMap
		Values

		2
		None supported

		3
		Install From Software Identity

		4
		Install from ByteStream

		5
		Install from URI

string[] OtherSupportedExtendedResourceTypeDescriptions

A string describing the binary format types that this service ‘knows’ how to install when the corresponding SupportedExtendedResourceTypes array includes the value 1 (Other).

uint16[] SupportedExtendedResourceTypesRevisionNumbers

This property represents the revision number component of the installer version supported by the SoftwareInstallationService.The installer format is represented by the element at the same index in the SupportedExtendedResourceTypes array.

uint16[] SupportedExtendedResourceTypesMinorVersions

This property represents the minor number component of the installer version supported by the SoftwareInstallationService.The installer format is represented by the element at the same index in the SupportedExtendedResourceTypes array.

Local methods

None

Inherited properties

string Description

string Caption

string ElementName

string InstanceID

uint64 Generation

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PointingDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PointingDevice

Class reference

Subclass of CIM_PointingDevice

PointingDevice represents those Devices used to ‘point’ to regions of a Display.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint8 NumberOfButtons

Number of buttons. If the PointingDevice has no buttons, enter 0.

string SystemName

The System Name of the scoping system.

uint16 PointingType

The type of the pointing device.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Mouse

		4
		Track Ball

		5
		Track Point

		6
		Glide Point

		7
		Touch Pad

		8
		Touch Screen

		9
		Mouse - Optical Sensor

string Description

The Description property provides a textual description of the object.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 Handedness

uint16 CommunicationStatus

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

boolean PowerManagementSupported

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

boolean IsLocked

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint32 Resolution

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint16 Availability

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BindsTo.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BindsTo

Class reference

Subclass of CIM_SAPSAPDependency

This association establishes a ServiceAccessPoint as a requestor of protocol services from a ProtocolEndpoint. Typically, this association runs between SAPs and endpoints on a single system. Because a ProtocolEndpoint is a kind of ServiceAccessPoint, this binding can be used to establish a layering of two protocols, with the upper layer represented by the Dependent and the lower layer represented by the Antecedent.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The AccessPoint or ProtocolEndpoint that is dependent on the lower-level endpoint.

CIM_ProtocolEndpoint Antecedent

The lower-level endpoint that is accessed by the SAP.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountManagementServiceCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountManagementServiceCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

LMI_AccountManagementCapabilities Capabilities

The supported Capabilities for managing Linux Accounts

LMI_AccountManagementService ManagedElement

The Central Instance of Account Management

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Container.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Container

Class reference

Subclass of CIM_Component

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_PhysicalPackage GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

CIM_PhysicalElement PartComponent

The PhysicalElement which is contained in the Package.

string LocationWithinContainer

A free-form string representing the positioning of the PhysicalElement within the PhysicalPackage. Information relative to stationary elements in the Container (for example, ‘second drive bay from the top’), angles, altitudes and other data may be recorded in this property. This string could supplement or be used in place of instantiating the CIM_Location object.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxJob

Class reference

Subclass of LMI_ConcreteJob

Generic SELinux provider job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

uint16 JobState

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

boolean DeleteOnCompletion

datetime ElapsedTime

string Caption

string JobStatus

datetime TimeSubmitted

string MethodName

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Chassis.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Chassis

Class reference

Subclass of CIM_Chassis

The Chassis class represents the PhysicalElements that enclose other Elements and provide definable functionality, such as a desktop, processing node, UPS, disk or tape storage, or a combination of these.

Key properties

Tag

CreationClassName

Local properties

string SKU

The stock-keeping unit number for this PhysicalElement.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string Version

A string that indicates the version of the PhysicalElement.

uint16 ChassisPackageType

ChassisPackageType indicates the physical form factor for the type of Chassis. This property may have a value when the PackageType property contains the value 3 “Chassis Frame”.

A value of 28 “Blade Enclosure” shall indicate the Chassis is designed to contain one or more PhysicalPackage(s) of PackageType 16 “Blade” or PackageType 17 “Blade Expansion”.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		SMBIOS Reserved

		3
		Desktop

		4
		Low Profile Desktop

		5
		Pizza Box

		6
		Mini Tower

		7
		Tower

		8
		Portable

		9
		LapTop

		10
		Notebook

		11
		Hand Held

		12
		Docking Station

		13
		All in One

		14
		Sub Notebook

		15
		Space-Saving

		16
		Lunch Box

		17
		Main System Chassis

		18
		Expansion Chassis

		19
		SubChassis

		20
		Bus Expansion Chassis

		21
		Peripheral Chassis

		22
		Storage Chassis

		23
		SMBIOS Reseved

		24
		Sealed-Case PC

		25
		SMBIOS Reserved

		26
		CompactPCI

		27
		AdvancedTCA

		28
		Blade Enclosure

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

uint16 NumberOfPowerCords

Integer indicating the number of power cords which must be connected to the Chassis, for all the componentry to operate.

boolean LockPresent

Boolean indicating whether the Frame is protected with a lock.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string VirtualMachine

Type of virtualization technology.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

string Model

The name by which the PhysicalElement is generally known.

string UUID

UUID.

string ProductName

Product name.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

boolean HotSwappable

uint16 HealthState

uint16 InputCurrentType

uint16 MultipleSystemSupport

string UserTracking

string VendorEquipmentType

datetime ManufactureDate

real32 Width

boolean Removable

uint16 RemovalConditions

string PartNumber

real32 Height

string ChassisTypeDescription

boolean AudibleAlarm

string[] StatusDescriptions

string Status

string[] TypeDescriptions

boolean CanBeFRUed

boolean Replaceable

uint16 PrimaryStatus

uint16[] OperationalStatus

sint32 InputVoltage

string BreachDescription

string[] VendorCompatibilityStrings

uint16 DetailedStatus

string OtherIdentifyingInfo

string[] ServiceDescriptions

string OtherInputCurrentType

boolean VisibleAlarm

boolean PoweredOn

uint16 SecurityBreach

uint16[] ServicePhilosophy

boolean IsLocked

uint16 HeatGeneration

real32 Weight

uint16 CommunicationStatus

uint64 Generation

uint16 RackMountable

uint16[] ChassisTypes

real32 Depth

uint16 OperatingStatus

string CableManagementStrategy

sint16 CurrentRequiredOrProduced

datetime InstallDate

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDService

Class reference

Subclass of CIM_Service

System Security Services Daemon

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGAssociatedComponentExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGAssociatedComponentExtent

Class reference

Subclass of CIM_AssociatedComponentExtent

This association defines the capacity, expressed in StorageExtents, that together represents the entire capacity collected in a StoragePool. The capacity represented by StorageExtents may represent capacity that is allocated or unallocated.

StorageExtents associated to a StoragePool using this association shall not be also be associated to that StoragePool using the CIM_AssociatedRemainingExtent association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

None

Local methods

None

Inherited properties

CIM_StoragePool GroupComponent

CIM_StorageExtent PartComponent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ServiceInstanceModificationIndication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ServiceInstanceModificationIndication

Class reference

Subclass of CIM_InstModification

Service Instance Modification Indication

Key properties

Local properties

None

Local methods

None

Inherited properties

string[] ChangedPropertyNames

string OtherSeverity

string PreviousInstance

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LinkAggregationConcreteIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LinkAggregationConcreteIdentity

Class reference

Subclass of CIM_ConcreteIdentity

Association between LANEndpoint and LAGPort8023ad.

Key properties

SameElement

SystemElement

Local properties

LMI_LAGPort8023ad SameElement

Representation of the member of link aggregation.

LMI_LANEndpoint SystemElement

LANEndpoint representing physical network port.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Locale.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Locale

Class reference

Subclass of CIM_SystemSetting

Class representing Linux Locale. The system locale controls the language settings of system services and of the UI before the user logs in, such as the display manager, as well as the default for users after login.

Key properties

CreationClassName

SettingID

SystemName

SystemCreationClassName

Local properties

string LCIdentification

Defines the settings that relate to the metadata for the locale.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string X11Model

Model of default keyboard mapping for X11. The property should be a keyboard model name (such as ‘pc105’ or ‘thinkpad60’).

string VConsoleKeymap

System keyboard mapping used on the text console. The property should be a keyboard mapping name (such as ‘de’ or ‘us’).

string LCMeasurement

Defines the settings relating to the measurement system in the locale (i.e., metric versus US customary units).

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string X11Layouts

System default keyboard mapping for X11 - the graphical UI before the user logs in, such as the display manager, as well as the default for users after login. The property should be a keyboard mapping name (such as ‘de’ or ‘us’). Individual layouts are comma separated (e. g. ‘us,cz,de’).

string LCAddress

Defines the rules for the formats (e.g., postal addresses) used to describe locations and geography-related items.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCNumeric

Defines the information used by the input/output functions, when they are advised to use the locale settings.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCTelephone

Defines the settings that describe the formats to be used with telephone services.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCName

Defines the settings that describe the formats used to address persons.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string VConsoleKeymapToggle

Toggle keyboard mapping used on the text console. The property should be a keyboard mapping name (such as ‘de’ or ‘us’).

string Lang

Main locale property. When defined, its value is used as default for all other non-defined LC* categories.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCCType

Defines behavior of the character handling and classification functions.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string X11Options

Options for default keyboard mapping for X11. The property should be a keyboard option name (such as ‘altwin:menu’ or ‘grp:lalt_toggle’). Individual options are comma separated (e. g. ‘grp:alt_shift_toggle,shift:both_capslock’).

string LCCollate

Defines the behavior of the functions, which are used to compare and/or sort strings in the local alphabet.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string X11Variant

Variant of default keyboard mapping for X11. The property should be a keyboard variant name (such as ‘dvorak’ or ‘qwerty’).

string LCPaper

Defines the settings relating to the dimensions of the standard paper size (e.g., US letter versus A4).

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCMonetary

Defines the way numbers are usually printed, with details such as decimal point versus decimal comma.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCTime

Defines how to display the current time in a locally acceptable form; for example, most of Europe uses a 24-hour clock versus the 12-hour clock used in the United States.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

string LCMessages

Defines the language messages are displayed in and what an affirmative or negative answer looks like.

The property should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

Local methods

uint32 SetLocale (string Lang, string LCCType, string LCNumeric, string LCTime, string LCCollate, string LCMonetary, string LCMessages, string LCPaper, string LCName, string LCAddress, string LCTelephone, string LCMeasurement, string LCIdentification)

Method used to set the system locale. If you set a new system locale, all old system locale settings will be dropped, and the new settings will be saved to disk. It will also be passed to the system manager, and subsequently started daemons will inherit the new system locale from it. Note that already running daemons will not learn about the new system locale.

Parameters

		IN string Lang

		Sets the Lang property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCCType

		Sets the LCCType property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCNumeric

		Sets the LCNumeric property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCTime

		Sets the LCTime property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCCollate

		Sets the LCCollate property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCMonetary

		Sets the LCMonetar property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCMessages

		Sets the LCMessages property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCPaper

		Sets the LCPaper property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCName

		Sets the LCName property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCAddress

		Sets the LCAddress property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCTelephone

		Sets the LCTelephone property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCMeasurement

		Sets the LCMeasurement property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

		IN string LCIdentification

		Sets the LCIdentification property.

The value should be in format [language[_territory][.codeset][@modifier]], for example, ‘en_AU.UTF-8’ (Australian English using the UTF-8 encoding).

uint32 SetX11Keyboard (string Layouts, string Model, string Variant, string Options, boolean Convert)

Method used to set the default key mapping of the X11 server.

Parameters

		IN string Layouts

		Sets X11 keyboard mapping (such as ‘de’ or ‘us’). Individual layouts are comma separated (e. g. ‘us,cz,de’). Required parameter.

		IN string Model

		Sets X11 keyboard model (such as ‘pc105’ or ‘thinkpad60’). Optional parameter.

		IN string Variant

		Sets X11 keyboard variant (such as ‘dvorak’ or ‘qwerty’). Optional parameter.

		IN string Options

		Sets X11 keyboard options (such as ‘altwin:menu’ or ‘grp:lalt_toggle’). Individual options are comma separated (e. g. ‘grp:alt_shift_toggle,shift:both_capslock’). Optional parameter.

		IN boolean Convert

		Convert may be set to optionally convert the X11 keyboard mapping to console keyboard configuration. Optional parameter. If set to TRUE, the nearest console keyboard setting for the chosen X11 setting is set.

uint32 SetVConsoleKeyboard (string Keymap, string KeymapToggle, boolean Convert)

Method used to set the key mapping on the virtual console.

Parameters

		IN string Keymap

		Sets the keyboard mapping on the virtual console (such as ‘us’ or ‘cz-qwerty’), new mapping is applied instantly. Required parameter.

		IN string KeymapToggle

		Sets toggle keyboard mapping on the virtual console (such as ‘us’ or ‘cz-qwerty’). Optional parameter.

		IN boolean Convert

		Convert may be set to optionally convert the console keyboard configuration to X11 keyboard mappings. Optional parameter. If set to TRUE, the nearest X11 keyboard setting for the chosen console setting is set.

Inherited properties

string InstanceID

string SystemName

string ElementName

string Description

string Caption

string SettingID

uint64 Generation

string CreationClassName

string SystemCreationClassName

Inherited methods

VerifyOKToApplyToCollection

VerifyOKToApplyIncrementalChangeToCollection

VerifyOKToApplyIncrementalChangeToMSE

ApplyToCollection

ApplyToMSE

ApplyIncrementalChangeToCollection

VerifyOKToApplyToMSE

ApplyIncrementalChangeToMSE

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_RecordForLog.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_RecordForLog

Class reference

Subclass of CIM_ManagedElement

The RecordForLog class is used to instantiate records to be aggregated to a Log.

Key properties

Local properties

string Locale

Deprecated!
This property is being deprecated to avoid conflicts with localization implementations using CIM/XML over HTTP protocol, the preferred mechanism.

A locale indicates a particular geographical, political, or cultural region. The Locale specifies the language used in creating the RecordForLog data. If the Locale property is empty, it is assumed that the default locale is en_US (English).

The locale string consists of three sub-strings, separated by underscores:

		The first sub-string is the language code, as specified in ISO639.

		The second sub-string is the country code, as specified in ISO3166.

		The third sub-string is a variant, which is vendor specific.

For example, US English appears as: “en_US_WIN”, where the “WIN” variant would specify a Windows browser-specific collation (if one exists). Since the variant is not standardized, it is not commonly used and generally is limited to easily recognizable values (“WIN”, “UNIX”, “EURO”, etc.) used in standard environments. The language and country codes are required; the variant may be empty.

string RecordFormat

A string describing the data structure of the information in the property, RecordData. If the RecordFormat string is <empty>, RecordData should be interpreted as a free-form string.

To describe the data structure of RecordData, the RecordFormat string should be constructed as follows:

		The first character is a delimiter character and is used to parse the remainder of the string into sub-strings.

		Each sub-string is separated by the delimiter character and should be in the form of a CIM property declaration (i.e., datatype and property name). This set of declarations may be used to interpret the similarly delimited RecordData property.

For example, using a ‘*’ delimiter, RecordFormat = “*string ThisDay*uint32 ThisYear*datetime SomeTime”

may be used to interpret: RecordData = “*This is Friday*2002*20020807141000.000000-300”.

uint16 PerceivedSeverity

An enumerated value that describes the severity of the Indication from the notifier’s point of view:

1 - Other, by CIM convention, is used to indicate that the Severity’s value can be found in the OtherSeverity property.

3 - Degraded/Warning should be used when its appropriate to let the user decide if action is needed.

4 - Minor should be used to indicate action is needed, but the situation is not serious at this time.

5 - Major should be used to indicate action is needed NOW.

6 - Critical should be used to indicate action is needed NOW and the scope is broad (perhaps an imminent outage to a critical resource will result).

7 - Fatal/NonRecoverable should be used to indicate an error occurred, but it’s too late to take remedial action.

2 and 0 - Information and Unknown (respectively) follow common usage. Literally, the Indication is purely informational or its severity is simply unknown.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Information

		3
		Degraded/Warning

		4
		Minor

		5
		Major

		6
		Critical

		7
		Fatal/NonRecoverable

string RecordData

A string containing LogRecord data.

If the corresponding RecordFormat property is <empty>, or cannot be parsed according to the recommended format, RecordData should be interpreted as a free-form string. If the RecordFormat property contains parseable format information (as recommended in the RecordFormat Description qualifier), the RecordData string SHOULD be parsed in accordance with this format. In this case, RecordData SHOULD begin with the delimiter character and this character SHOULD be used to separate substrings in the manner described. The RecordData string can then be parsed by the data consumer and appropriately typed.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

string InstanceID

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGAllocatedFromStoragePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGAllocatedFromStoragePool

Class reference

Subclass of CIM_AllocatedFromStoragePool

AllocatedFromStoragePool is an association describing how LogicalElements are allocated from underlying StoragePools. These elements typically would be subclasses of StorageExtents or StoragePools.

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_LogicalElement Dependent

CIM_StoragePool Antecedent

uint16 SpaceLimitWarningThreshold

uint64 SpaceLimit

uint64 SpaceConsumed

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BridgingSlaveSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BridgingSlaveSettingData

Class reference

Subclass of LMI_IPAssignmentSettingData

Slave SettingData for bridging

Key properties

InstanceID

Local properties

uint32 PathCost

The Spanning Tree Protocol (STP) port cost for destinations via this port.

boolean HairpinMode

Enables or disabled ‘hairpin mode’ for the port, which allows frames to be sent back out through the port the frame was received on.

uint32 Priority

The Spanning Tree Protocol (STP) priority of this bridge port.

Local methods

None

Inherited properties

string SoOrgID

string SoID

string OtherAddressSuffixOriginDescription

string OtherAddressPrefixOriginDescription

uint16 AddressPrefixOrigin

string InstanceID

uint16 ProtocolIFType

string ElementName

string Description

string[] ComponentSetting

string Caption

string ConfigurationName

uint16 IPv6Type

uint64 Generation

uint16 AddressSuffixOrigin

uint16 AddressOrigin

uint16 ChangeableType

uint16 IPv4Type

Inherited methods

LMI_AddStaticIPRoute

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Directory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Directory

Class reference

Subclass of CIM_LogicalFile

Directory is a type of File that logically groups Files ‘contained’ in it, and provides path information for the grouped Files.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StoragePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StoragePool

Class reference

Subclass of CIM_ResourcePool

A StoragePool is a conglomeration of storage capacity for the purpose of assignment and allocation based on service characteristics, such as location, available space or other criteria (for example, cost per megabyte or hardware ownership). A StoragePool is managed within the scope of a particular System. StoragePools may consist of component StoragePools or StorageExtents. StorageExtents that belong to the StoragePool have a Component relationship to the StoragePool. StorageExtents/StoragePools that are elements of a pool have their available space aggregated into the pool. StoragePools, StorageVolumes and LogicalDisks may be created from StoragePools. This is indicated by the AllocatedFromStoragePool association. StoragePool is scoped to a system by the HostedStoragePool association.

Key properties

InstanceID

InstanceID

Local properties

uint64 CapacityInMigratingSource

The total capacity of extents in migrating out from this storage pool

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

uint16[] ClientSettableUsage

Indicates which values from the “Usage” valuemap can be manipulated by a client using the method “StorageConfigurationService.RequestUsageChange”.

boolean Primordial

If true, “Primordial” indicates that this StoragePool is the base from which storage capacity is drawn and returned in the activity of storage management. Being primordial means that this StoragePool shall not be created or deleted by consumers of this model. However, other actions, modeled or not, may affect the characteristics or size of primordial StoragePools. If false, “Primordial” indicated that the StoragePool, a concrete Storage Pool, is subject to storage services functions. This distinction is important because higher-level StoragePools may be assembled using the Component or AllocatedFromStoragePool associations. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based StoragePools cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized.

uint16 Usage

Indicates the intended usage or any restrictions that may have been imposed on the usage of this component. For example, a storage pool may be reserved for use by the block server. In that case the Usage of the storage pool is marked as “Reserved for the ComputerSystem”. In the case of “Other”, see OtherUsageDescription for more information.

		ValueMap
		Values

		1
		Other

		2
		Unrestricted

		3
		Reserved for ComputerSystem (the block server)

		4
		Reserved as a Delta Replica Container

		5
		Reserved for Migration Services

		6
		Reserved for Local Replication Services

		7
		Reserved for Remote Replication Services

		8
		Reserved for Sparing

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 CapacityInMigratingTarget

The total capacity of extents in migrating into this storage pool

string PoolID

A unique name in the context of the System that identifies this pool.

uint16 LowSpaceWarningThreshold

LowSpaceWarningThreshold simplifies the creation of a pool specific Indication based on RemainingManagedSpace <=

(TotalManagedSpace*LowSpaceWarningThreshold)/100. One example client for an Indication based on this property is a delta copy implementation where the pool enables continuous, variable space consumption for the delta storage. Another example client for an Indication based on this property is a provisioning manager implementing a policy for adding storage to a pool when it becomes low.

uint64 TotalManagedSpace

The total amount of capacity usable for the allocation of StorageVolumes, LogicalDisks, or child Storage Pools.

For primordial Storage Pools, this capacity reflects the usable capacity of Disk Drives or LUNs, for example, to the owning storage device or application. For example, in storage array, a primordial Storage Pool’s TotalManagedSpace does not include metadata such as the disk label area and absolute disk drive capacity lost in disk formatting.

For concrete Storage Pools, the same applies, but the metadata not included in TotalManagedSpace is consumed in virtualization like RAID and concatenation. Concrete Storage Pool may also be simple reserve of capacity. In such a case, no capacity may be lost in formation of the Storage Pool.

Conceptually TotalManagedSpace is the sum of all storage known via AssociatedComponentExtent associations to underlying StorageExtents. However, note some of these underlying storage may not be modeled by the instrumentation.

string OtherUsageDescription

Populated when “Usage” has the value of “Other”.

uint16 SpaceLimitDetermination

This property is the Subsystem ID if the array or virtualizer supports Subsystem IDs. If they are supported they would be required on volume creation.

		ValueMap
		Values

		2
		Allocated

		3
		Quote

		4
		Limitless

uint64 RemainingManagedSpace

The remaining usable capacity after the allocation of StorageVolumes, LogicalDisks, or child Storage Pools. This property is maintained here to provide efficient access to this information. However, note that it is possible to compute RemainingManagedSpace as (TotalManagedSpace minus the sum of SpaceConsumed from all of the AllocatedFromStoragePool references from this StoragePool). Note that SpaceConsumed remains useful to determine the amount of capacity consumed by a particular allocated element.

uint64 ReservedSpace

The amount of capacity used by the storage pool to store information about the configuration of the storage pool. The space is not included in the TotalManagedSpace of the storage pool.

uint64 SpaceLimit

The capacity of the storage allocated to the pool when SpaceLimitDetermination has the value 3 (Quota) or 4 (Limitless) or is set to the value of TotalManagedSpace if SpaceLimitDetermination has the value 2 (Allocated).

uint64 ThinProvisionMetaDataSpace

The size of metadata consumed by this storage pool. Only defined if the pool is thin provisioned.

boolean ElementsShareSpace

If true, it indicates elements allocated from the storage pool are sharing space from the storage pool. For example, multiple snapshots “allocated” from a storage pool, point to the same blocks of the storage pool. As another example, elements utilizing de-duplication technology refer to a shared copy of the data stored in the storage pool.

Local methods

uint32 GetSupportedSizes (uint16 ElementType, CIM_StorageSetting Goal, uint64[] Sizes)

For pools that that support a range of sizes for volume or pool creation, this method can be used to retrieve the supported range. Note that different pool implementations may support either or both the GetSupportedSizes and GetSupportedSizeRanges methods at different times, depending on Pool configuration. Also note that the advertised sizes may change after the call due to requests from other clients. If the pool currently only supports discrete sizes, then the return value will be set to 1.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedSizes instead

		3
		Invalid Element Type

Parameters

		IN uint16 ElementType

		The type of element for which supported sizes are reported. The Thin Provision values are only supported when the Thin Provisioning Profile is supported; the resulting StorageVolues/LogicalDisk shall have ThinlyProvisioned set to true.

		ValueMap
		Values

		2
		Storage Pool

		3
		Storage Volume

		4
		Logical Disk

		5
		Thin Provisioned Volume

		6
		Thin Provisioned Logical Disk

		IN CIM_StorageSetting Goal

		The StorageSetting for which supported sizes should be reported for.

		IN, OUT uint64[] Sizes

		List of supported sizes for a Volume/Pool creation or modification.

uint32 GetSupportedSizeRange (uint16 ElementType, CIM_StorageSetting Goal, uint64 MinimumVolumeSize, uint64 MaximumVolumeSize, uint64 VolumeSizeDivisor)

For pools that that support a range of sizes for volume or pool creation, this method can be used to retrieve the supported range. Note that different pool implementations may support either or both the GetSupportedSizes and GetSupportedSizeRanges methods at different times, depending on Pool configuration. Also note that the advertised sizes may change after the call due to requests from other clients. If the pool currently only supports discrete sizes, then the return value will be set to 1.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedSizes instead

		3
		Invalid Element Type

Parameters

		IN uint16 ElementType

		The type of element for which supported size ranges are reported. The Thin Provision values are only supported when the Thin Provisioning Profile is supported; the resulting StorageVolues/LogicalDisk shall have ThinlyProvisioned set to true.

		ValueMap
		Values

		2
		Storage Pool

		3
		Storage Volume

		4
		Logical Disk

		5
		Thin Provisioned Volume

		6
		Thin Provisioned Logical Disk

		IN CIM_StorageSetting Goal

		The StorageSetting for which supported size ranges should be reported for.

		IN, OUT uint64 MinimumVolumeSize

		The minimum size for a volume/pool in bytes.

		IN, OUT uint64 MaximumVolumeSize

		The maximum size for a volume/pool in bytes.

		IN, OUT uint64 VolumeSizeDivisor

		A volume/pool size must be a multiple of this value which is specified in bytes.

uint32 GetAvailableExtents (CIM_StorageSetting Goal, CIM_StorageExtent[] AvailableExtents)

This method can be used to retrieve a list of available Extents that may be used in the creation or modification of a StoragePool, StorageVolume, or LogicalDisk. The GetAvailableExtents method MUST return the Extents from the set of Component Extents of the Pool on which the method is being invoked. The returned Extents are available at the time the method returns. There is no guarantee that the same Extents will be available later. This method MUST return the Extents that are not being used as supporting capacity for any other Pools, Volumes, or LogicalDisks that have been allocated from this Pool. The Extent returned MUST be a component Extent of the Pool or subdivisions of a component Extent, the subdivisions themselves represented as Extents.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_StorageSetting Goal

		The StorageSetting (Goal) for which supported extents should be retrieved as available.

If a NULL is passed for the Goal, the method will return all available extents, regardless of the goal. There exists a possibility of error in creating a Pool, Volume, or LogicalDisk retrieved in this manner.

		OUT CIM_StorageExtent[] AvailableExtents

		List of references to available StorageExtents, or subclass instances.

Inherited properties

uint16 HealthState

uint64 Capacity

string[] StatusDescriptions

string ResourceSubType

uint16 CommunicationStatus

uint64 CurrentlyConsumedResource

uint64 MaxConsumableResource

string Status

string ElementName

string Description

uint16 ResourceType

uint16 OperatingStatus

uint16 DetailedStatus

string AllocationUnits

string Name

datetime InstallDate

string OtherResourceType

string Caption

uint16 PrimaryStatus

uint64 Reserved

uint64 Generation

uint16[] OperationalStatus

string ConsumedResourceUnits

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemConfigurationElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemConfigurationElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AffectedJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AffectedJobElement

Class reference

Subclass of CIM_AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

Local properties

None

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

CIM_ManagedElement AffectedElement

uint16[] ElementEffects

CIM_Job AffectingElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemConfigurationService

Class reference

Subclass of CIM_FileSystemConfigurationService

This service allows the active management of a NAS Head or other FileSystem Server. It allows jobs to be started for the creation, modification, and deletion of FileSystems (that derive from CIM_LocalFileSystem).

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

boolean Started

Started is a Boolean that indicates whether the Service has been started (TRUE), or stopped (FALSE).

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string StartMode

Deprecated!
Note: The use of this element is deprecated in lieu of the EnabledDefault property that is inherited from EnabledLogicalElement. The EnabledLogicalElement addresses the same semantics. The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property. To remain compatible with those implementations, StartMode was grandfathered into the schema. Use of the deprecated qualifier allows the maintenance of the existing property but also permits an improved, clarified definition using EnabledDefault.

Deprecated description: StartMode is a string value that indicates whether the Service is automatically started by a System, an Operating System, and so on, or is started only upon request.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

Local methods

uint32 LMI_CreateFileSystem (uint16 FileSystemType, string ElementName, CIM_ConcreteJob Job, CIM_FileSystemSetting Goal, CIM_StorageExtent[] InExtents, CIM_FileSystem TheElement)

Start a job to create a FileSystem on StorageExtents. If the operation completes successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. A Reference to the ConcreteJob will be returned in the output parameter Job. If any other value is returned, the job will not be started, and no action will be taken.

The parameter TheElement will contain a Reference to the FileSystem if this operation completed successfully.

The StorageExtents to use is specified by the InExtents parameter.

The desired settings for the FileSystem are specified by the Goal parameter. Goal is an element of class CIM_FileSystemSetting, or a derived class. Unlike CIM standard CreateFileSystem, the parameter is reference to CIM_FileSystemSetting stored on the CIMOM.

A ResidesOnExtent association is created between the created FileSystem and the StorageExtents used for it.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		StorageExtent is not big enough to satisfy the request.

		7
		StorageExtent specified by default cannot be created.

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 FileSystemType

		Type of file system to create. When NULL, file system type is retrieved from Goal parameter, which cannot be NULL.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		32769
		EXT4

		32770
		BTRFS

		32771
		JFS

		32772
		TMPFS

		32773
		VFAT

		IN string ElementName

		Label of the filesystem being created. If NULL, a system-supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_FileSystemSetting Goal

		The requirements for the FileSystem element to maintain. This is an element of class CIM_FileSystemSetting, or a derived class. This allows the client to specify the properties desired for the file system. If NULL, the FileSystemConfigurationService will create default filesystem.

		IN CIM_StorageExtent[] InExtents

		The StorageExtents on which the created FileSystem will reside. At least one extent must be provided. If the filesystem being created supports more than one storage extent (e.g. btrfs), more extents can be provided. The filesystem will then reside on all of them.

		OUT CIM_FileSystem TheElement

		The newly created FileSystem.

uint32 DeleteFileSystem (CIM_ConcreteJob Job, CIM_ManagedElement TheFileSystem, uint16 InUseOptions, uint32 WaitTime)

Start a job to delete a FileSystem. If the FileSystem cannot be deleted, no action will be taken, and the Return Value will be 4097/0x1001. If the method completed successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the FileSystem. A Reference to the ConcreteJob will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed, Unspecified Reasons

		5
		Invalid Parameter

		6
		FileSystem in use, Failed

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement TheFileSystem

		An element or association that uniquely identifies the FileSystem to be deleted.

		IN uint16 InUseOptions

		An enumerated integer that specifies the action to take if the FileSystem is still in use when this request is made.

This option is not supported by OpenLMI.

		ValueMap
		Values

		2
		Do Not Delete

		3
		Wait for specified time, then Delete Immediately

		4
		Attempt Quiescence for specified time, then Delete Immediately

		
		DMTF Reserved

		0x1000..0xFFFF
		Vendor Defined

		IN uint32 WaitTime

		An integer that indicates the time (in seconds) that the provider must wait before deleting this FileSystem. If WaitTime is not zero, the method will create a job, if supported by the provider, and return immediately. If the provider does not support asynchronous jobs, there is a possibility that the client could time-out before the job is completed.

The combination of InUseOptions = ‘4’ and WaitTime =‘0’ (the default) is interpreted as ‘Wait (forever) until Quiescence, then Delete Filesystem’ and will be performed asynchronously if possible.

This option is not supported by OpenLMI.

Inherited properties

uint16 RequestedState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 DetailedStatus

string Name

datetime InstallDate

string LoSOrgID

string PrimaryOwnerContact

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ModifyFileSystem

ChangeAffectedElementsAssignedSequence

StartService

CreateFileSystem

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstMethodCall.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstMethodCall

Class reference

Subclass of CIM_InstIndication

CIM_InstMethodCall notifies when an instance’s method is invoked.

Key properties

Local properties

string MethodName

The name of the method invoked.

uint16 ReturnValueType

The type of the method return value.

		ValueMap
		Values

		2
		boolean

		3
		string

		4
		char16

		5
		uint8

		6
		sint8

		7
		uint16

		8
		sint16

		9
		uint32

		10
		sint32

		11
		uint64

		12
		sint64

		13
		datetime

		14
		real32

		15
		real64

		16
		reference

		
		DMTF Reserved

string MethodParameters

The input and output parameters of the method (depending on the PreCall property), represented as an embedded instance with a class name of “__MethodParameters”.

That embedded instance contains properties representing the parameters of the method invocation. Each parameter is mapped to a corresponding property of the same name and type. REF-typed parameters are represented as Reference-qualified properties of type string whose value is the instance path in WBEM URI format.

If PreCall is TRUE, the embedded instance contains only properties corresponding to the input parameters of the method, and their values are the parameter values before the method call.

If PreCall is FALSE, the embedded instance contains only properties corresponding to the output parameters of the method, and their values are the parameter values after the method call.

string ReturnValue

The return value of the method (depending on the PreCall property). If PreCall is True, this property is NULL describing that there is no method return value (since the method has not yet executed).

If PreCall is False, ReturnValue contains a string representation of the method’s return value. REF-typed method return values shall be represented as an instance path in WBEM URI format

instance[] Error

Error’s data is dependent on the PreCall property. When PreCall is TRUE, this property is NULL describing that there is no method Error instances (since the method has not yet executed). When PreCall is FALSE, Error contains an array of zero or more entries containing CIM_ERROR instances represented as an array of Embedded Instances.

boolean PreCall

Boolean indicating whether the Indication is sent before the method begins executing (TRUE) or when the method completes (FALSE). When TRUE, the inherited property SourceInstance contains the value of the instance (the properties defined by the Filter’s Query clause), before execution of the method. When PreCall is FALSE, SourceInstance embeds the instance as it appears after the completion of the method.

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

sint64 SequenceNumber

string SourceInstanceHost

datetime IndicationTime

string SourceInstance

string SequenceContext

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PowerSource.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PowerSource

Class reference

Subclass of CIM_LogicalDevice

This class is a representation of logical properties of a generic power source. Any logical device that has an aspect of producing power and thus effectively being a power source may be represented by this class or the subclass of this class.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string OutputPowerUnits

Indicates the programatic units for the MaxOutputPower property.

uint32 RatedMaxOutputPower

Indicates the maximum amount of power that may be drawn within the rating of the PowerSource. The units of the value shall be described by the OutputPowerUnits property. A value of zero shall indicate ‘unknown’.

boolean IsACOutput

A value of true shall indicate the output from the PowerSource is alternating current (AC). A value of false shall indicate the output from the PowerSource is direct current (DC).

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedAccountManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedAccountManagementService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_AccountManagementService Dependent

The Central Instance of Account management

CIM_ComputerSystem Antecedent

The hosting System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AttachedFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AttachedFileSystem

Class reference

Subclass of CIM_Dependency

This association connects LMI_MountedFileSystem to the mounted CIM_FileSystem

Key properties

Dependent

Antecedent

Local properties

LMI_MountedFileSystem Dependent

The mounted filesystem.

CIM_FileSystem Antecedent

A file or dataset store local to the System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LocalFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LocalFileSystem

Class reference

Subclass of CIM_LocalFileSystem

Base class for filesystems on StorageExtents of this system.

Key properties

CSName

Name

CSCreationClassName

CreationClassName

Local properties

uint32 MaxFileNameLength

Integer indicating the maximum length of a file name within the FileSystem. 0 indicates that there is no limit on file name length.

boolean CasePreserved

Indicates that the case of file names are preserved.

boolean CaseSensitive

Indicates that case sensitive file names are supported.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint64 FileSystemSize

The FileSystemSize property stores the total size of the File System in bytes. If unknown, enter 0.

uint16 IsFixedSize

Indicates whether the File size is fixed at creation time (value = 1) - the file size is fixed, (value = 2) - the file is not a fixed size. The default (value = 0) indicates that this information is not specified. If the File size is not fixed, the ResizeIncrement property should specify the growth increment, in bytes.

		ValueMap
		Values

		0
		Not Specified

		1
		Fixed Size

		2
		Not Fixed Size

string Name

Unique identifier of the filesystem on computer system. Usually UUID.

uint64 BlockSize

FileSystems can read/write data in blocks which are defined independently of the underlying StorageExtents. This property captures the FileSystem’s block size for data storage and retrieval.

string Root

Path name or other information defining the root of the FileSystem.

uint16 PersistenceType

An enumerated value representing the FileSystem’s perception of its own persistence characteristics. This property would typically be set at the time the FileSystem is instantiated and would not be changed by external actions. A value of “Persistent” indicates that the FileSystem is persistent, will be preserved through an orderly shutdown and should be protected. A value of “Temporary” indicates that the FileSystem is non-persistent, should not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem is controlled outside of the scope of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the OtherPersistenceType attribute, and is expected to be rarely, if ever, used. A value of “Unknown” indicates that the persistence of the FileSystem can not be determined.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

string UUID

UUID of the filesystem.

string FileSystemType

String describing the type of FileSystem and therefore, its conventions. For example, “NTFS” or “S5” may be listed as well as any additional information on the FileSystem’s implementation. Since various flavors of FileSystems (like S5) exist, this property is defined as a string.

boolean ReadOnly

Indicates that the FileSystem is designated as read only.

uint64 AvailableSpace

AvailableSpace indicates the total amount of free space for the FileSystem, in bytes. If unknown, enter 0.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

uint16 CommunicationStatus

uint32 ClusterSize

string EncryptionMethod

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 ResizeIncrement

datetime TimeOfLastStateChange

uint16 PrimaryStatus

string OtherPersistenceType

string CompressionMethod

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint64 NumberOfFiles

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string CSCreationClassName

string OtherEnabledState

uint16 OperatingStatus

uint16[] CodeSet

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PowerConcreteJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PowerConcreteJob

Class reference

Subclass of CIM_ConcreteJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

string MethodName

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

boolean DeleteOnCompletion

datetime ElapsedTime

string Caption

string JobStatus

datetime TimeSubmitted

uint16 JobState

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedPowerManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedPowerManagementService

Class reference

Subclass of CIM_AssociatedPowerManagementService

The association between a Managed System Element and its power management service.

Key properties

UserOfService

ServiceProvided

Local properties

CIM_ComputerSystem UserOfService

The ManagedElement that can use the Service.

LMI_PowerManagementService ServiceProvided

The Service that is available.

Local methods

None

Inherited properties

uint16 TransitioningToPowerState

uint16 PowerState

uint16[] AvailableRequestedPowerStates

datetime PowerOnTime

string OtherPowerState

uint16 RequestedPowerState

string OtherRequestedPowerState

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_GPTDiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_GPTDiskPartition

Class reference

Subclass of CIM_GenericDiskPartition

GPT is a newer partitioning style that supports volumes larger than the 2 terabyte max of other partition styles. GPT in general is associated with PC X86 architectures, but GPT partitions are OS and platform independent. GPT uses 16 byte GUIDs (Globally Unique IDs) for certain properties. The DeviceId property inherited from LogicalDevice should be a GUID for GPTDiskPartitions; this string property should be formatted as a 32 character string with two text bytes representing each binary byte. GPT specifications call for a Protective MBR table (PMBR) in block 0 followed by an GPT (GUID Partition Table). The MBR must describe a single active partition - the GPT Partition that occupies the rest of the disk. The user only sees the GPT style partitions in this second MBR partition. This could be modelled as two tiers, but since the specification requires this precise behavior with no management at the MBR level, only the GPT style partitions are exposed through the CIM model.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string PartitionType

The PartitionType as defined in the GPT specs and platform specific documentation - GUID format. This string property MUST be formatted with two text bytes representing each binary byte.

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint64 BlockSize

boolean Allocatable

string[] StatusDescriptions

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string[] ExtentDiscriminator

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

uint16 EnabledDefault

string InstanceID

uint16[] OperationalStatus

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

boolean IsBasedOnUnderlyingRedundancy

uint16 LocationIndicator

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

string Name

uint16[] PowerManagementCapabilities

boolean Bootable

uint16 CompressionState

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

uint16 NameNamespace

boolean IsComposite

uint16 StatusInfo

string DeviceID

string Signature

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint16 CompressionRate

uint16 HealthState

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

string SignatureState

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FIFOPipeFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FIFOPipeFile

Class reference

Subclass of CIM_LogicalFile

FIFOPipeFile is a special type of LogicalFile that represents an interprocess FIFO (sometimes referred to as a “named pipe”). Operating systems use this convention to manage interprocess communication through processes reading and writing the FIFO. The FIFO can be accessed by unrelated processes, in contrast to the more well-known command line redirection mechanism (e.g. UNIX’s ‘ps -eaf | grep foo’, also known as an “unnamed pipe”). An exemplary operating system implementation (using the FIFO concept) is the UNIX S_IFIFO file type.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BlockStatisticsManifest.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BlockStatisticsManifest

Class reference

Subclass of CIM_ManagedElement

Instances of this class define a list of supported or desired properties of BlockStatisticalData instances. In the case where a BlockStatisticsManifest instance is a member of a BlockStatisticsManifestCollection used in a BlockStatisticsService.GetStatisticsCollection request, for each of the boolean “include” properties set to true in that BlockStatisticsManifest, the corresponding BlockStatisticalData property will be included, if available, in the statistics returned for BlockStatisticalData instances whose ElementType matches the ElementType of the BlockStatisticsManifest.

Key properties

InstanceID

Local properties

boolean IncludeIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed I/O time (number of Clock Tick Intervals) for all I/Os for that element as defined in ‘Total I/Os’.

boolean IncludeIdleTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed idle time for that element.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

boolean IncludeReadIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all cumulative Read I/Os for that element.

boolean IncludeKBytesWritten

Whether to include in a filter for a metered element the cumulative count of data written in Kbytes for that element.

boolean IncludeReadIOs

Whether to include in a filter for a metered element the cumulative count of all reads for that element.

boolean IncludeMaintTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed maintenance time for that element.

boolean IncludeStartStatisticTime

Indicates whether or not the Statistics property of StatisticsService.GetStatisticsCollection method will include the time at time when statistics for this BlockStatisticsManifest were first captured.

boolean IncludeWriteHitIOs

Whether to include in a filter for a metered element the cumulative count of Write Cache Hits (Writes that went directly to Cache) for that element.

boolean IncludeTotalIOs

Whether to include in a filter for a metered element the cumulative count of I/Os for that element.

boolean IncludeMaintOp

Whether to include in a filter for a metered element the cumulative count of all maintenance operations for that element.

boolean IncludeWriteIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Write I/Os for that element.

boolean IncludeStatisticTime

Indicates whether or not the Statistics property of StatisticsService.GetStatisticsCollection method will include the time when statistics for this BlockStatisticsManifest were last captured.

boolean IncludeKBytesTransferred

Whether to include in a filter for a metered element the cumulative count of data transferred in Kbytes for that element.

uint16 ElementType

Determines the type of elements that this BlockStatisticsManifest can be applied to (e.g. during a GetStatisticsCollection request). This is used when the same set of statistical metrics is calculated for several types of devices. In this way, a single BlockStatisticsManifest instance can be used to filter all the StatsiticalData instances that contain metrics for the same type of element in a StatisticsCollection. If used, a subclass should override this property to specify the element types supported by that class, preferably through ValueMap and Values qualifiers to allow clients to programmatically retrieve those supported types.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

boolean IncludeWriteIOs

Whether to include in a filter for a metered element the cumulative count of all writes for tat element.

boolean IncludeReadHitIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Read I/Os read from cache for that element.

boolean IncludeWriteHitIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Write I/Os written to cache for that element.

boolean IncludeKBytesRead

Whether to include in a filter for a metered element the cumulative count of data read in Kbytes for that element.

boolean IncludeReadHitIOs

Whether to include in a filter for a metered element the cumulative count of all read cache hits (Reads from Cache) for that element.

string[] CSVSequence

The sequence of BlockStorageStatisticalData property names for properties that will be returned are encoded in the CSVSequence array. Properties that are not included will not be returned with GetStatisticsCollection. Properties that are included in CSVSequence will be returned in the order they appear in CSVSequence.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_InstalledPartitionTable.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_InstalledPartitionTable

Class reference

Subclass of CIM_InstalledPartitionTable

This association describes the attributes of a partition table installed in an extent. The attributes are in the capabilities class.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_DiskPartitionConfigurationCapabilities Antecedent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_CollectionOfMSEs.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_CollectionOfMSEs

Class reference

Subclass of CIM_Collection

The CollectionOfMSEs object allows the grouping of Managed SystemElements for various identification purposes and to reduce the complexity of associating Settings and Configurations. It is abstract to require further definition and semantic refinement in subclasses. The CollectionOfMSEs object does not carry any state or status information, but represents only a grouping or ‘bag’ of Elements. For this reason, it is incorrect to subclass groups that have state or status from CollectionOfMSEs. An example is CIM_Redundancy Group (which is subclassed from LogicalElement).

Collections typically aggregate similar (‘like’) objects,but they are not required to do so. Collections simply identify ‘bags’ and might represent an optimization. This purpose is especially true with respect to their association to Settings and Configurations. Without Collections, you would need to define individual ElementSetting and ElementConfiguration associations, to tie Settings and Configuration objects to individual ManagedSystemElements. There might be duplication when assigning the same Setting to multiple objects. In addition, using the Collection object allows the determination that the Setting and Configuration associations are indeed the same for the Collection’s members. This information would otherwise be obtained by defining the Collection in a proprietary manner, and then querying the ElementSetting and ElementConfiguration associations to determine if the Collection set is completely covered.

Key properties

Local properties

string CollectionID

The identification of the Collection object. When subclassed, the CollectionID property can be overridden to be a Key property.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementSettingData

Class reference

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

uint16 IsMinimum

This property affects the interpretation of all non-null, non-enumerated, non-binary, numeric, non-key properties of the associated SettingData instance. All other properties of the associated SettingData instance are not affected by this property.

Note: It is assumed that the semantics of each property of this set are designed to be compared mathematically.

When IsMinimum = “Is Miniumum”, this property indicates that the affected property values specified in the associated SettingData instance shall define desired minimum setting values. The operational minimum values should be modeled as a properties of the CIM_ManagedElement instance.

When IsMinimum = “Is Not Miniumum”, this property indicates that the affected property values specified in the associated SettingData instance shall not define desired minimum setting values.

When IsMinimum = “Unknown”, this property indicates that the affected property values specified in the associated SettingData instance may correspond to minimum desired setting values.

When IsMinimum = “Not Applicable”, this property indicates that the affected property values specified in the associated SettingData instance shall not be interpreted with respect to whether each defines a desired minimum.

		ValueMap
		Values

		0
		Unknown

		1
		Not Applicable

		2
		Is Minimum

		3
		Is Not Minimum

CIM_SettingData SettingData

The SettingData object that is associated with the element.

uint16 IsPending

An enumerated integer that indicates whether or not the referenced CIM_SettingData instance represents outstanding changes to the configuration of the referenced CIM_ManagedElement that are known to be pending and are in the process of being applied. A value of 0 “Unknown” indicates that the referenced instance of CIM_SettingData may represent the last configuration applied to the referenced CIM_ManagedElement. A value of 2 “Is Pending” shall indicate that the referenced instance of CIM_SettingData represents outstanding changes to the configuration of the referenced CIM_ManagedElement that are known to be pending. A value of 3 “Is Not Pending” shall indicate that the referenced instance of CIM_SettingData does not represent outstanding changes to the configuration of the referenced CIM_ManagedElement.

		ValueMap
		Values

		0
		Unknown

		2
		Is Pending

		3
		Is Not Pending

		
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 IsNext

An enumerated integer indicating whether or not the referenced setting is the next setting to be applied. For example, the application could take place on a re-initialization, reset, reconfiguration request. This could be a permanent setting, or a setting used only one time, as indicated by the flag. If it is a permanent setting then the setting is applied every time the managed element reinitializes, until this flag is manually reset. However, if it is single use, then the flag is automatically cleared after the settings are applied. Also note that if this flag is specified (i.e. set to value other than “Unknown”), then this takes precedence over any SettingData that may have been specified as Default. For example: If the managed element is a computer system, and the value of this flag is “Is Next”, then the setting will be effective next time the system resets. And, unless this flag is changed, it will persist for subsequent system resets. However, if this flag is set to “Is Next For Single Use”, then this setting will only be used once and the flag would be reset after that to “Is Not Next”. So, in the above example, if the system reboots in a quick succession, the setting will not be used at the second reboot.

		ValueMap
		Values

		0
		Unknown

		1
		Is Next

		2
		Is Not Next

		3
		Is Next For Single Use

uint16 IsCurrent

An enumerated integer that indicates that the referenced SettingData represents the last requested values for attributes of the Managed Element or that this information is unknown.

Attributes of the SettingData itself indicate whether it represents the last configuration applied to the ManagedElement or is a transient snapshot of the requested settings. Current operational characteristics of a ManagedElement should be represented with properties of the ManagedElement. element or that this information is unknown.

For a given ManagedElement and all instances of a SettingData subclass, there shall be at most one instance of ElementSettingData which references the ManagedElement and an instance of the SettingData sub-class where there is a specified non-null, non-key property of the SettingData sub-class, and the IsMaximum property on the referencing ElementSettingData instance has a value of “Is Maximum” or the IsMinimum property on the referencing ElementSettingData instance has a value of “Is Minimum” and the IsCurrent property on the referencing ElementSettingData instance has a value of “Is Current”. There shall be at most one instance of ElementSettingData which references a ManagedElement and an instance of a SettingData sub-class where the IsCurrent property has a value of “Is Current” and the IsMinimum property does not have a value of “Is Minimum” and the IsMaximum property does not have a value of “Is Maximum”.

		ValueMap
		Values

		0
		Unknown

		1
		Is Current

		2
		Is Not Current

CIM_ManagedElement ManagedElement

The managed element.

uint16 IsMaximum

This property affects the interpretation of all non-null, non-enumerated, non-binary, numeric, non-key properties of the associated SettingData instance. All other properties of the associated SettingData instance are not affected by this property.

Note: It is assumed that the semantics of each property of this set are designed to be compared mathematically.

When IsMaximum = “Is Maxiumum”, this property indicates that the affected property values specified in the associated SettingData instance shall define desired maximum setting values. The operational maximum values should be modeled as a properties of the CIM_ManagedElement instance.

When IsMaximum = “Is Not Maxiumum”, this property indicates that the affected property values specified in the associated SettingData instance shall not define desired maximum setting values.

When IsMaximum = “Unknown”, this property indicates that the affected property values specified in the associated SettingData instance may correspond to maximum desired setting values.

When IsMaximum = “Not Applicable”, this property indicates that the affected property values specified in the associated SettingData instance shall not be interpreted with respect to whether each defines a desired maximum.

		ValueMap
		Values

		0
		Unknown

		1
		Not Applicable

		2
		Is Maximum

		3
		Is Not Maximum

uint16 IsDefault

An enumerated integer that indicates that the referenced setting is a default setting for the element or that this information is unknown.

		ValueMap
		Values

		0
		Unknown

		1
		Is Default

		2
		Is Not Default

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MediaPresent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MediaPresent

Class reference

Subclass of CIM_MediaPresent

Where a StorageExtent must be accessed through a MediaAccess Device, this relationship is described by the MediaPresent association.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_MediaAccessDevice Antecedent

boolean FixedMedia

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountManagementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountManagementCapabilities

Class reference

Subclass of CIM_AccountManagementCapabilities

AccountManagementCapabilities describes the capabilities supported for managing Accounts associated with an instance of AccountManagementService. AccountManagementCapabilities is associated with an instance of AccountManagementService through the ElementCapabilities association.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string ElementName

uint16 MaxElementNameLen

string Caption

uint16[] RequestedStatesSupported

uint32[] SupportedUserPasswordEncodings

string ElementNameMask

uint16 MaximumAccountsSupported

uint64 Generation

uint16[] OperationsSupported

uint16[] SupportedUserPasswordEncryptionAlgorithms

string InstanceID

uint16[] StateAwareness

boolean ElementNameEditSupported

string UserPasswordEncryptionSalt

string[] OtherSupportedUserPasswordEncryptionAlgorithms

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveDeviceSAPImplementation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveDeviceSAPImplementation

Class reference

Subclass of CIM_DeviceSAPImplementation

An association between a ServiceAccessPoint (SAP) and how it is implemented. The cardinality of this association is many-to-many. A SAP can be provided by more than one LogicalDevice, operating in conjunction. And, any Device can provide more than one ServiceAccessPoint. When many LogicalDevices are associated with a single SAP, it is assumed that these elements operate in conjunction to provide the AccessPoint. If different implementations of a SAP exist, each of these implementations would result in individual instantiations of the ServiceAccessPoint object. These individual instantiations would then have associations to the unique implementations.

Key properties

Dependent

Antecedent

Local properties

LMI_DiskDriveATAProtocolEndpoint Dependent

The ServiceAccessPoint implemented using the LogicalDevice.

LMI_DiskDriveATAPort Antecedent

The LogicalDevice.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ProcessorCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ProcessorCapabilities

Class reference

Subclass of CIM_EnabledLogicalElementCapabilities

ProcessorCapabilities inherits the capabilities of EnabledLogicalElementCapabilities and adds properties describing processor core and hardware thread support.

Key properties

InstanceID

Local properties

uint16 NumberOfProcessorCores

Number of processor cores available for processor. This number would not include cores disabled by hardware and may be obtained from SMBIOS 2.5 Type 4 offset 23h.

uint16 NumberOfHardwareThreads

Number of hardware threads available for the processor. May be obtained from SMBIOS v2.5 4 offset 25h.

Local methods

None

Inherited properties

string ElementName

uint16 MaxElementNameLen

string Caption

uint16[] RequestedStatesSupported

uint64 Generation

string InstanceID

uint16[] StateAwareness

boolean ElementNameEditSupported

string ElementNameMask

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Memory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Memory

Class reference

Subclass of CIM_Memory

Capabilities and management of Memory-related LogicalDevices.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 Access

Access describes whether the media is readable (value=1), writeable (value=2), or both (value=3). “Unknown” (0) and “Write Once” (4) can also be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Readable

		2
		Writeable

		3
		Read/Write Supported

		4
		Write Once

uint64 StartingAddress

The beginning address, referenced by an application or operating system and mapped by a memory controller, for this Memory object. The starting address is specified in KBytes.

string Name

A unique identifier for the Extent.

uint16 TransparentHugeMemoryPageStatus

Current state of the transparent huge memory pages. The state can be “Unsupported”, what means that the feature is not available on the system, “Never” when the feature is disabled, “Madvise” when huge pages are used only in marked memory area or “Always” when this feature is used all the time.

		ValueMap
		Values

		0
		Unsupported

		1
		Never

		2
		Madvise

		3
		Always

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 EndingAddress

The ending address, referenced by an application or operating system and mapped by a memory controller, for this Memory object. The ending address is specified in KBytes.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

boolean IsCompressed

The IsCompressed property indicates whether or not the data in the storage extent is compressed. When set to “true” the data is compressed. When set to “false” the data is not compressed.

boolean Volatile

Volatile is a property that indicates whether this memory is volatile or not.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

string SystemCreationClassName

The CreationClassName of the scoping system.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SystemName

The System Name of the scoping system.

string Description

The Description property provides a textual description of the object.

uint32[] SupportedHugeMemoryPageSizes

All supported huge memory page sizes in currently running kernel in kB.

uint32 StandardMemoryPageSize

Standard memory page size in kB.

string Purpose

A free form string describing the media and/or its use.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

string Caption

The Caption property is a short textual description (one- line string) of the object.

boolean HasNUMA

Indicates whether memory has NUMA layout.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint64 ConsumableBlocks

The maximum number of blocks, of size BlockSize, which are available for consumption when layering StorageExtents using the BasedOn association. This property only has meaning when this StorageExtent is an Antecedent reference in a BasedOn relationship. For example, a StorageExtent could be composed of 120 blocks. However, the Extent itself may use 20 blocks for redundancy data. If another StorageExtent is BasedOn this Extent, only 100 blocks would be available to it. This information (‘100 blocks is available for consumption’) is indicated in the ConsumableBlocks property.

Local methods

None

Inherited properties

uint16 Usage

string OtherNameFormat

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 CompressionState

uint16 ErrorDataOrder

datetime InstallDate

uint32 ErrorTransferSize

string OtherUsageDescription

boolean IsComposite

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint16 OperatingStatus

uint16 Availability

uint8 DeltaReservation

uint16 HealthState

uint16[] ClientSettableUsage

uint16 CommunicationStatus

boolean Primordial

uint16 NameFormat

uint16 EnabledDefault

uint16[] AdditionalAvailability

uint16 StatusInfo

uint64 ErrorAddress

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16 DataRedundancy

string ErrorDescription

uint32 LastErrorCode

string ErrorMethodology

uint16[] ExtentStatus

uint16 RequestedState

string[] StatusDescriptions

boolean NoSinglePointOfFailure

string Status

string OtherNameNamespace

uint16 NameNamespace

string[] IdentifyingDescriptions

boolean ErrorCleared

uint8[] AdditionalErrorData

boolean PowerManagementSupported

uint64 ExtentStripeLength

string OtherErrorDescription

uint16 LocationIndicator

string[] OtherIdentifyingInfo

uint8[] ErrorData

boolean IsBasedOnUnderlyingRedundancy

datetime ErrorTime

boolean SystemLevelAddress

uint64 Generation

uint16[] OperationalStatus

uint64 ErrorResolution

uint16 ErrorAccess

boolean CorrectableError

uint16 DetailedStatus

uint16 CompressionRate

uint16 DataOrganization

uint64 PowerOnHours

boolean SequentialAccess

uint16[] PowerManagementCapabilities

uint16 TransitioningToState

uint64 ExtentInterleaveDepth

string OtherEnabledState

boolean IsConcatenated

uint16 ErrorInfo

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogicalPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalPort

Class reference

Subclass of CIM_LogicalDevice

The abstraction of a port or connection point of a Device. This object should be instantiated when the Port has independent management characteristics from the Device that includes it. Examples are a Fibre Channel Port and a USB Port.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 MaxSpeed

The maximum bandwidth of the Port in Bits per Second.

uint16 PortType

PortType is defined to force consistent naming of the ‘type’ property in subclasses and to guarantee unique enum values for all instances of NetworkPort. When set to 1 (“Other”), related property OtherPortType contains a string description of the type of port. A range of values, DMTF_Reserved, has been defined that allows subclasses to override and define their specific types of ports.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3..15999
		DMTF Reserved

		16000..65535
		Vendor Reserved

uint16 UsageRestriction

In some circumstances, a LogicalPort might be identifiable as a front end or back end port. An example of this situation would be a storage array that might have back end ports to communicate with disk drives and front end ports to communicate with hosts. If there is no restriction on the use of the port, then the value should be set to ‘not restricted’.

		ValueMap
		Values

		0
		Unknown

		2
		Front-end only

		3
		Back-end only

		4
		Not restricted

string OtherPortType

Describes the type of module, when PortType is set to 1 (“Other”).

uint64 Speed

The bandwidth of the Port in Bits per Second.

uint64 RequestedSpeed

The requested bandwidth of the Port in Bits per Second. The actual bandwidth is reported in LogicalPort.Speed.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AllocatedFromStoragePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AllocatedFromStoragePool

Class reference

Subclass of CIM_ElementAllocatedFromPool

AllocatedFromStoragePool is an association describing how LogicalElements are allocated from underlying StoragePools. These elements typically would be subclasses of StorageExtents or StoragePools.

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

CIM_LogicalElement Dependent

The subsidiary element.

CIM_StoragePool Antecedent

The StoragePool.

uint16 SpaceLimitWarningThreshold

If the associated storage element may dynamically consume an increasing amount of space and a space limit is enforced on the element, then a non-zero warning threshold percentage indicates when a warning indication should be generated based on SpaceConsumed >= (SpaceLimit*SpaceLimitWarningThreshold)/100.

uint64 SpaceLimit

SpaceLimit is the consumption limit for the allocated storage element from the associated StoragePool. If SpaceLimt is greater than zero, the assumption is that the storage element can grow, (for instance an element representing the storage for a delta replica)

If SpaceLimit is greater than zero, SpaceConsumed shall not exceed the value of SpaceLimit.

If SpaceLimit = 0 (the default) then no limits are asserted on SpaceConsumed.

uint64 SpaceConsumed

Space consumed from this Pool, in bytes. This value MUST be maintained so that, relative to the Antecedent StoragePool, it is possible to compute TotalManagedSpace as StoragePool.RemainingManagedSpace plus the sum of SpaceConsumed from all of the AllocatedFromStoragePool references from the antecedent StoragePool.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartitionElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartitionElementSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

uint16 IsCurrent

An enumerated integer that indicates that the referenced SettingData represents the last requested values for attributes of the Managed Element or that this information is unknown.

Attributes of the SettingData itself indicate whether it represents the last configuration applied to the ManagedElement or is a transient snapshot of the requested settings. Current operational characteristics of a ManagedElement should be represented with properties of the ManagedElement. element or that this information is unknown.

For a given ManagedElement and all instances of a SettingData subclass, there shall be at most one instance of ElementSettingData which references the ManagedElement and an instance of the SettingData sub-class where there is a specified non-null, non-key property of the SettingData sub-class, and the IsMaximum property on the referencing ElementSettingData instance has a value of “Is Maximum” or the IsMinimum property on the referencing ElementSettingData instance has a value of “Is Minimum” and the IsCurrent property on the referencing ElementSettingData instance has a value of “Is Current”. There shall be at most one instance of ElementSettingData which references a ManagedElement and an instance of a SettingData sub-class where the IsCurrent property has a value of “Is Current” and the IsMinimum property does not have a value of “Is Minimum” and the IsMaximum property does not have a value of “Is Maximum”.

		ValueMap
		Values

		0
		Unknown

		1
		Is Current

		2
		Is Not Current

Local methods

None

Inherited properties

uint16 IsMinimum

CIM_SettingData SettingData

uint16 IsPending

uint16 IsNext

CIM_ManagedElement ManagedElement

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Chip.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Chip

Class reference

Subclass of CIM_PhysicalComponent

The Chip class represents any type of integrated circuit hardware, including ASICs, processors, memory chips, etc.

Key properties

Tag

CreationClassName

Local properties

uint16 FormFactor

The implementation form factor for the Chip. For example, values such as SIMM (7), TSOP (9) or PGA (10) can be specified.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		SIP

		3
		DIP

		4
		ZIP

		5
		SOJ

		6
		Proprietary

		7
		SIMM

		8
		DIMM

		9
		TSOP

		10
		PGA

		11
		RIMM

		12
		SODIMM

		13
		SRIMM

		14
		SMD

		15
		SSMP

		16
		QFP

		17
		TQFP

		18
		SOIC

		19
		LCC

		20
		PLCC

		21
		BGA

		22
		FPBGA

		23
		LGA

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

uint16 CommunicationStatus

string Version

boolean Removable

string PartNumber

string Status

string ElementName

boolean CanBeFRUed

string Description

boolean Replaceable

uint16[] OperationalStatus

string Manufacturer

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string Caption

string Model

uint16 PrimaryStatus

uint64 Generation

uint16 RemovalConditions

string Tag

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StorageExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StorageExtent

Class reference

Subclass of CIM_LogicalDevice

StorageExtent describes the capabilities and management of the various media that exist to store data and allow data retrieval. This superclass could be used to represent the various components of RAID (Hardware or Software) or as a raw logical extent on top of physical media.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint8 DeltaReservation

Current value for Delta reservation. This is a percentage that specifies the amount of space that should be reserved in a replica for caching changes.

boolean IsBasedOnUnderlyingRedundancy

True indicates that the underlying StorageExtent(s) participate in a StorageRedundancyGroup.

uint16[] ClientSettableUsage

Indicates which values from the “Usage” valuemap can be manipulated by a client using the method “StorageConfigurationService.RequestUsageChange”.

boolean IsCompressed

The IsCompressed property indicates whether or not the data in the storage extent is compressed. When set to “true” the data is compressed. When set to “false” the data is not compressed.

uint16 DataOrganization

Type of data organization used.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		Fixed Block

		3
		Variable Block

		4
		Count Key Data

uint16 Access

Access describes whether the media is readable (value=1), writeable (value=2), or both (value=3). “Unknown” (0) and “Write Once” (4) can also be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Readable

		2
		Writeable

		3
		Read/Write Supported

		4
		Write Once

boolean Primordial

If true, “Primordial” indicates that the containing System does not have the ability to create or delete this operational element. This is important because StorageExtents are assembled into higher-level abstractions using the BasedOn association. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based storage entities cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized. In other words, a Primordial StorageExtent exists in, but is not created by its System and conversely a non-Primordial StorageExtent is created in the context of its System. For StorageVolumes, this property will generally be false. One use of this property is to enable algorithms that aggregate StorageExtent.ConsumableSpace across all, StorageExtents but that also want to distinquish the space that underlies Primordial StoragePools. Since implementations are not required to surface all Component StorageExtents of a StoragePool, this information is not accessible in any other way.

boolean NoSinglePointOfFailure

Indicates whether or not there exists no single point of failure.

uint16 Usage

Indicates the intended usage or any restrictions that may have been imposed on the usage of this component. For example, an element may be reserved for use by the block server. In that case the Usage of the element is marked as “Reserved for the ComputerSystem”. In the case of “Other”, see OtherUsageDescription for more information. In the value map, the “Element Component” indicates a StorageVolume or LogicalDisk that is only available as an EmbeddedInstance. The storage that it represents may also be represented as another StorageExent that is a component of another LogicalElement.

“Reserved to be Unrestricted Pool Contributor”: Indicates the element is currently available and it is intended to be used as an Unrestricted Pool Contributor. Once such element is in use, the elements Usage value will change to “In use as Unrestricted Pool Contributor”.

Use the method GetElementsBasedOnUsage to locate such volumes or logical disks.

		ValueMap
		Values

		1
		Other

		2
		Unrestricted

		3
		Reserved for ComputerSystem (the block server)

		4
		Reserved by Replication Services

		5
		Reserved by Migration Services

		6
		Local Replica Source

		7
		Remote Replica Source

		8
		Local Replica Target

		9
		Remote Replica Target

		10
		Local Replica Source or Target

		11
		Remote Replica Source or Target

		12
		Delta Replica Target

		13
		Element Component

		14
		Reserved to be Unrestricted Pool Contributor

		15
		Composite Volume Member

		16
		Composite LogicalDisk Member

		17
		Reserved for Sparing

		18
		In use as Unrestricted Pool Contributor

		19
		Reserved to be Delta Replica Pool Contributor

		20
		Reserved to be Local Replication Pool Contributor

		21
		Reserved to be Remote Replication Pool Contributor

		22
		In use as Delta Replica Pool Contributor

		23
		In use as Local Replication Pool Contributor

		24
		In use as Remote Replication Pool Contributor

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherNameNamespace

A string describing the namespace of the Name property when NameNamespace includes the value 1, “Other”.

uint64 ExtentInterleaveDepth

If not null, then IsComposite shall be true. Number of StorageExtents to stripe as a collective set. In SCSI SCC, this value is defined as the number of stripes to count before continuing to map into the next contiguous set of Extents, beyond the current stripe.

string OtherNameFormat

A string describing the format of the Name property when NameFormat includes the value 1, “Other”.

uint16 NameFormat

The list here applies to all StorageExtent subclasses. Please look at the Description in each subclass for guidelines on the approriate values for that subclass. Note that any of these formats could apply to a CompositeExtent.

Note - this property originally touched on two concepts that are now separated into this property and NameNamespace. Values 2,3,4,5,6, and 8 are retained for backwards compatibility but are deprecated in lieu of the corresponding values in CIM_StorageExtent.NameNamespace.

For example, the preferred source for SCSI virtual (RAID) disk names is from Inquiry VPD page 83 response, type 3 identifiers. These will have NameFormat set to ‘NAA’ and NameNamespace to ‘VPD83Type3’.

Format of the Name property. Values for extents representing SCSI volumes are (per SCSI SPC-3):

2 = VPD Page 83, NAA IEEE Registered Extended (VPD83NAA6)

(DEPRECATED)

3 = VPD Page 83, NAA IEEE Registered (VPD83NAA5)

(DEPRECATED)

4 = VPD Page 83, (VPD83Type2) (DEPRECATED)

5 = VPD Page 83,

T10 Vendor Identification (VPD83Type1) (DEPRECATED)

6 = VPD Page 83, Vendor Specific (VPD83Type0) (DEPRECATED)

7 = Serial Number/Vendor/Model (SNVM) SNVM is 3 strings representing the vendor name, product name within the vendor namespace, and the serial number within the model namespace. Strings are delimited with a ‘+’. Spaces may be included and are significant. The serial number is the text representation of the serial number in hexadecimal upper case. This represents the vendor and model ID from SCSI Inquiry data; the vendor field MUST be 8 characters wide and the product field MUST be 16 characters wide. For example,

‘ACME____+SUPER DISK______+124437458’ (_ is a space character)

8 = Node WWN (for single LUN/controller) (NodeWWN)

(DEPRECATED)

9 = NAA as a generic format. See

http://standards.ieee.org/regauth/oui/tutorials/fibrecomp_id.html. Formatted as 16 or 32 unseparated uppercase hex characters (2 per binary byte). For example ‘21000020372D3C73’

10 = EUI as a generic format (EUI64) See

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

Formatted as 16 unseparated uppercase hex characters (2 per binary byte)

11 = T10 vendor identifier format as returned by SCSI Inquiry VPD page 83, identifier type 1. See T10 SPC-3 specification. This is the 8-byte ASCII vendor ID from the T10 registry followed by a vendor specific ASCII identifier; spaces are permitted. For non SCSI volumes, ‘SNVM’ may be the most appropriate choice. 12 = OS Device Name (for LogicalDisks). See LogicalDisk Name description for details.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83NAA6

		3
		VPD83NAA5

		4
		VPD83Type2

		5
		VPD83Type1

		6
		VPD83Type0

		7
		SNVM

		8
		NodeWWN

		9
		NAA

		10
		EUI64

		11
		T10VID

		12
		OS Device Name

string Purpose

A free form string describing the media and/or its use.

uint64 ExtentStripeLength

If not null, then IsComposite shall be true. Number of contiguous underlying StorageExtents counted before looping back to the first underlying StorageExtent of the current stripe. It is the number of StorageExtents forming the user data stripe.

uint16 CompressionState

The CompressionState indicates whether the compression is pending, initializing, in progress or completed.

		ValueMap
		Values

		1
		Not applicable

		2
		Initializing

		3
		InProgress

		4
		Pending

		5
		Completed

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string Name

A unique identifier for the Extent.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

boolean SequentialAccess

Boolean set to TRUE if the Storage is sequentially accessed by a MediaAccessDevice. A TapePartition is an example of a sequentially accessed StorageExtent. StorageVolumes, Disk Partitions and LogicalDisks represent randomly accessed Extents.

string OtherUsageDescription

Populated when “Usage” has the value of “Other”.

uint16 NameNamespace

The preferred source SCSI for volume names is SCSI VPD Page 83 responses. Page 83 returns a list of identifiers for various device elements. The metadata for each identifier includes an Association field, identifiers with association of 0 apply to volumes. Page 83 supports several namespaces specified in the Type field in the identifier metadata. See SCSI SPC-3 specification.

2 = VPD Page 83, Type 3 NAA (NameFormat SHOULD be NAA)

3 = VPD Page 83, Type 2 EUI64 (NameFormat EUI)

4 = VPD Page 83, Type 1 T10 Vendor Identification

(NameFormat T10)

Less preferred volume namespaces from other interfaces:

5 = VPD page 80, Serial number (NameFormat SHOULD be Other)

6 = FC NodeWWN (NameFormat SHOULD be NAA or EUI)

7 = Serial Number/Vendor/Model (NameFormat SHOULD be SNVM)

The preferred namespace for LogigicalDisk names is platform specific device namespace; see LogigicalDIsk Description.

8 = OS Device Namespace.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83Type3

		3
		VPD83Type2

		4
		VPD83Type1

		5
		VPD80

		6
		NodeWWN

		7
		SNVM

		8
		OS Device Namespace

boolean IsComposite

True indicates that the data is a composition of various StorageExtents that are associated to this StorageExtent via a CIM_BasedOn. Composition models the distribution of user data across one or more underlying StorageExtents, which may or not be protected by some redundancy mechanism. Composite extents represent a contiguous range of logical blocks. Composite extents may overlap, however, the underlying StorageExtents within the overlap shall not contain any check data. Distribution of check data may be specified using the CompositeExtentBasedOn association.

string[] ExtentDiscriminator

An array of strings used to discriminate the association context in which this StorageExtent is instantiated. Each element of the array should be prefixed by a well known organization name followed by a colon and followed by a string defined by that organization. For example, SNIA SMI-S compliant instances might contain one or more of the following values:

‘SNIA:Pool Component’ - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool and has an AssociatedComponentExtent to its StoragePool, but is not a remaining extent.

‘SNIA:Remaining’ - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool (representing free storage in the StoragePool).

‘SNIA:Intermediate’ - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

‘SNIA:Composite’ - A StorageExtent that is a CompositeExtent.

‘SNIA:DiskDrive’ - A StorageExtent that is the media on a Disk Drive.

‘SNIA:Imported’ - A StorageExtent that is imported from an external source.

‘SNIA:Allocated’ - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an AllocatedFromStoragePool association from a Concrete StoragePool.

‘SNIA:Shadow’ - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes exported by Arrays).

‘SNIA:Spare’ - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare association).

‘SNIA:Reserved’ - A StorageExtent that is reserved for some system use within the autonomous profile (e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

uint16 PackageRedundancy

How many physical packages can currently fail without data loss. For example, in the storage domain, this might be disk spindles.

uint16 DataRedundancy

Number of complete copies of data currently maintained.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

uint16 CompressionRate

CompressionRate identifies whether or not compression is being applied to the volume and at what rate.

		ValueMap
		Values

		0
		Unknown

		1
		None

		2
		High

		3
		Medium

		4
		Low

		
		DMTF Reserved

		32768..65535
		Vendor Specific

boolean IsConcatenated

If not null, then IsComposite shall be true. True indicates that the data is concatenated across the various StorageExtents in the Group.

string ErrorMethodology

ErrorMethodology is a free-form string describing the type of error detection and correction supported by this StorageExtent.

uint16[] ExtentStatus

StorageExtents have additional status information beyond that captured in the OperationalStatus and other properties, inherited from ManagedSystemElement. This additional information (for example, “Protection Disabled”, value=9) is captured in the ExtentStatus property.

‘In-Band Access Granted’ says that access to data on an extent is granted to some consumer and is only valid when ‘Exported’ is also set. It is set as a side effect of PrivilegeManagementService.ChangeAccess or equivalent interfaces.

‘Imported’ indicates that the extent is used in the current system, but known to be managed by some other system. For example, a server imports volumes from a disk array.

‘Exported’ indicates the extent is meant to be used by some comsumer. A disk array’s logical units are exported.

Intermediate composite extents may be neither imported nor exported.

‘Relocating’ indicates the extent is being relocated.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		None/Not Applicable

		3
		Broken

		4
		Data Lost

		5
		Dynamic Reconfig

		6
		Exposed

		7
		Fractionally Exposed

		8
		Partially Exposed

		9
		Protection Disabled

		10
		Readying

		11
		Rebuild

		12
		Recalculate

		13
		Spare in Use

		14
		Verify In Progress

		15
		In-Band Access Granted

		16
		Imported

		17
		Exported

		18
		Relocating

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 ConsumableBlocks

The maximum number of blocks, of size BlockSize, which are available for consumption when layering StorageExtents using the BasedOn association. This property only has meaning when this StorageExtent is an Antecedent reference in a BasedOn relationship. For example, a StorageExtent could be composed of 120 blocks. However, the Extent itself may use 20 blocks for redundancy data. If another StorageExtent is BasedOn this Extent, only 100 blocks would be available to it. This information (‘100 blocks is available for consumption’) is indicated in the ConsumableBlocks property.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

boolean ErrorCleared

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string ElementName

datetime InstallDate

string[] IdentifyingDescriptions

uint64 Generation

uint16 PrimaryStatus

string InstanceID

uint16[] OperationalStatus

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 StatusInfo

string DeviceID

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

string OtherEnabledState

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/PCP_MetricValue.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

PCP_MetricValue

Class reference

Subclass of CIM_StatisticalData

CIM_StatisticalData is a root class for any arbitrary collection of statistical data and/or metrics applicable to one or more ManagedElements. These statistics MUST represent the most recent observations and MUST NOT be provided if irrelevant or stale. Note that this class uses a simplified naming/identity algorithm as compared to CIM_StatisticalInformation.

Key properties

InstanceID

Local properties

string InstanceName

PMAPI indom instance name

uint32 InstanceNumber

PMAPI indom instance number

string Units

The metric units, as returned by pmUnitsStr(3)

uint32 PMID

PCP metric PMID

string Type

The metric type, as returned by pmTypeStr(3)

string ValueString

The metric value, as rendered into string form by pmAtomStr() or pmPrintValue(3)

Local methods

None

Inherited properties

string ElementName

datetime StatisticTime

string Description

datetime StartStatisticTime

string InstanceID

uint64 Generation

string Caption

datetime SampleInterval

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SwitchService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SwitchService

Class reference

Subclass of CIM_SwitchService

Generic switch (bridging) service class. Additional switching functions are incorporated as subordinate services related to this class via ServiceComponent associations.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

uint8 BridgeType

uint16 BridgeAddressType

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string[] StartupConditions

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint16 NumPorts

string[] StartupParameters

uint16 ProtocolType

string OtherProtocolType

string BridgeAddress

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string ServiceURL

string[] Keywords

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SettingsDefineManagementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SettingsDefineManagementCapabilities

Class reference

Subclass of CIM_SettingsDefineCapabilities

This association indicates that the non-null, non-key set of properties of the component SettingData instance specifies some capabilities of the associated Capabilities instance. The interpretation of the set of properties in the associated SettingData is governed by the properties: PropertyPolicy and ValueRole.

For a particular Capabilities instance, the complete set of Component SettingData instances, together with properties of the Capabilities instance itself, defines the overall range of supported capabilities.

PropertyPolicy determines whether the properties of the set are interpreted independently or as a whole (i.e. correlated.)

ValueRole further qualifies the members of the set.

This association eliminates the need to define and maintain corresponding property definitions and values in both a Capabilities subclass and a SettingData subclass.

Typically these setting instances will be published along with the associated Capabilities instance and will not be modifiable by the client.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_AccountManagementCapabilities GroupComponent

The Account Management Capabilities

LMI_AccountSettingData PartComponent

The default enforced setting for new Accounts

Local methods

None

Inherited properties

uint16 ValueRange

uint16 ValueRole

uint16 PropertyPolicy

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PowerManagementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PowerManagementCapabilities

Class reference

Subclass of CIM_PowerManagementCapabilities

A class derived from Capabilities that describes the power management aspects of an element (typically a system or device). The element’s power management capabilities are decoupled from a PowerManagementService, since a single service could apply to multiple elements, each with specific capabilities.

Key properties

InstanceID

Local properties

uint16[] PowerStatesSupported

An enumeration that indicates the power states supported by a managed element. Because this is an array, multiple values can be specified. The current values in the enumeration are:

4 = Sleep - Deep, corresponding to ACPI state G1, S3, or D2.

5 = Power Cycle (Off - Soft), corresponding to ACPI state G2, S5, or D3, but where the managed element is set to return to power state “On”.

7 = Hibernate (Off - Soft), corresponding to ACPI state S4, where the state of the managed element is preserved and will be recovered upon powering on.

8 = Off - Soft, corresponding to ACPI state G2, S5, or D3.

12 = Off - Soft Graceful, equivalent to Off Soft but preceded by a request to the managed element to perform an orderly shutdown.

15 = Power Cycle (Off - Soft Graceful), equivalent to Power Cycle (Off - Soft) but preceded by a request to the managed element to perform an orderly shutdown.

		ValueMap
		Values

		4
		Sleep - Deep

		5
		Power Cycle (Off - Soft)

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		12
		Off - Soft Graceful

		15
		Power Cycle (Off - Soft Graceful)

Local methods

None

Inherited properties

string ElementName

string OtherPowerChangeCapabilities

string[] OtherPowerCapabilitiesDescriptions

string Description

string Caption

uint16[] RequestedPowerStatesSupported

uint64 Generation

uint16[] PowerChangeCapabilities

string InstanceID

uint16[] PowerCapabilities

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AffectedNetworkJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AffectedNetworkJobElement

Class reference

Subclass of LMI_AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

AffectedElement

AffectingElement

Local properties

CIM_ManagedElement AffectedElement

The ManagedElement affected by the execution of the Job.

LMI_NetworkJob AffectingElement

The Job that is affecting the ManagedElement.

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

uint16[] ElementEffects

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountSettingData

Class reference

Subclass of CIM_AccountSettingData

CIM_AccountSettingData provides the ability to manage the desired configuration for an instance of CIM_Account. When associated with an instance of CIM_AccountManagementService, this class may be used to constrain the properties of instances of CIM_Accountcreated using the service. When associated with an instance of CIM_Account, this class may be used to manage the configuration of the CIM_Acount instance.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string SoOrgID

string SoID

string ElementName

string ConfigurationName

string Description

uint16 ChangeableType

datetime MaximumPasswordExpiration

string InstanceID

string[] ComponentSetting

uint16 MaximumSuccessiveLoginFailures

uint16[] ComplexPasswordRulesEnforced

string Caption

datetime InactivityTimeout

uint16 PasswordHistoryDepth

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MediaAccessDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MediaAccessDevice

Class reference

Subclass of CIM_LogicalDevice

A MediaAccessDevice represents the ability to access one or more media and use this media to store and retrieve data.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean MediaIsLocked

True indicates that the media is locked in the Device and can not be ejected. For non-removeable Devices, this value should be true.

uint64 MaxAccessTime

Time in milliseconds to move from the first location on the Media to the location that is furthest with respect to time. For a DiskDrive, this represents full seek + full rotational delay. For TapeDrives, this represents a search from the beginning of the tape to the most physically distant point. (The end of a tape may be at its most physically distant point, but this is not necessarily true.)

string UnitsDescription

Defines ‘Units’ relative to its use in the property, MaxUnitsBeforeCleaning. This describes the criteria used to determine when the MediaAccessDevice should be cleaned.

datetime TimeOfLastMount

For a MediaAccessDevice that supports removable Media, the most recent date and time that Media was mounted on the Device. For Devices accessing nonremovable Media, such as hard disks, this property has no meaning and is not applicable.

uint16[] Capabilities

Capabilities of the MediaAccessDevice. For example, the Device may support “Random Access”, removeable media and “Automatic Cleaning”. In this case, the values 3, 7 and 9 would be written to the array.

Several of the enumerated values require some explanation: 1) Value 11, Supports Dual Sided Media, distinguishes a Device that can access both sides of dual sided Media, from a Device that reads only a single side and requires the Media to be flipped; and, 2) Value 12, Predismount Eject Not Required, indicates that Media does not have to be explicitly ejected from the Device before being accessed by a PickerElement.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Sequential Access

		3
		Random Access

		4
		Supports Writing

		5
		Encryption

		6
		Compression

		7
		Supports Removeable Media

		8
		Manual Cleaning

		9
		Automatic Cleaning

		10
		SMART Notification

		11
		Supports Dual Sided Media

		12
		Predismount Eject Not Required

uint64 UnloadTime

Time in milliseconds from being able to read or write a Media to its ‘unload’. For example, for DiskDrives, this is the interval between a disk spinning at nominal speeds and a disk not spinning. For TapeDrives, this is the time for a Media to go from its BOT to being fully ejected and accessible to a PickerElement or human operator.

uint64 TotalMountTime

For a MediaAccessDevice that supports removable Media, the total time (in seconds) that Media have been mounted for data transfer or to clean the Device. For Devices accessing nonremovable Media, such as hard disks, this property is not applicable and should be set to 0.

uint32 UncompressedDataRate

The sustained data transfer rate in KB/sec that the Device can read from and write to a Media. This is a sustained, raw data rate. Maximum rates or rates assuming compression should not be reported in this property.

datetime LastCleaned

The date and time on which the Device was last cleaned.

string CompressionMethod

A free form string indicating the algorithm or tool used by the device to support compression. If it is not possible or not desired to describe the compression scheme (perhaps because it is not known), recommend using the following words: “Unknown” to represent that it is not known whether the device supports compression capabilities or not, “Compressed” to represent that the device supports compression capabilities but either its compression scheme is not known or not disclosed, and “Not Compressed” to represent that the devices does not support compression capabilities.

uint64 UnitsUsed

An unsigned integer indicating the currently used ‘units’ of the AccessDevice, helpful to describe when the Device may require cleaning. The property, UnitsDescription, defines how ‘units’ should be interpreted.

uint32 NumberOfMediaSupported

When the MediaAccessDevice supports multiple individual Media, this property defines the maximum number which can be supported or inserted.

uint64 DefaultBlockSize

Default block size, in bytes, for this Device.

string[] CapabilityDescriptions

An array of free-form strings providing more detailed explanations for any of the AccessDevice features indicated in the Capabilities array. Note, each entry of this array is related to the entry in the Capabilities array that is located at the same index.

string ErrorMethodology

ErrorMethodology is a free-form string describing the type(s) of error detection and correction supported by this Device.

uint64 MinBlockSize

Minimum block size, in bytes, for media accessed by this Device.

uint16 Security

An enumeration indicating the operational security defined for the MediaAccessDevice. For example, information that the Device is “Read Only” (value=4) or “Boot Bypass” (value=6) can be described using this property.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		None

		4
		Read Only

		5
		Locked Out

		6
		Boot Bypass

		7
		Boot Bypass and Read Only

uint64 MaxUnitsBeforeCleaning

An unsigned integer indicating the maximum ‘units’ that can be used, with respect to the AccessDevice, before the Device should be cleaned. The property, UnitsDescription, defines how ‘units’ should be interpreted.

uint64 MountCount

For a MediaAccessDevice that supports removable Media, the number of times that Media have been mounted for data transfer or to clean the Device. For Devices accessing nonremovable Media, such as hard disks, this property is not applicable and should be set to 0.

uint64 LoadTime

Time in milliseconds from ‘load’ to being able to read or write a Media. For example, for DiskDrives, this is the interval between a disk not spinning to the disk reporting that it is ready for read/write (ie, the disk spinning at nominal speeds). For TapeDrives, this is the time from a Media being injected to reporting that it is ready for an application. This is usually at the tape’s BOT area.

boolean NeedsCleaning

Boolean indicating that the MediaAccessDevice needs cleaning. Whether manual or automatic cleaning is possible is indicated in the Capabilities array property.

uint64 MaxBlockSize

Maximum block size, in bytes, for media accessed by this Device.

uint64 MaxMediaSize

Maximum size, in KBytes, of media supported by this Device. KBytes is interpreted as the number of bytes multiplied by 1000 (NOT the number of bytes multiplied by 1024).

Local methods

uint32 LockMedia (boolean Lock)

Method to lock and unlock the media in a removeable Access Device. The method takes one parameter as input - a boolean indicating whether to lock or unlock. TRUE indicates that the media should be locked in the Device, FALSE indicates that the media should be unlocked. The method returns 0 if successful, 1 if not supported, and any other value if an error occurred. The set of possible return codes should be specified in a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ should be specified as a Values array qualifier on the method.

Parameters

		IN boolean Lock

		If TRUE, lock the media. If FALSE release the media.

Inherited properties

uint16 PrimaryStatus

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

string SystemName

uint16[] PowerManagementCapabilities

uint16 CommunicationStatus

string CreationClassName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 StatusInfo

string Caption

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint16 Availability

string SystemCreationClassName

string DeviceID

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SystemSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SystemSetting

Class reference

Subclass of CIM_Setting

CIM_SystemSetting represents the general concept of a CIM_Setting that is scoped by a System.

Key properties

CreationClassName

SettingID

SystemName

SystemCreationClassName

Local properties

string SettingID

The identifier by which the Setting object is known.

string SystemName

The Name of the scoping system.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

VerifyOKToApplyIncrementalChangeToCollection

VerifyOKToApplyIncrementalChangeToMSE

ApplyToCollection

VerifyOKToApplyToCollection

ApplyToMSE

ApplyIncrementalChangeToCollection

VerifyOKToApplyToMSE

ApplyIncrementalChangeToMSE

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PointingDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PointingDevice

Class reference

Subclass of CIM_UserDevice

PointingDevice represents those Devices used to ‘point’ to regions of a Display.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 Handedness

Integer indicating whether the PointingDevice is configured for right (value=2) or left handed operation (value=3). Also, the values, “Unknown” (0) and “Not Applicable” (1), can be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Not Applicable

		2
		Right Handed Operation

		3
		Left Handed Operation

uint8 NumberOfButtons

Number of buttons. If the PointingDevice has no buttons, enter 0.

uint16 PointingType

The type of the pointing device.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Mouse

		4
		Track Ball

		5
		Track Point

		6
		Glide Point

		7
		Touch Pad

		8
		Touch Screen

		9
		Mouse - Optical Sensor

uint32 Resolution

Tracking resolution of the PointingDevice in Counts per Inch.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string ElementName

string Caption

boolean IsLocked

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_RootDirectory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_RootDirectory

Class reference

Subclass of CIM_Component

CIM_Component is a generic association used to establish ‘part of’ relationships between Managed Elements. For example, it could be used to define the components or parts of a System.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The hosting System.

LMI_UnixDirectory PartComponent

The root directory on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVStorageCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVStorageCapabilities

Class reference

Subclass of CIM_StorageCapabilities

This class represents capabilities of LMI_StorageConfigurationService to create Logical Volumes. It describes, which properties and which values can be used in LMI_LVStorageSetting.

Each LMI_VGStoragePool has one instance of this class attached, which describes what kind of Logical Volumes can be allocated from it. As only basic Logical Volumes are supported, it basically only represents underlying redundancy and stripping

There are no additional properties for now.

Key properties

InstanceID

Local properties

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the maximum is defined by PackageRedundancyMax.

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the maximum is defined by DataRedundancyMax.

boolean NoSinglePointOfFailure

Indicates whether or not the associated element supports no single point of failure. Values are: FALSE = does not support no single point of failure, and TRUE = supports no single point of failure.

uint16 PackageRedundancyDefault

PackageRedundancyDefault describes the default number of redundant packages that will be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds for redundancy are specified using the properties, PackageRedundancyMax and PackageRedundancyMin.

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

uint16 DataRedundancyDefault

DataRedundancyDefault describes the default number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds for the redundancy (max and min) are defined by DataRedundancyMax and DataRedundancyMin.

uint16[] SupportedStorageElementTypes

Support for allocation of thinly provisioned StoragePools.

		ValueMap
		Values

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		7
		ThinlyProvisionedAllocatedStoragePool

		8
		ThinlyProvisionedQuotaStoragePool

		9
		ThinlyProvisionedLimitlessStoragePool

		32768
		ThinlyProvisionedStorageExtent

boolean NoSinglePointOfFailureDefault

Indicates the default value for the NoSinglePointOfFailure property.

uint64 ThinProvisionedClientSettableReserve

uint64 ThinProvisionedDefaultReserve

uint16 ExtentStripeLengthDefault

Extent Stripe Length describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’.

A NULL value for ExtentStripeLengthDefault indicates that the system does not support configuration of storage by specifying Stripe Length.

If Extent Stripe Length is supported, and this Capabilities instance is associated with a pool that was created with a range of QOS then ExtentStripeLengthDefault represents the default value. Other available values(such as min, max, and discrete values) can be determined by using the ‘GetSupportedStripeLengths’ and ‘GetSupportedStripeLengthRange’ methods.

If Extent Stripe Length is supported and the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and Extent Stripe Length is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedStripeLength’ methods cannot be used, and in a StorageSetting instance used as a goal when creating or modifying a child element of the pool, ExtentStripeLengthGoal, ExtentStripeLengthMin, and ExtentStripeLengthMax MUST be set to NULL.

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data that can be maintained. Examples would be RAID 5 (where 1 copy is maintained) and RAID 1 (where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the minimum is defined by DataRedundancyMin.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the minimum is defined by PackageRedundancyMin.

Local methods

uint32 CreateLVStorageSetting (LMI_StorageSetting Setting)

This method creates new instance of LMI_LVStorageSetting. Applications then do not need to calculate DataRedundancy, PackageRedundancy and ExtentStripeLength. Because only basic Logical Volumes without any additional stripping or mirroring are supported, this method basically clones LMI_VGStorageSetting to LMI_LVStorageSetting.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		OUT LMI_StorageSetting Setting

		Created LMI_StorageSetting.

Inherited properties

uint16[] SupportedDataOrganizations

uint32[] AvailableRPM

string InstanceID

uint16 Encryption

uint16 ParityLayoutDefault

string Description

uint16[] AvailableDiskType

uint64 Generation

uint64[] AvailableInterconnectSpeed

string Caption

uint16[] SupportedCompressionRates

uint16 ElementType

uint16 DeltaReservationMin

uint16 DeltaReservationDefault

uint16[] AvailableInterconnectType

uint16[] AvailableFormFactorType

uint16 DeltaReservationMax

uint64 UserDataStripeDepthDefault

Inherited methods

GetSupportedStripeLengths

GetSupportedParityLayouts

GetSupportedStripeDepths

CreateGoalSettings

GetSupportedStripeLengthRange

GetSupportedStripeDepthRange

CreateSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstModification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstModification

Class reference

Subclass of CIM_InstModification

CIM_InstModification notifies when an instance is modified.

Key properties

Local properties

None

Local methods

None

Inherited properties

string[] ChangedPropertyNames

string OtherSeverity

string PreviousInstance

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveATAPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveATAPort

Class reference

Subclass of CIM_ATAPort

Represents the port of an ATA device to system connection.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 MaxSpeed

The maximum bandwidth of the Port in Bits per Second.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SystemName

The System Name of the scoping system.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

uint16 PortType

The type of port.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		91
		ATA

		92
		SATA

		93
		SATA2

		16000..
		Vendor Reserved

uint16 UsageRestriction

In some circumstances, a LogicalPort might be identifiable as a front end or back end port. An example of this situation would be a storage array that might have back end ports to communicate with disk drives and front end ports to communicate with hosts. If there is no restriction on the use of the port, then the value should be set to ‘not restricted’.

		ValueMap
		Values

		0
		Unknown

		2
		Front-end only

		3
		Back-end only

		4
		Not restricted

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint64 Speed

The bandwidth of the Port in Bits per Second.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

boolean PowerManagementSupported

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherPortType

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint16 Availability

uint64 RequestedSpeed

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartition

Class reference

Subclass of CIM_DiskPartition

This class represents primary, extended and logical partitions on devices with MS-DOS (MBR) style partition tables.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint64 ExtentStripeLength

If not null, then IsComposite shall be true. Number of contiguous underlying StorageExtents counted before looping back to the first underlying StorageExtent of the current stripe. It is the number of StorageExtents forming the user data stripe.

boolean Primordial

If true, “Primordial” indicates that the containing System does not have the ability to create or delete this operational element. This is important because StorageExtents are assembled into higher-level abstractions using the BasedOn association. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based storage entities cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized. In other words, a Primordial StorageExtent exists in, but is not created by its System and conversely a non-Primordial StorageExtent is created in the context of its System. For StorageVolumes, this property will generally be false. One use of this property is to enable algorithms that aggregate StorageExtent.ConsumableSpace across all, StorageExtents but that also want to distinquish the space that underlies Primordial StoragePools. Since implementations are not required to surface all Component StorageExtents of a StoragePool, this information is not accessible in any other way.

boolean NoSinglePointOfFailure

Indicates whether or not there exists no single point of failure.

string DeviceBusType

Name of bus, used to connect the block device, such as USB, SCSI or ATA. This property is available mostly for disk block devices, not for their descendants like partitions, logical volumes and so on. Note that the list of values may not be complete and is not guaranteed to be stable.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint16 NameNamespace

DiskPartition names MUST use OS Device Namespace.

		ValueMap
		Values

		1
		Other

		8
		OS Device Namespace

uint16 NameFormat

DiskPartition names MUST use OS Device Name format. In cases where the partition names can not be used by applications programmatically (for example, open()) the NameFormat SHOULD be ‘Other’.

		ValueMap
		Values

		1
		Other

		12
		OS Device Name

boolean PrimaryPartition

Boolean indicating that the DiskPartition is labelled as the primary partition for a ComputerSystem.

uint16 PartitionType

The type of Partition.

		ValueMap
		Values

		0
		Unknown

		1
		Primary

		2
		Extended

		3
		Logical

string Name

A unique identifier for the Extent.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

string[] ExtentDiscriminator

An array of strings used to discriminate the association context in which this StorageExtent is instantiated. Each element of the array should be prefixed by a well known organization name followed by a colon and followed by a string defined by that organization. For example, SNIA SMI-S compliant instances might contain one or more of the following values:

‘SNIA:Pool Component’ - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool and has an AssociatedComponentExtent to its StoragePool, but is not a remaining extent.

‘SNIA:Remaining’ - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool (representing free storage in the StoragePool).

‘SNIA:Intermediate’ - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

‘SNIA:Composite’ - A StorageExtent that is a CompositeExtent.

‘SNIA:DiskDrive’ - A StorageExtent that is the media on a Disk Drive.

‘SNIA:Imported’ - A StorageExtent that is imported from an external source.

‘SNIA:Allocated’ - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an AllocatedFromStoragePool association from a Concrete StoragePool.

‘SNIA:Shadow’ - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes exported by Arrays).

‘SNIA:Spare’ - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare association).

‘SNIA:Reserved’ - A StorageExtent that is reserved for some system use within the autonomous profile (e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

uint16 PackageRedundancy

How many physical packages can currently fail without data loss. For example, in the storage domain, this might be disk spindles.

uint16 DataRedundancy

Number of complete copies of data currently maintained.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] Names

All names, under which this device is known. All these names are symlinks to one block device.

uint16[] ExtentStatus

StorageExtents have additional status information beyond that captured in the OperationalStatus and other properties, inherited from ManagedSystemElement. This additional information (for example, “Protection Disabled”, value=9) is captured in the ExtentStatus property.

‘In-Band Access Granted’ says that access to data on an extent is granted to some consumer and is only valid when ‘Exported’ is also set. It is set as a side effect of PrivilegeManagementService.ChangeAccess or equivalent interfaces.

‘Imported’ indicates that the extent is used in the current system, but known to be managed by some other system. For example, a server imports volumes from a disk array.

‘Exported’ indicates the extent is meant to be used by some comsumer. A disk array’s logical units are exported.

Intermediate composite extents may be neither imported nor exported.

‘Relocating’ indicates the extent is being relocated.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		None/Not Applicable

		3
		Broken

		4
		Data Lost

		5
		Dynamic Reconfig

		6
		Exposed

		7
		Fractionally Exposed

		8
		Partially Exposed

		9
		Protection Disabled

		10
		Readying

		11
		Rebuild

		12
		Recalculate

		13
		Spare in Use

		14
		Verify In Progress

		15
		In-Band Access Granted

		16
		Imported

		17
		Exported

		18
		Relocating

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 ConsumableBlocks

The maximum number of blocks, of size BlockSize, which are available for consumption when layering StorageExtents using the BasedOn association. This property only has meaning when this StorageExtent is an Antecedent reference in a BasedOn relationship. For example, a StorageExtent could be composed of 120 blocks. However, the Extent itself may use 20 blocks for redundancy data. If another StorageExtent is BasedOn this Extent, only 100 blocks would be available to it. This information (‘100 blocks is available for consumption’) is indicated in the ConsumableBlocks property.

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

boolean ErrorCleared

string Signature

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

string SystemName

uint16 CompressionRate

uint16 Usage

string Description

uint16 EnabledDefault

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

uint64 Generation

uint16 PartitionSubtype

datetime InstallDate

string OtherNameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint16[] ClientSettableUsage

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

uint16[] PowerManagementCapabilities

boolean Bootable

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

uint16 CompressionState

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

boolean Allocatable

string OtherEnabledState

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

string SignatureState

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PCIBridge.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PCIBridge

Class reference

Subclass of CIM_PCIDevice

Capabilities and management of a PCI controller that provide bridge-to-bridge capability.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 MemoryBase

Base address of the memory supported by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 0.

uint8 IOLimit

End address of the I/O addresses supported by the bus. The upper 4 bits of this property specify the address bits, AD[15::12], of the I/O address. Each of the remaining 12 bits of the I/O address are assumed to be 1.

uint8 IOBase

Base address of I/O addresses supported by the bus. The upper 4 bits of this property specify the address bits, AD[15::12], of the I/O address. Each of the remaining 12 bits of the I/O address are assumed to be 0.

uint16 IOBaseUpper16

Upper 16 bits of the supported I/O base address when 32-bit I/O addressing is used. The lower 16 bits are assumed to be 0.

uint32 PrefetchLimitUpper32

Upper 32 bits of the supported prefetch end address when 64-bit addressing is used. The lower 32 bits are each assumed to be 1.

uint16 BridgeType

The type of bridge. Except for “Host” (value=0) and “PCIe-to-PCI” (value=10), the type of bridge is PCI-to-<value>. For type “Host”, the device is a Host-to-PCI bridge. For type “PCIe-to-PCI”, the device is a PCI Express-to-PCI bridge.

		ValueMap
		Values

		0
		Host

		1
		ISA

		2
		EISA

		3
		Micro Channel

		4
		PCI

		5
		PCMCIA

		6
		NuBus

		7
		CardBus

		8
		RACEway

		9
		AGP

		10
		PCIe

		11
		PCIe-to-PCI

		128
		Other

		
		DMTF Reserved

uint16 SecondaryBusDeviceSelectTiming

The slowest device-select timing for a target device on the secondary bus.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Fast

		3
		Medium

		4
		Slow

		5
		DMTF Reserved

uint8 SecondayBusNumber

The number of the PCI bus segment to which the secondary interface of the bridge is connected.

uint16 SecondaryStatusRegister

The contents of the SecondaryStatusRegister of the Bridge. For more information on the contents of this register, refer to the PCI-to-PCI Bridge Architecture Specification.

uint16 PrefetchMemoryBase

Base address of the memory that can be prefetched by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 0.

uint8 PrimaryBusNumber

The number of the PCI bus segment to which the primary interface of the bridge is connected.

uint16 IOLimitUpper16

Upper 16 bits of the supported I/O end address when 32-bit I/O addressing is used. The lower 16 bits are each assumed to be 1.

uint8 SecondaryLatencyTimer

The timeslice for the secondary interface when the bridge is acting as an initiator. A 0 value indicates no requirement.

uint16 PrefetchMemoryLimit

End address of the memory that can be prefetched by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 1.

uint8 SubordinateBusNumber

The number of the highest numbered bus that exists behind the bridge.

uint16 MemoryLimit

End address of the memory supported by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 1.

uint32 PrefetchBaseUpper32

Upper 32 bits of the supported prefetch base address when 64-bit addressing is used. The lower 32 bits are assumed to be 0.

Local methods

None

Inherited properties

uint16 VendorID

uint16 PCIDeviceID

uint16 RequestedState

boolean PowerManagementSupported

datetime TimeOfLastStateChange

uint16[] Capabilities

boolean SelfTestEnabled

string SystemName

string Description

uint16 Availability

string Status

string ElementName

uint32 ExpansionROMBaseAddress

string[] StatusDescriptions

datetime InstallDate

uint16 HealthState

uint8 DeviceNumber

uint8 RevisionID

uint64 Generation

uint8 LatencyTimer

uint16 PrimaryStatus

string InstanceID

uint16[] OperationalStatus

uint16 SubsystemVendorID

uint16 DeviceSelectTiming

uint16 OperatingStatus

uint16 CommunicationStatus

uint8 FunctionNumber

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string OtherEnabledState

uint8 MaxLatency

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 InterruptPin

uint16 CommandRegister

uint16 StatusInfo

string[] CapabilityDescriptions

datetime TimeOfLastReset

uint16[] PowerManagementCapabilities

uint32 MaxNumberControlled

uint16 SubsystemID

uint64 PowerOnHours

uint16 TransitioningToState

uint16[] AvailableRequestedStates

uint8 CacheLineSize

uint16 ProtocolSupported

uint8 BusNumber

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint8 ClassCode

string ErrorDescription

string ProtocolDescription

uint64[] BaseAddress64

string[] IdentifyingDescriptions

uint16 LocationIndicator

boolean ErrorCleared

uint32 LastErrorCode

string SystemCreationClassName

string Name

string CreationClassName

uint32[] BaseAddress

uint8 MinGrantTime

string DeviceID

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

BISTExecution

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SAPSAPDependency.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SAPSAPDependency

Class reference

Subclass of CIM_Dependency

CIM_SAPSAPDependency is an association between one ServiceAccessPoint and another ServiceAccessPoint that indicates that the latter is required for the former to utilize or connect with its Service. For example, to print to a network printer, local Print Access Points must utilize underlying network-related SAPs, or ProtocolEndpoints, to send the print request.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The ServiceAccessPoint that is dependent on an underlying SAP.

CIM_ServiceAccessPoint Antecedent

The required ServiceAccessPoint.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LinkAggregator8023ad.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LinkAggregator8023ad

Class reference

Subclass of CIM_LinkAggregator8023ad

The LinkAggregator8023ad class represents an instance of an 802.3ad aggregator in a system. The word actor is used in property names to refer to the local entity of an aggregation.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string ActorSystemID

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint16 ActorAdminKey

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 DetailedStatus

datetime TimeOfLastOperChange

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

uint16 ActorSystemPriority

string Caption

datetime CollectorMaxDelay

boolean RepresentsAggregate

string OtherTypeDescription

uint16[] AvailableRequestedStates

string MACAddress

boolean BroadcastResetSupported

uint16 ProtocolType

uint16 ActorOperKey

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ServiceAffectsElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ServiceAffectsElement

Class reference

ServiceAffectsElement represents an association between a Service and the ManagedElements that might be affected by its execution. Instantiating this association indicates that running the service may change, manage, provide functionality for,or pose some burden on the ManagedElement. This burden might affect performance, throughput, availability, and so on.

Key properties

AffectedElement

AffectingElement

Local properties

CIM_Service AffectingElement

The Service that is affecting the ManagedElement.

string[] OtherElementEffectsDescriptions

Provides details for the effect at the corresponding array position in ElementEffects. This information is required if ElementEffects contains the value 1 (Other).

CIM_ManagedElement AffectedElement

The Managed Element that is affected by the Service.

uint16[] ElementEffects

An enumeration that describes the effect on the ManagedElement. This array corresponds to the OtherElementEffectsDescriptions array, where the latter provides details that are related to the high-level effects enumerated by this property. Additional detail is required if the ElementEffects array contains the value 1 (Other). The values are defined as follows:

		Exclusive Use (2): No other Service may have this association to the element.

		Performance Impact (3): Deprecated in favor of “Consumes”, “Enhances Performance”, or “Degrades Performance”. Execution of the Service may enhance or degrade the performance of the element. This may be as a side-effect of execution or as an intended consequence of methods provided by the Service.

		Element Integrity (4): Deprecated in favor of “Consumes”, “Enhances Integrity”, or “Degrades Integrity”. Execution of the Service may enhance or degrade the integrity of the element. This may be as a side-effect of execution or as an intended consequence of methods provided by the Service.

		Manages (5): The Service manages the element.

		Consumes (6): Execution of the Service consumes some or all of the associated element as a consequence of running the Service. For example, the Service may consume CPU cycles, which may affect performance, or Storage which may affect both performance and integrity. (For instance, the lack of free storage can degrade integrity by reducing the ability to save state.) “Consumes” may be used alone or in conjunction with other values, in particular, “Degrades Performance” and “Degrades Integrity”.

“Manages” and not “Consumes” should be used to reflect allocation services that may be provided by a Service.

		Enhances Integrity (7): The Service may enhance integrity of the associated element.

		Degrades Integrity (8): The Service may degrade integrity of the associated element.

		Enhances Performance (9): The Service may enhance performance of the associated element.

		Degrades Performance (10): The Service may degrade performance of the associated element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Exclusive Use

		3
		Performance Impact

		4
		Element Integrity

		5
		Manages

		6
		Consumes

		7
		Enhances Integrity

		8
		Degrades Integrity

		9
		Enhances Performance

		10
		Degrades Performance

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

uint16 AssignedSequence

AssignedSequence is an unsigned integer ‘n’ that indicates the relative sequence in which order the ManagedElement instances are affected by the Service, which is associated to the ManagedElement instances through this class. The implementation of the Service shall use the relative sequence to order all the managed elements represented by ManagedElements associated through this class for servicing or prioritizing.

When ‘n’ is a positive integer, it indicates a place in the sequence of affected elements, with smaller integers indicating earlier positions in the sequence. NULL or the special value ‘0’ indicates ‘don’t care’. If two or more affected elements have the same non-zero sequence number, then the ordering between those elements is irrelevant, but they must all be serviced in the appropriate order in the overall sequence.

A series of examples will make order of elements clearer: If all elements affected have the same sequence number,

regardless of whether it is ‘0’ or non-zero, any

order is acceptable.

The values:

1:ELEMENT A

2:ELEMENT B

1:ELEMENT C

3:ELEMENT D

indicate two acceptable orders: A,C,B,D or C,A,B,D,

since A and C can be ordered in either sequence, but

only at the ‘1’ position.

Note that the non-zero sequence numbers need not start with ‘1’, and they need not be consecutive. All that matters is their relative magnitude.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StorageSynchronized.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StorageSynchronized

Class reference

Subclass of CIM_Synchronized

Indicates that two Storage objects were replicated at the specified point in time. If the CopyType property is set to ‘Sync’ (=3), then synchronization of the Storage objects is preserved.

Key properties

SystemElement

SyncedElement

Local properties

uint16 CopyPriority

CopyPriority allows the priority of background copy engine I/O to be managed relative to host I/O operations during a sequential background copy operation.

Values are: Low: copy engine I/O lower priority than host I/O. Same: copy engine I/O has the same priority as host I/O. High: copy engine I/O has higher priority than host I/O. Urgent: copy operation to be performed as soon as possible, regardless of the host I/O requests.

		ValueMap
		Values

		0
		Not Managed

		1
		Low

		2
		Same

		3
		High

		4
		Urgent

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 ReplicaType

ReplicaType provides information on how the Replica is being maintained. Values are:

Full Copy: This indicates that a full copy of the source object is (or will be) generated .

Before Delta: This indicates that the source object will be maintained as a delta data from the replica.

After Delta: This indicates that the replica will be maintained as delta data from the source object.

Log: This indicates that the replica object is being maintained as a log of changes to the source.

Not Specified: The method of maintaining the copy is not specified.

		ValueMap
		Values

		0
		Not Specified

		2
		Full Copy

		3
		Before Delta

		4
		After Delta

		5
		Log

		
		DMTF Reserved

		0x8000..
		Vendor Specific

CIM_ManagedElement SystemElement

SystemElement represents the Storage that is the source of the replication.

uint16 UndiscoveredElement

This property specifies whether the source, the target, or both elements involved in a copy operation are undiscovered. An element is considered undiscovered if its object model is not known to the service performing the copy operation. The values are:

SystemElement: The source element.

SyncedElement: The target element.

Both: Both the source and the target elements. If both the source and the target elements are discovered, the value of this property shall be NULL.

		ValueMap
		Values

		2
		SystemElement

		3
		SyncedElement

		4
		Both

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 CopyType

CopyType describes the Replication Policy. Values are:

Async: create and maintain an asynchronous copy of the source.

Sync: create and maintain a synchronized copy of the source.

UnSyncAssoc: create an unsynchronized copy and maintain an association to the source.

UnSyncUnAssoc: create an unsynchronized copy with a temporary association that is deleted upon completion of the copy operation.

		ValueMap
		Values

		2
		Async

		3
		Sync

		4
		UnSyncAssoc

		5
		UnSyncUnAssoc

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 CopyMethodology

CopyMethodology specifies what copy methodology the service uses to create and/or maintain the target element.

Values are:

Not Specified: The method of maintaining the copy is not specified.

Full Copy: This indicates that a full copy of the source object is (or will be) generated .

Incremental-Copy: Only changed data from source element is copied to target element.

Differential-Copy: Only the new writes to source element are copied to the target element.

Copy-On-Write: Affected data is copied on the first write to the source or to the target elements.

Copy-On-Access: Affected data is copied on the first access to the source element.

Delta-Update: Difference based replication where after the initial copy, only updates to source are copied to target.

Snap-And-Clone: The service creates a snapshot of the source element first, then uses the the snapshot as the source of the copy operation to the target element.

		ValueMap
		Values

		0
		Not Specified

		1
		Other

		2
		Implementation decides

		3
		Full Copy

		4
		Incremental-Copy

		5
		Differential-Copy

		6
		Copy-On-Write

		7
		Copy-On-Access

		8
		Delta-Update

		9
		Snap-And-Clone

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 SyncState

SyncState describes the state of the association with respect to Replication activity. Values are:

Initialized: The link to enable replication is established.

and source/replica elements are associated, but the Copy engine has not started.

PrepareInProgress: Preparation for Replication is in progress and the Copy engine has started.

Prepared: All necessary preparation has completed.

ResyncInProgress: Synchronization or Resynchronization is in progress.

This may be the initial ‘copy’ or subsequent changes being copied.

Synchronized: An Async or Sync replication is currently synchronized. When this value is set, SyncMaintained will be true.

FractureInProgress: An operation to fracture an Async or Sync replication is in progress.

Fractured: An Async or Sync replication is fractured.

QuiesceInProgress: A quiesce operation is in progress.

Quiesced: The replication has been quiesced and is ready for a change.

RestoreInProgress: An operation is in progress to copy the Synced object to the System object.

Idle: The ‘normal’ state for an UnSyncAssoc replica.

Frozen: All blocks copied from source to an UnSyncAssoc replica and the copy engine is stopped.

CopyInProgress: A deferred background copy operation is in progress to copy the source to the replica target for an UnSyncAssoc association.

Broken: The relationship is non-functional due to errors in the source, the target, the path between the two or space constraints.

		ValueMap
		Values

		0
		Unknown

		2
		Initialized

		3
		PrepareInProgress

		4
		Prepared

		5
		ResyncInProgress

		6
		Synchronized

		7
		Fracture In Progress

		8
		QuiesceInProgress

		9
		Quiesced

		10
		Restore In Progresss

		11
		Idle

		12
		Broken

		13
		Fractured

		14
		Frozen

		15
		Copy In Progress

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 ReadOnly

This property specifies whether the source, the target, or both elements are “read only” to the host.SystemElement: The source element.

SyncedElement: The target element.

Both: Both the source and the target elements.are read only to the host.

		ValueMap
		Values

		2
		SystemElement

		3
		SyncedElement

		4
		Both

		
		DMTF Reserved

		0x8000..
		Vendor Specific

CIM_ManagedElement SyncedElement

SyncedElement represents the Storage that is the target of the replication.

Local methods

None

Inherited properties

datetime WhenActivated

uint16 CopyState

datetime WhenSynchronized

uint16 SyncType

datetime WhenSuspended

datetime WhenEstablished

boolean FailedCopyStopsHostIO

uint16 RequestedCopyState

uint16 Mode

uint16 PercentSynced

datetime WhenDeactivated

uint16 CopyRecoveryMode

uint16 ProgressStatus

datetime WhenSynced

boolean SyncMaintained

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveElementSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveElementSoftwareIdentity

Class reference

Subclass of CIM_ElementSoftwareIdentity

ElementSoftwareIdentity allows a Managed Element to report its software related asset information (firmware, drivers, configuration software, and etc.)

Key properties

Dependent

Antecedent

Local properties

LMI_DiskDrive Dependent

The ManagedElement that requires or uses the software.

LMI_DiskDriveSoftwareIdentity Antecedent

A LogicalElement’s Software Asset.

Local methods

None

Inherited properties

uint16 UpgradeCondition

uint16[] ElementSoftwareStatus

string OtherUpgradeCondition

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemorySlotContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemorySlotContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_MemorySlot PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorSystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorSystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_Processor PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartitionConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartitionConfigurationService

Class reference

Subclass of CIM_DiskPartitionConfigurationService

DiskPartitionConfigurationService provides methods for clients to configure DiskPartitions.

Any CIM_StorageExtent can be partitioned, but it’s strongly recommended to partition only disks.

Several partition styles are supported, see LMI_DiskPartitionConfigurationCapabilities instances. GPT partition style is strongly recommended. While MS-DOS (MBR) style partitions are fully supported, creation and modification of logical partitions require non-trivial calculations and should be avoided unless the application really knows what it is doing.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 PartitioningSchemes

Describes the partitioning schemes supported by the platform. AIX and HP_UX do not allow partitions. Linux allows volumes with and without partitions, Solaris requires Partitions. No more than a single instance of this class MAY be instantiated on a system. If set to ‘No partitions allowed’ then the methods of this service are not available.

		ValueMap
		Values

		2
		No partitions allowed

		3
		Volumes may be partitioned or treated as whole

		4
		Volumes must be partitioned

Local methods

uint32 CreateOrModifyPartition (CIM_StorageExtent extent, uint64 StartingAddress, uint64 EndingAddress, string DeviceFileName, CIM_GenericDiskPartition Partition)

This method creates a new partition if the Partition parameter is null or modifies the partition specified. If the starting and ending address parameters are null, the resulting partition will occupy the entire underlying extent. If the starting address is non-null and the ending address is null, the resulting partition will extend to the end of the underlying extent.

In contradiction to SMI-S, no LogicalDisk will be created on the partition.

This methods is only for compatibility with SMI-S.Applications should use LMI_CreateOrModifyPartition instead.

If logical partition is being created, it’s start/end sector must include space for partition metadata and any alignment sectors. ConsumableSpace of the logical partition will be reduced by these metadata and alignment sectors.

The underlying extent MUST be associated to a capabilities class describing the installed partition style (partition table); this association is established using SetPartitionStyle().

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		0x1000
		Overlap Not Supported

		0x1001
		No Available Partitions

		0x1002
		Specified partition not on specified extent

		0x1003
		Device File Name not valid

		0x1004
		LogicalDisk with different DeviceFileName exists

		
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		IN CIM_StorageExtent extent

		A reference to the underlying extent the partition is base on.

		IN uint64 StartingAddress

		The starting block number. If null when creating a partition, the first block is used.If null when modifying a partition, the partition start won’t be chnaged.

		IN uint64 EndingAddress

		The ending block number. If null when creating a partition, the last block of the device will be used. If null when modifying a partition, the partition end won’t be chnaged.

		IN string DeviceFileName

		The platform-specific special file name to be assigned to the LogicalDisk instance BasedOn the new DiskPartition instance.

		IN, OUT CIM_GenericDiskPartition Partition

		A reference an existing partition instance to modify or null to request a new partition.

uint32 LMI_DeletePartition (CIM_GenericDiskPartition Partition, CIM_ConcreteJob Job)

Delete partition.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_GenericDiskPartition Partition

		A reference an existing partition instance to delete.

		OUT CIM_ConcreteJob Job

		A reference to started job (may be null if job is completed).

uint32 SetPartitionStyle (CIM_StorageExtent Extent, CIM_DiskPartitionConfigurationCapabilities PartitionStyle)

This method installs a partition table on an extent of the specified partition style; creating an association between the extent and that capabilities instances referenced as method parameters. As a side effect, the consumable block size of the underlying extent is reduced by the block size of the metadata reserved by the partition table and associated metadata. This size is in the PartitionTableSize property of the associated DiskPartitionConfigurationCapabilities instance.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		0x1000
		Extent already has partition table

		0x1001
		Requested Extent too large

		0x1002
		Style not supported by Service

		
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		IN CIM_StorageExtent Extent

		A reference to the extent (volume or partition) where this style (partition table) will be installed.

		IN CIM_DiskPartitionConfigurationCapabilities PartitionStyle

		A reference to the DiskPartitionConfigurationCapabilities instance describing the desired partition style.

uint32 LMI_CreateOrModifyPartition (CIM_StorageExtent extent, uint64 Size, CIM_GenericDiskPartition Partition, LMI_DiskPartitionConfigurationSetting Goal, CIM_ConcreteJob Job)

Create new partition on given extent.Partition modification is not yet supported.The implementation will select the best space to fit the partition, with all alignment rules etc.

If no Size parameter is provided, the largest possible partition is created.

The Goal parameter is not supported for now, the behavior below applies.

If no Goal is provided and GPT partition is requested, normal partition is created. If no Goal is provided and MS-DOS partition is requested and there is extended partition already on the device, a logical partition is created. If there is no extended partition on the device and there are at most two primary partitions on the device, primary partition is created. If there is no extended partition and three primary partitions already exist, new extended partition with all remaining space is created and a logical partition with requested size is created.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_StorageExtent extent

		A reference to the underlying extent the partition is base on.

		IN, OUT uint64 Size

		Requested size of the partition to create. If null when creating a partition, the larges possible partition is created.On output, the achieved size is returned.

		IN, OUT CIM_GenericDiskPartition Partition

		A reference an existing partition instance to modify or null to request a new partition.

		IN LMI_DiskPartitionConfigurationSetting Goal

		Setting to be applied to created/modified partition.

		OUT CIM_ConcreteJob Job

		A reference to started job (may be null if job is completed).

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BasedOn

Class reference

Subclass of CIM_AbstractBasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents. For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be defined independently and realized in a PhysicalElement or can be ‘based on’ Volatile or NonVolatileStorageExtents.

Key properties

Dependent

Antecedent

Local properties

CIM_StorageExtent Dependent

The higher level StorageExtent.

CIM_StorageExtent Antecedent

The lower level StorageExtent.

Local methods

None

Inherited properties

uint64 StartingAddress

uint64 EndingAddress

uint16 OrderIndex

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_RouteUsesEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_RouteUsesEndpoint

Class reference

Subclass of CIM_RouteUsesEndpoint

RouteUsesEndpoint depicts the relationship between a next hop route and the local Endpoint that is used to transmit the traffic to the ‘next hop’.

Key properties

Dependent

Antecedent

Local properties

LMI_NextHopIPRoute Dependent

The route using the endpoint.

LMI_IPProtocolEndpoint Antecedent

The endpoint used to reach the route’s destination.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPVersionSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPVersionSettingData

Class reference

Subclass of CIM_IPVersionSettingData

This SettingData instance represents an IP version. This instance can be associated to one or more CIM_ManagedElements (Eg. CIM_ComputerSystem or CIM_IPNetworkConnection) to respresent the IP version. The properties of the CIM_ElementSettingData can be used show the IPVersions that are configured as default, current or Next boot.

Key properties

InstanceID

Local properties

string ElementName

The user-friendly name for this instance of SettingData. In addition, the user-friendly name can be used as an index property for a search or query. (Note: The name does not have to be unique within a namespace.)

uint16 ChangeableType

Enumeration indicating the type of setting. 0 - Not Changeable - Persistent indicates the instance of SettingData represents primordial settings and shall not be modifiable. 1 - Changeable - Transient indicates the SettingData represents modifiable settings that are not persisted. Establishing persistent settings from transient settings may be supported. 2 - Changeable - Persistent indicates the SettingData represents a persistent configuration that may be modified. 3 - Not Changeable - Transient indicates the SettingData represents a snapshot of the settings of the associated ManagedElement and is not persistent.

		ValueMap
		Values

		0
		Not Changeable - Persistent

		1
		Changeable - Transient

		2
		Changeable - Persistent

		3
		Not Changeable - Transient

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		4096
		IPv4

		4097
		IPv6

Local methods

None

Inherited properties

string SoOrgID

string SoID

string Description

string[] ComponentSetting

string InstanceID

uint64 Generation

string Caption

string ConfigurationName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPNetworkConnectionElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPNetworkConnectionElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Capabilities

ManagedElement

Local properties

LMI_IPNetworkConnectionCapabilities Capabilities

The Capabilities object associated with the element.

LMI_IPNetworkConnection ManagedElement

The managed element.

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVElementSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16 IsMinimum

CIM_SettingData SettingData

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

CIM_ManagedElement ManagedElement

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DataFormat.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DataFormat

Class reference

Subclass of CIM_EnabledLogicalElement

Base class for all content formats.

Key properties

Name

CSName

CSCreationClassName

CreationClassName

Local properties

string CSName

The scoping System’s Name. Note that this class was originally defined in the scope of a ComputerSystem, and was later allowed to be scoped by any System (for example, a computer or application system). Unfortunately, the property name, CSName, could not be changed (for example, to SystemName) without deprecating the class. This change was not deemed critical to the semantics and therefore did not merit deprecation. So, the property name remains.

string FormatTypeDescription

Textual description of the data format.

uint16 FormatType

Type of the data format.

		ValueMap
		Values

		1
		Swap

		2
		MD RAID member

		3
		Physical Volume

		4
		LUKS

		5
		BIOS Boot

		6
		DM RAID member

		7
		Multipath member

		8
		PPC PReP Boot

		65535
		Other

string Name

The inherited Name serves as key of a FileSystem instance within a ComputerSystem.

string CSCreationClassName

The scoping System’s CreationClassName. Note that this class was originally defined in the scope of a ComputerSystem, and was later allowed to be scoped by any System (for example, a computer or application system). Unfortunately, the property name, CSCreationClassName, could not be changed (for example, to SystemCreationClass Name) without deprecating the class. This change was not deemed critical to the semantics and therefore did not merit deprecation. So, the property name remains.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16 PrimaryStatus

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AffectedStorageJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AffectedStorageJobElement

Class reference

Subclass of LMI_AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

Local properties

None

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

CIM_ManagedElement AffectedElement

uint16[] ElementEffects

CIM_Job AffectingElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorCacheMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorCacheMemory

Class reference

Subclass of CIM_Memory

Capabilities and management of Memory-related LogicalDevices.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 Access

Access describes whether the media is readable (value=1), writeable (value=2), or both (value=3). “Unknown” (0) and “Write Once” (4) can also be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Readable

		2
		Writeable

		3
		Read/Write Supported

		4
		Write Once

string SystemName

The System Name of the scoping system.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string Purpose

A free form string describing the media and/or its use.

boolean Volatile

Volatile is a property that indicates whether this memory is volatile or not.

boolean IsCompressed

The IsCompressed property indicates whether or not the data in the storage extent is compressed. When set to “true” the data is compressed. When set to “false” the data is not compressed.

string Name

A unique identifier for the Extent.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint8 DeltaReservation

boolean IsBasedOnUnderlyingRedundancy

uint16 HealthState

uint64 ErrorResolution

datetime TimeOfLastStateChange

string[] StatusDescriptions

uint16 RequestedState

uint16[] ClientSettableUsage

uint16 ErrorAccess

uint16 DataOrganization

uint16 CommunicationStatus

boolean Primordial

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

boolean CorrectableError

string[] ExtentDiscriminator

uint64 PowerOnHours

string Status

uint64 Generation

string OtherNameNamespace

uint16 CompressionRate

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

uint8[] AdditionalErrorData

boolean PowerManagementSupported

uint16[] OperationalStatus

uint64 ExtentStripeLength

uint16 OperatingStatus

uint16 DataRedundancy

string OtherErrorDescription

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint16 ErrorDataOrder

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

boolean SequentialAccess

uint16[] AdditionalAvailability

uint32 ErrorTransferSize

string OtherUsageDescription

boolean IsComposite

uint16 StatusInfo

uint64 ErrorAddress

string ErrorMethodology

uint16 PackageRedundancy

uint8[] ErrorData

uint16[] AvailableRequestedStates

uint64 EndingAddress

boolean SystemLevelAddress

uint64 StartingAddress

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 NameNamespace

datetime ErrorTime

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

uint16[] ExtentStatus

uint16 ErrorInfo

datetime InstallDate

uint16 Availability

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DNSProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DNSProtocolEndpoint

Class reference

Subclass of CIM_DNSProtocolEndpoint

A class derived from CIM_ProtocolEndpoint which represents the DNS client and DNS configuration for a single IP endpoint. The DNS server addresses can be determined by querying the AccessInfo property of associated CIM_RemoteServiceAccessPoint instances which have an AccessContext of “DNS Server”. The order in which the DNS servers will be queried can be determined by the relative values of the OrderOfAccess property on each CIM_RemoteAccessAvailableToElement association which associated the CIM_RemoteServiceAccessPoint with the CIM_DNSProtocolEndpoint.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

boolean AppendParentSuffixes

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string DomainName

string InstanceID

string Hostname

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

boolean RegisterThisConnectionsAddress

uint16 DetailedStatus

uint16[] DHCPOptionsToUse

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean AppendPrimarySuffixes

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string[] DNSSuffixesToAppend

string CreationClassName

boolean UseSuffixWhenRegistering

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PCIBridge.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PCIBridge

Class reference

Subclass of CIM_PCIBridge

Capabilities and management of a PCI controller that provide bridge-to-bridge capability.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 VendorID

Register that contains a value assigned by the PCI SIG used to identify the manufacturer of the device.

uint16 InterruptPin

Defines the PCI interrupt request pin (INTA# to INTD#) to which a PCI functional device is connected.

		ValueMap
		Values

		0
		None

		1
		INTA#

		2
		INTB#

		3
		INTC#

		4
		INTD#

		5
		Unknown

string SubsystemVendorName

Name of the subsystem vendor

uint8 IOLimit

End address of the I/O addresses supported by the bus. The upper 4 bits of this property specify the address bits, AD[15::12], of the I/O address. Each of the remaining 12 bits of the I/O address are assumed to be 1.

uint64[] BaseAddress64

Array of doubleword base-memory addresses for 64 bit addresses

uint8 SecondayBusNumber

The number of the PCI bus segment to which the secondary interface of the bridge is connected.

uint16 SubsystemID

Subsystem identifier code.

uint8 DeviceNumber

The device number assigned to this PCI device for this bus.

uint32[] BaseAddress

Array of doubleword base-memory addresses.

uint16 BridgeType

The type of bridge. Except for “Host” (value=0) and “PCIe-to-PCI” (value=10), the type of bridge is PCI-to-<value>. For type “Host”, the device is a Host-to-PCI bridge. For type “PCIe-to-PCI”, the device is a PCI Express-to-PCI bridge.

		ValueMap
		Values

		0
		Host

		1
		ISA

		2
		EISA

		3
		Micro Channel

		4
		PCI

		5
		PCMCIA

		6
		NuBus

		7
		CardBus

		8
		RACEway

		9
		AGP

		10
		PCIe

		11
		PCIe-to-PCI

		128
		Other

		
		DMTF Reserved

uint16 PrefetchMemoryBase

Base address of the memory that can be prefetched by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 0.

uint16 MemoryLimit

End address of the memory supported by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 1.

uint8 LatencyTimer

Defines the minimum amount of time, in PCI clock cycles, that the bus master can retain ownership of the bus.

uint16 CommandRegister

Current contents of the register that provides basic control over the ability of the device to respond to or perform PCI accesses.

uint8 BusNumber

The bus number where this PCI device resides.

string SystemCreationClassName

The CreationClassName of the scoping system.

uint16 MemoryBase

Base address of the memory supported by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 0.

uint8 IOBase

Base address of I/O addresses supported by the bus. The upper 4 bits of this property specify the address bits, AD[15::12], of the I/O address. Each of the remaining 12 bits of the I/O address are assumed to be 0.

uint16 IOBaseUpper16

Upper 16 bits of the supported I/O base address when 32-bit I/O addressing is used. The lower 16 bits are assumed to be 0.

uint16[] Capabilities

An array of integers that indicates controller capabilities. Information such as “Supports 66MHz” (value=2) is specified in this property. The data in the Capabilities array is gathered from the PCI Status Register and the PCI Capabilities List as defined in the PCI Specification.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Supports 66MHz

		3
		Supports User Definable Features

		4
		Supports Fast Back-to-Back Transactions

		5
		PCI-X Capable

		6
		PCI Power Management Supported

		7
		Message Signaled Interrupts Supported

		8
		Parity Error Recovery Capable

		9
		AGP Supported

		10
		Vital Product Data Supported

		11
		Provides Slot Identification

		12
		Hot Swap Supported

		13
		Supports PCIe

		14
		Supports PCIe Gen 2

		15
		Supports PCIe Gen 3

		16..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint8 SecondaryLatencyTimer

The timeslice for the secondary interface when the bridge is acting as an initiator. A 0 value indicates no requirement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string SubsystemName

Name of the subsystem

uint16 SecondaryStatusRegister

The contents of the SecondaryStatusRegister of the Bridge. For more information on the contents of this register, refer to the PCI-to-PCI Bridge Architecture Specification.

uint8 PrimaryBusNumber

The number of the PCI bus segment to which the primary interface of the bridge is connected.

uint16 IOLimitUpper16

Upper 16 bits of the supported I/O end address when 32-bit I/O addressing is used. The lower 16 bits are each assumed to be 1.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

string PCIDeviceName

Name of the device

uint8 CacheLineSize

Specifies the system cache line size in doubleword increments (for example, a 486-based system would store the value 04h, indicating a cache line size of four doublewords.

uint16 PrefetchMemoryLimit

End address of the memory that can be prefetched by the bus. The upper 12 bits of this property specify the address bits, AD[31::20], of a 32-bit memory address. Each of the remaining 20 bits of the address are assumed to be 1.

string VendorName

Name of the vendor

uint16 PCIDeviceID

Register that contains a value assigned by the device manufacturer used to identify the type of device.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 DeviceSelectTiming

The slowest device-select timing for a target device.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Fast

		3
		Medium

		4
		Slow

		5
		Reserved

uint32 PrefetchLimitUpper32

Upper 32 bits of the supported prefetch end address when 64-bit addressing is used. The lower 32 bits are each assumed to be 1.

string SystemName

The System Name of the scoping system.

uint16 SecondaryBusDeviceSelectTiming

The slowest device-select timing for a target device on the secondary bus.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Fast

		3
		Medium

		4
		Slow

		5
		DMTF Reserved

uint8 RevisionID

Register that contains a value assigned by the device manufacturer used to identify the revision number of the device.

uint16 SubsystemVendorID

Subsystem vendor ID. ID information is reported from a PCIDevice through protocol-specific requests. The correct place in the CIM Schema for this information is in CIM_Physical Element (the Manufacturer property) for hardware, and CIM_Product (the Vendor property) if the information is related to Product acquisition. This data is also reported here, because it is part of the standard output from the Device and is an optimization.

uint8 FunctionNumber

The function number for this PCI device.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint32 ExpansionROMBaseAddress

Doubleword Expansion ROM-base memory address.

uint8 ClassCode

Register of 8 bits that identifies the basic function of the PCI device. This property is only the upper byte (offset 0Bh) of the 3-byte ClassCode field. Note that the ValueMap array of the property specifies the decimal representation of this information.

		ValueMap
		Values

		0
		Pre 2.0

		1
		Mass Storage

		2
		Network

		3
		Display

		4
		Multimedia

		5
		Memory

		6
		Bridge

		7
		Simple Communications

		8
		Base Peripheral

		9
		Input

		10
		Docking Station

		11
		Processor

		12
		Serial Bus

		13
		Wireless

		14
		Intelligent I/O

		15
		Satellite Communication

		16
		Encryption/Decryption

		17
		Data Acquisition and Signal Processing

		18..254
		PCI Reserved

		255
		Other

uint8 SubordinateBusNumber

The number of the highest numbered bus that exists behind the bridge.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint32 PrefetchBaseUpper32

Upper 32 bits of the supported prefetch base address when 64-bit addressing is used. The lower 32 bits are assumed to be 0.

Local methods

None

Inherited properties

string[] StatusDescriptions

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

datetime InstallDate

uint16 PrimaryStatus

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint16 OperatingStatus

uint16 Availability

uint16 HealthState

uint16 CommunicationStatus

uint8 MaxLatency

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 StatusInfo

string[] CapabilityDescriptions

uint32 MaxNumberControlled

uint64 Generation

uint32 LastErrorCode

uint8 MinGrantTime

uint16 RequestedState

boolean SelfTestEnabled

string Status

string[] IdentifyingDescriptions

boolean ErrorCleared

boolean PowerManagementSupported

uint16 LocationIndicator

string[] OtherIdentifyingInfo

string ErrorDescription

uint16[] OperationalStatus

datetime TimeOfLastReset

uint16 DetailedStatus

string Description

uint16 TransitioningToState

uint16[] PowerManagementCapabilities

uint64 PowerOnHours

uint16 ProtocolSupported

string ProtocolDescription

string OtherEnabledState

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

BISTExecution

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EndpointForIPNetworkConnection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EndpointForIPNetworkConnection

Class reference

Subclass of CIM_EndpointForIPNetworkConnection

LMI_EndpointForIPNetworkConnection associates the instance of LMI_IPNetworkConnection with the communication endpoint (LMI_LANEndpoint).

Key properties

Dependent

Antecedent

Dependent

Antecedent

Dependent

Antecedent

Local properties

LMI_IPNetworkConnection Dependent

The instance representing the IP network connection.

LMI_LANEndpoint Antecedent

The Protocol Endpoint for the network connection.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedRealmdService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedRealmdService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_RealmdService Dependent

The Central Instance of realm management

CIM_ComputerSystem Antecedent

The hosting System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DeviceFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DeviceFile

Class reference

Subclass of CIM_LogicalFile

DeviceFile is a special type of LogicalFile that represents a Device. This convention is useful for some operating systems that manage devices using a byte stream I/O model. The Logical Device that is associated with this file is specified using the DeviceAccessedByFile relationship.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorChipRealizes.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorChipRealizes

Class reference

Subclass of CIM_Realizes

CIM_Realizes is the association that defines the mapping between LogicalDevices and the PhysicalElements that implement them.

Key properties

Dependent

Antecedent

Local properties

LMI_Processor Dependent

The LogicalDevice.

LMI_ProcessorChip Antecedent

The physical component that implements the Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemoryPhysicalPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemoryPhysicalPackage

Class reference

Subclass of CIM_PhysicalPackage

The PhysicalPackage class represents PhysicalElements that contain or host other components. Examples are a Rack enclosure or an adapter Card.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string PartNumber

The part number assigned by the organization that is responsible for producing or manufacturing the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

datetime ManufactureDate

real32 Width

string Version

boolean Removable

uint16 RemovalConditions

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

string[] VendorCompatibilityStrings

uint16 DetailedStatus

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

real32 Depth

string Model

uint16 PrimaryStatus

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

uint16 OperatingStatus

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SoftwareIdentityResource.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SoftwareIdentityResource

Class reference

Subclass of CIM_RemoteServiceAccessPoint

SoftwareIdentityResource describes the URL of a file or other resource that contains all or part of of a SoftwareIdentity for use by the SoftwareInstallationService. For example, a CIM_SoftwareIdentity might consist of a meta data file, a binary executable file, and a installability checker file for some software on a system. This class allows a management client to selectively access the constituents of the install package to perform a check function, or retrieve some meta data information for the install package represented by the SoftwareIdentity class without downloading the entire package. SoftwareIdentityResources will be related to the SoftwareIdentity using the SAPAvailableForElement association.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint16 ExtendedResourceType

A enumerated integer that provides further information for ResourceType. It will set to 2 (‘Not Applicable’) if there is no extended information available.

		ValueMap
		Values

		0
		Unknown

		2
		Not Applicable

		3
		Linux RPM

		4
		HP-UX Depot

		5
		Windows MSI

		6
		Solaris Package

		7
		Macintosh Disk Image

		8
		Debian linux Package

		11
		HP Smart Component

		101..200
		Vendor Reserved

		201
		HTML

		202
		PDF

		203
		Text File

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

uint16 ResourceType

An enumerated integer that specifies the type of resource referenced by the RemoteServiceAccessPoint.AccessInfo property.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Installer and Payload

		3
		Installer

		4
		Payload

		5
		Installability checker

		6
		Security Advisory

		7
		Engineering Advisory

		9
		Technical release notes

		10
		Change notification

		11
		Whitepaper

		12
		Marketing Documentation

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string OtherResourceType

A string describing the file type when the instance’s ResourceType property is 1 (“Other”).

uint16 InfoFormat

A SoftwareIdentityResource will always be a URL.

		ValueMap
		Values

		1
		Other

		2
		Host Name

		3
		IPv4 Address

		4
		IPv6 Address

		5
		IPX Address

		6
		DECnet Address

		7
		SNA Address

		8
		Autonomous System Number

		9
		MPLS Label

		10
		IPv4 Subnet Address

		11
		IPv6 Subnet Address

		12
		IPv4 Address Range

		13
		IPv6 Address Range

		100
		Dial String

		101
		Ethernet Address

		102
		Token Ring Address

		103
		ATM Address

		104
		Frame Relay Address

		200
		URL

		201
		FQDN

		202
		User FQDN

		203
		DER ASN1 DN

		204
		DER ASN1 GN

		205
		Key ID

		206
		Parameterized URL

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string AccessInfo

string[] StatusDescriptions

uint16 CommunicationStatus

string SystemName

string Status

uint16 AccessContext

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

string InstanceID

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string ElementName

string Caption

string OtherInfoFormatDescription

uint16[] AvailableRequestedStates

uint64 Generation

string OtherAccessContext

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LUKSFormat.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LUKSFormat

Class reference

Subclass of LMI_EncryptionFormat

Class representing LUKS data on a block device.

Key properties

Name

CSName

CSCreationClassName

CreationClassName

Local properties

string UUID

UUID of the LUKS format.

uint16[] SlotStatus

Represents status of each key slot in LUKS header.

		ValueMap
		Values

		0
		Free

		1
		Used

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

string FormatTypeDescription

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

uint16 FormatType

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

string CSCreationClassName

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSpecification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSpecification

Class reference

Subclass of CIM_Check

FileSpecification identifies a file that is either to be on or off the system. The file is to be located in the directory identified in FileName, or by the CIM_Directory SpecificationFile association. When the Invoke methods are executed, it is expected that they will use a combination of information to check for file existence. Therefore, any of the properties with a NULL value are not checked. So, if only the FileName and MD5Checksum properties have values, they are the only ones considered by the Invoke methods.

Key properties

CheckID

TargetOperatingSystem

Name

SoftwareElementID

Version

SoftwareElementState

Local properties

uint32 CRC2

The CRC2 property is the CRC value for the middle 512K bytes of the file, modulo 3.

uint32 CRC1

The CRC1 property is the CRC value calculated using the middle 512K bytes of the file.

uint32 CheckSum

A checksum calculated as the 16-bit sum of the first 32 bytes of the file.

string FileName

Either the name of the file or the name of the file with a directory prefix.

datetime CreateTimeStamp

The creation date and time of the file.

uint64 FileSize

The size of the file in Kilobytes.

string MD5Checksum

The MD5 algorithm is a well-known algorithm for computing a 128-bit checksum for any file or object. For purposes of MOF specification of the MD5Checksum property, the MD5 algorithm always generates a 32 character string. For example: The string abcdefghijklmnopqrstuvwxyz generates the string c3fcd3d76192e4007dfb496cca67e13b. See http: //www.ietf.org - RFC1321 for details on the // implementation of the MD5 algorithm.

Local methods

None

Inherited properties

string CheckID

uint16 TargetOperatingSystem

string Version

string Name

string InstanceID

string ElementName

boolean CheckMode

string Caption

uint64 Generation

string SoftwareElementID

uint16 SoftwareElementState

string Description

Inherited methods

Invoke

InvokeOnSystem

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedCacheMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedCacheMemory

Class reference

Subclass of CIM_AssociatedMemory

Indicates that the Memory provides Cache to the Dependent Logical Element.

Key properties

Dependent

Antecedent

Local properties

uint16 WritePolicy

Defines whether this is write-back (value=2) or write-through (value=3) Cache, or whether this information “Varies with Address” (4) or is defined individually for each I/O (5). Also, “Other” (1) and “Unknown” (0) can be specified.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Write Back

		3
		Write Through

		4
		Varies with Address

		5
		Determination Per I/O

uint32 FlushTimer

Maximum amount of time, in seconds, dirty lines or buckets may remain in the Cache before they are flushed. A value of zero indicated that a cache flush is not controlled by a flushing timer.

uint16 CacheType

Defines whether this is for instruction caching (value=2), data caching (value=3) or both (value=4, “Unified”). Also, “Other” (1) and “Unknown” (0) can be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Instruction

		3
		Data

		4
		Unified

uint32 LineSize

Size, in bytes, of a single cache bucket or line.

string OtherLevelDescription

A string describing the cache level when the Level value is 1, “Other”.

string OtherReplacementPolicyDescription

A string describing the Cache replacement policy when the ReplacementPolicy value is 1, “Other”.

uint16 ReadPolicy

Policy that shall be employed by the Cache for handling read requests. For example, “Read”, “Read-Ahead” or both can be specified using the values, 2, 3 or 4, respectively. If the read policy is determined individually (ie, for each request), then the value 5 (“Determination per I/O”) should be specified. “Other” (1) and “Unknown” (0) are also valid values.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Read

		3
		Read-Ahead

		4
		Read and Read-Ahead

		5
		Determination Per I/O

string OtherWritePolicyDescription

A string describing the Write Policy when the WritePolicy value is 1, “Other”.

uint16 ReplacementPolicy

An integer enumeration describing the algorithm to determine which cache lines or buckets should be re-used.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Unknown

		3
		Least Recently Used (LRU)

		4
		First In First Out (FIFO)

		5
		Last In First Out (LIFO)

		6
		Least Frequently Used (LFU)

		7
		Most Frequently Used (MFU)

		8
		Data Dependent Multiple Algorithms

uint16 Associativity

An integer enumeration defining the system cache associativity. For example, 5 indicates a fully associative cache.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Direct Mapped

		3
		2-way Set-Associative

		4
		4-way Set-Associative

		5
		Fully Associative

		6
		8-way Set-Associative

		7
		16-way Set-Associative

		8
		12-way Set Associative

		9
		24-way Set Associative

		10
		32-way Set Associative

		11
		48-way Set Associative

		12
		64-way Set Associative

		13
		20-way Set Associative

string OtherReadPolicyDescription

A string describing the read policy when the ReadPolicy value is 1, “Other”.

uint16 Level

Defines whether this is the Primary (value=3), Secondary (value=4) or Tertiary (value=5) Cache. Also, “Other” (1), “Unknown” (0) and “Not Applicable” (2) can be defined.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		Primary

		4
		Secondary

		5
		Tertiary

string OtherAssociativityDescription

A string describing the cache associativity when the Associativity value is 1, “Other”.

string OtherCacheTypeDescription

A string describing the Cache Type when the CacheType value is 1, “Other”.

Local methods

None

Inherited properties

CIM_Memory Antecedent

CIM_LogicalElement Dependent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Service.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Service

Class reference

Subclass of CIM_EnabledLogicalElement

A Service is a LogicalElement that represents the availability of functionality that can be managed. This functionality may be provided by a seperately modeled entity such as a LogicalDevice or a SoftwareFeature, or both. The modeled Service typically provides only functionality required for management of itself or the elements it affects.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

string SystemName

The Name of the scoping System.

string LoSID

If not Null, the CIM_Service instance represents a line of service, as defined by ITIL, identified by the value of LoSID, which must be unique in the context of an unique identifier for an Organization specified in LoSOrgID.

boolean Started

Started is a Boolean that indicates whether the Service has been started (TRUE), or stopped (FALSE).

string Name

The Name property uniquely identifies the Service and provides an indication of the functionality that is managed. This functionality is described in more detail in the Description property of the object.

string LoSOrgID

If not null, this CIM_Service instance represents an ITIL line of service and the value of LoSOrgID shall be a unique identifier for the organization that defines the value of LoSID.

string PrimaryOwnerContact

A string that provides information on how the primary owner of the Service can be reached (for example, phone number, e-mail address, and so on).

string StartMode

Note: The use of this element is deprecated in lieu of the EnabledDefault property that is inherited from EnabledLogicalElement. The EnabledLogicalElement addresses the same semantics. The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property. To remain compatible with those implementations, StartMode was grandfathered into the schema. Use of the deprecated qualifier allows the maintenance of the existing property but also permits an improved, clarified definition using EnabledDefault.

Deprecated description: StartMode is a string value that indicates whether the Service is automatically started by a System, an Operating System, and so on, or is started only upon request.

string SystemCreationClassName

The CreationClassName of the scoping System.

string CreationClassName

CreationClassName indicates the name of the class or the subclass that is used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string PrimaryOwnerName

The name of the primary owner for the service, if one is defined. The primary owner is the initial support contact for the Service.

Local methods

uint32 StartService ()

The StartService method places the Service in the started state. Note that the function of this method overlaps with the RequestedState property. RequestedState was added to the model to maintain a record (such as a persisted value) of the last state request. Invoking the StartService method should set the RequestedState property appropriately. The method returns an integer value of 0 if the Service was successfully started, 1 if the request is not supported, and any other number to indicate an error. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are translated can also be specified in the subclass as a Values array qualifier.

Note: The semantics of this method overlap with the RequestStateChange method that is inherited from EnabledLogicalElement. This method is maintained because it has been widely implemented, and its simple “start” semantics are convenient to use.

Parameters

		None

		

uint32 StopService ()

Deprecated!
The StopService method places the Service in the stopped state. Note that the function of this method overlaps with the RequestedState property. RequestedState was added to the model to maintain a record (such as a persisted value) of the last state request. Invoking the StopService method should set the RequestedState property appropriately. The method returns an integer value of 0 if the Service was successfully stopped, 1 if the request is not supported, and any other number to indicate an error. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are translated can also be specified in the subclass as a Values array qualifier.

Note: The semantics of this method overlap with the RequestStateChange method that is inherited from EnabledLogicalElement. This method is maintained because it has been widely implemented, and its simple “stop” semantics are convenient to use.

Parameters

		None

		

uint32 ChangeAffectedElementsAssignedSequence (CIM_ManagedElement[] ManagedElements, uint16[] AssignedSequence, CIM_ConcreteJob Job)

This method is called to change relative sequence in which order the ManagedElements associated to the Service through CIM_ServiceAffectsElement association are affected. In the case when the Service represents an interface for client to execute extrinsic methods and when it is used for grouping of the managed elements that could be affected, the ordering represents the relevant priority of the affected managed elements with respect to each other.

An ordered array of ManagedElement instances is passed to this method, where each ManagedElement instance shall be already be associated with this Service instance via CIM_ServiceAffectsElement association. If one of the ManagedElements is not associated to the Service through CIM_ServiceAffectsElement association, the implementation shall return a value of 2 (“Error Occured”).

Upon successful execution of this method, if the AssignedSequence parameter is NULL, the value of the AssignedSequence property on each instance of CIM_ServiceAffectsElement shall be updated such that the values of AssignedSequence properties shall be monotonically increasing in correlation with the position of the referenced ManagedElement instance in the ManagedElements input parameter. That is, the first position in the array shall have the lowest value for AssignedSequence. The second position shall have the second lowest value, and so on. Upon successful execution, if the AssignedSequence parameter is not NULL, the value of the AssignedSequence property of each instance of CIM_ServiceAffectsElement referencing the ManagedElement instance in the ManagedElements array shall be assigned the value of the corresponding index of the AssignedSequence parameter array. For ManagedElements instances which are associated with the Service instance via CIM_ServiceAffectsElement and are not present in the ManagedElements parameter array, the AssignedSequence property on the CIM_ServiceAffects association shall be assigned a value of 0.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Error Occured

		3
		Busy

		4
		Invalid Reference

		5
		Invalid Parameter

		6
		Access Denied

		7..32767
		DMTF Reserved

		32768..65535
		Vendor Specified

Parameters

		IN CIM_ManagedElement[] ManagedElements

		An array of ManagedElements.

		IN uint16[] AssignedSequence

		An array of integers representing AssignedSequence for the ManagedElement in the corresponding index of the ManagedElements parameter.

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (May be null if the task is completed).

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ManagedElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ManagedElement

Class reference

ManagedElement is an abstract class that provides a common superclass (or top of the inheritance tree) for the non-association classes in the CIM Schema.

Key properties

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint64 Generation

Generation is an optional, monotonically increasing property that may be used to identify a particular generation of the resource represented by this class.

If Generation is supported by the implementation, its value shall not be null.

Except as otherwise specified, a value (including null) of Generation specified at creation time shall be replaced by null if Generation is not supported by the implementation or shall be a, (possibly different), non-null value if the implementation does support Generation.

After creation and if supported, Generation shall be updated, at least once per access, whenever the represented resource is modified, regardless of the source of the modification.

Note: the Generation value only needs to be updated once between references, even if the resource is updated many times. The key point is to assure that it will be different if there have been updates, not to count each update.

Note: unless otherwise specified, the value of Generation within one instance is not required to be coordinated with the value of Generation in any other instance.

Note:the semantics of the instance, (as defined by its creation class), define the underlying resource. That underlying resource may be a collection or aggregation of resources. And, in that case, the semantics of the instance further define when updates to constituent resources also require updates to the Generation of the collective resource. Default behavior of composite aggregations should be to update the Generation of the composite whenever the Generation of a component is updated.

Subclasses may define additional requirements for updates on some or all of related instances.

For a particular instance, the value of Generation may wrap through zero, but the elapsed time between wraps shall be greater than 10’s of years.

This class does not require Generation to be unique across instances of other classes nor across instances of the same class that have different keys. Generation shall be different across power cycles, resets, or reboots if any of those actions results in an update. Generation may be different across power cycles, resets, or reboots if those actions do not result in an update. If the Generation property of an instance is non-null, and if any attempt to update the instance includes the Generation property, then if it doesn’t match the current value, the update shall fail.

The usage of this property is intended to be further specified by applicable management profiles.

Typically, a client will read the value of this property and then supply that value as input to an operation that modifies the instance in some means. This may be via an explicit parameter in an extrinsic method or via an embedded value in an extrinsic method or intrinsic operation.

For example: a profile may require that an intrinsic instance modification supply the Generation property and that it must match for the modification to succeed.

string Description

The Description property provides a textual description of the object.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ComputerSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ComputerSystem

Class reference

Subclass of CIM_System

A class derived from System that is a special collection of ManagedSystemElements. This collection is related to the providing of compute capabilities and MAY serve as an aggregation point to associate one or more of the following elements: FileSystem, OperatingSystem, Processor and Memory (Volatile and/or NonVolatile Storage).

Key properties

Name

CreationClassName

Local properties

string NameFormat

The ComputerSystem object and its derivatives are Top Level Objects of CIM. They provide the scope for numerous components. Having unique System keys is required. The NameFormat property identifies how the ComputerSystem Name is generated. The NameFormat ValueMap qualifier defines the various mechanisms for assigning the name. Note that another name can be assigned and used for the ComputerSystem that better suit a business, using the inherited ElementName property.

If the NameFormat is set to “UUID”, then the Name property shall be a UUID in its canonical form consisting of 32 hexadecimal digits in 5 groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 digits and 4 hyphens). For the first three fields, the most significant digit is on the left. The last two fields are treated as eight separate bytes, each having their most significant digit on the left, and they follow each other from left to right.

string[] OtherDedicatedDescriptions

A string describing how or why the system is dedicated when the Dedicated array includes the value 2, “Other”.

uint16 ResetCapability

If enabled (value = 4), the ComputerSystem can be reset via hardware (e.g. the power and reset buttons). If disabled (value = 3), hardware reset is not allowed. In addition to Enabled and Disabled, other Values for the property are also defined - “Not Implemented” (5), “Other” (1) and “Unknown” (2).

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Disabled

		4
		Enabled

		5
		Not Implemented

uint16[] PowerManagementCapabilities

Deprecated!
An enumerated array describing the power management capabilities of the ComputerSystem. The use of this property has been deprecated. Instead, the Power Capabilites property in an associated PowerManagement Capabilities class should be used.

		ValueMap
		Values

		0
		Unknown

		1
		Not Supported

		2
		Disabled

		3
		Enabled

		4
		Power Saving Modes Entered Automatically

		5
		Power State Settable

		6
		Power Cycling Supported

		7
		Timed Power On Supported

uint16[] Dedicated

Enumeration indicating the purpose(s) to which the ComputerSystem is dedicated, if any, and what functionality is provided. For example, one could specify that the System is dedicated to “Print” (value=11) or acts as a “Hub” (value=8).

Also, one could indicate that this is a general purpose system by indicating ‘Not Dedicated’ (value=0) but that it also hosts ‘Print’ (value=11) or mobile phone ‘Mobile User Device’ (value=17) services.

A clarification is needed with respect to the value 17 (“Mobile User Device”). An example of a dedicated user device is a mobile phone or a barcode scanner in a store that communicates via radio frequency. These systems are quite limited in functionality and programmability, and are not considered ‘general purpose’ computing platforms. Alternately, an example of a mobile system that is ‘general purpose’ (i.e., is NOT dedicated) is a hand-held computer. Although limited in its programmability, new software can be downloaded and its functionality expanded by the user.

A value of “Management” indicates this instance is dedicated to hosting system management software.

A value of “Management Controller” indicates this instance represents specialized hardware dedicated to systems management (i.e., a Baseboard Management Controller (BMC) or service processor).

The management scope of a “Management Controller” is typically a single managed system in which it is contained.

A value of “Chassis Manager” indicates this instance represents a system dedicated to management of a blade chassis and its contained devices. This value would be used to represent a Shelf Controller. A “Chassis Manager” is an aggregation point for management and may rely on subordinate management controllers for the management of constituent parts. A value of “Host-based RAID Controller” indicates this instance represents a RAID storage controller contained within a host computer. A value of “Storage Device Enclosure” indicates this instance represents an enclosure that contains storage devices. A “Virtual Tape Library” is the emulation of a tape library by a Virtual Library System. A “Virtual Library System” uses disk storage to emulate tape libraries.A “FC Switch” indicates this instance is dedicated to switching layer 2 fibre channel frames. An “Ethernet Switch” indicates this instance is dedicated to switching layer 2 ethernet frames.

“Server” indicates that the system is an independent computer system whose primary purpose is to host services for other systems and devices to access; typically as in a stand-alone floor or rack-mounted system.

“Blade” indicates this instance is a computer system that fits into another chassis and depends on it for services, such as power, cooling, etc.

		ValueMap
		Values

		0
		Not Dedicated

		1
		Unknown

		2
		Other

		3
		Storage

		4
		Router

		5
		Switch

		6
		Layer 3 Switch

		7
		Central Office Switch

		8
		Hub

		9
		Access Server

		10
		Firewall

		11
		Print

		12
		I/O

		13
		Web Caching

		14
		Management

		15
		Block Server

		16
		File Server

		17
		Mobile User Device

		18
		Repeater

		19
		Bridge/Extender

		20
		Gateway

		21
		Storage Virtualizer

		22
		Media Library

		23
		ExtenderNode

		24
		NAS Head

		25
		Self-contained NAS

		26
		UPS

		27
		IP Phone

		28
		Management Controller

		29
		Chassis Manager

		30
		Host-based RAID controller

		31
		Storage Device Enclosure

		32
		Desktop

		33
		Laptop

		34
		Virtual Tape Library

		35
		Virtual Library System

		36
		Network PC/Thin Client

		37
		FC Switch

		38
		Ethernet Switch

		39
		Server

		40
		Blade

		
		DMTF Reserved

		32568..65535
		Vendor Reserved

Local methods

uint32 SetPowerState (uint32 PowerState, datetime Time)

Sets the power state of the computer. The use of this method has been deprecated. Instead, use the SetPowerState method in the associated PowerManagementService class.

Parameters

		IN uint32 PowerState

		The Desired state for the COmputerSystem.

		ValueMap
		Values

		1
		Full Power

		2
		Power Save - Low Power Mode

		3
		Power Save - Standby

		4
		Power Save - Other

		5
		Power Cycle

		6
		Power Off

		7
		Hibernate

		8
		Soft Off

		IN datetime Time

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

datetime InstallDate

uint16 TransitioningToState

string[] IdentifyingDescriptions

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

string[] Roles

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

string Description

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string PrimaryOwnerContact

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorCapabilities

Class reference

Subclass of CIM_ProcessorCapabilities

ProcessorCapabilities inherits the capabilities of EnabledLogicalElementCapabilities and adds properties describing processor core and hardware thread support.

Key properties

InstanceID

Local properties

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

string Description

The Description property provides a textual description of the object.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

uint16 NumberOfProcessorCores

Number of processor cores available for processor. This number would not include cores disabled by hardware and may be obtained from SMBIOS 2.5 Type 4 offset 23h.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 NumberOfHardwareThreads

Number of hardware threads available for the processor. May be obtained from SMBIOS v2.5 4 offset 25h.

boolean ElementNameEditSupported

Boolean indicating whether the ElementName can be modified.

Local methods

None

Inherited properties

uint16[] RequestedStatesSupported

uint64 Generation

uint16[] StateAwareness

string ElementNameMask

uint16 MaxElementNameLen

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstallationServiceAffectsElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstallationServiceAffectsElement

Class reference

Subclass of CIM_ServiceAffectsElement

ServiceAffectsElement represents an association between a Service and the ManagedElements that might be affected by its execution. Instantiating this association indicates that running the service may change, manage, provide functionality for,or pose some burden on the ManagedElement. This burden might affect performance, throughput, availability, and so on.

Key properties

AffectedElement

AffectingElement

Local properties

string[] OtherElementEffectsDescriptions

Provides details for the effect at the corresponding array position in ElementEffects. This information is required if ElementEffects contains the value 1 (Other).

uint16[] ElementEffects

An enumeration that describes the effect on the ManagedElement. This array corresponds to the OtherElementEffectsDescriptions array, where the latter provides details that are related to the high-level effects enumerated by this property. Additional detail is required if the ElementEffects array contains the value 1 (Other). The values are defined as follows:

		Exclusive Use (2): No other Service may have this association to the element.

		Performance Impact (3): Deprecated in favor of “Consumes”, “Enhances Performance”, or “Degrades Performance”. Execution of the Service may enhance or degrade the performance of the element. This may be as a side-effect of execution or as an intended consequence of methods provided by the Service.

		Element Integrity (4): Deprecated in favor of “Consumes”, “Enhances Integrity”, or “Degrades Integrity”. Execution of the Service may enhance or degrade the integrity of the element. This may be as a side-effect of execution or as an intended consequence of methods provided by the Service.

		Manages (5): The Service manages the element.

		Consumes (6): Execution of the Service consumes some or all of the associated element as a consequence of running the Service. For example, the Service may consume CPU cycles, which may affect performance, or Storage which may affect both performance and integrity. (For instance, the lack of free storage can degrade integrity by reducing the ability to save state.) “Consumes” may be used alone or in conjunction with other values, in particular, “Degrades Performance” and “Degrades Integrity”.

“Manages” and not “Consumes” should be used to reflect allocation services that may be provided by a Service.

		Enhances Integrity (7): The Service may enhance integrity of the associated element.

		Degrades Integrity (8): The Service may degrade integrity of the associated element.

		Enhances Performance (9): The Service may enhance performance of the associated element.

		Degrades Performance (10): The Service may degrade performance of the associated element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Exclusive Use

		3
		Performance Impact

		4
		Element Integrity

		5
		Manages

		6
		Consumes

		7
		Enhances Integrity

		8
		Degrades Integrity

		9
		Enhances Performance

		10
		Degrades Performance

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

LMI_SoftwareInstallationService AffectingElement

The Service that is affecting the ManagedElement.

Local methods

None

Inherited properties

CIM_ManagedElement AffectedElement

uint16 AssignedSequence

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FIFOPipeFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FIFOPipeFile

Class reference

Subclass of CIM_FIFOPipeFile

FIFOPipeFile is a special type of LogicalFile that represents an interprocess FIFO (sometimes referred to as a “named pipe”). Operating systems use this convention to manage interprocess communication through processes reading and writing the FIFO. The FIFO can be accessed by unrelated processes, in contrast to the more well-known command line redirection mechanism (e.g. UNIX’s ‘ps -eaf | grep foo’, also known as an “unnamed pipe”). An exemplary operating system implementation (using the FIFO concept) is the UNIX S_IFIFO file type.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedSELinuxJobMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedSELinuxJobMethodResult

Class reference

Subclass of LMI_AssociatedJobMethodResult

AssociatedJobMethodResult represents an association between a ConcreteJob and the MethodResult expressing the parameters for the Job when the job was created by side-effect of the execution of an extrinsic method.

Key properties

Job

JobParameters

Local properties

LMI_SELinuxJob Job

The associated ConcreteJob.

LMI_SELinuxMethodResult JobParameters

The associated MethodResult.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SystemComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SystemComponent

Class reference

Subclass of CIM_Component

CIM_SystemComponent is a specialization of the CIM_Component association that establishes ‘part of’ relationships between a System and any ManagedSystemElements of which it is composed.

Use this association with caution when using it instead of a subclass such as SystemDevice or a peer association such as HostedService. This class is very broadly defined, which can lead to erroneous use. For example, Access Points that are dependent on (and hosted on) a System are NOT Components of the System. The System is not made up of any AccessPoint ‘parts’, which is why a Dependency association, HostedAccessPoint, was defined. Similarly, a PhysicalPackage is not a ‘part’ of a System, because the physical element exists independently of any internal components, software, and so on. In fact, again, a Dependency relationship is true where a ComputerSystem is Dependent on its packaging, as described by the ComputerSystemPackage association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_System GroupComponent

The parent System in the Association.

CIM_ManagedSystemElement PartComponent

The child element that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PhysicalBatteryRealizes.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PhysicalBatteryRealizes

Class reference

Subclass of CIM_Realizes

CIM_Realizes is the association that defines the mapping between LogicalDevices and the PhysicalElements that implement them.

Key properties

Dependent

Antecedent

Local properties

LMI_Battery Dependent

The LogicalDevice.

LMI_BatteryPhysicalPackage Antecedent

The physical component that implements the Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDStorageSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDStorageSetting

Class reference

Subclass of LMI_StorageSetting

This class defines characteristics of LMI_MDRAIDStorageExtent which is created or modified by CreateOrModifyElementFromElements method in the LMI_StorageConfigurationService.

Currently no additional properties are necessary in this class, redundancy and stripping is defined by DataRedundancy, PackageRedundancy and ExtentStripeLength.

In future, this class may introduce MD RAID properties like metadata format, additional parity layouts etc.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint64 InterconnectSpeed

uint16 InterconnectType

uint8 DeltaReservationGoal

uint16 DataRedundancyMin

uint16 UseReplicationBuffer

string InstanceID

uint16 LowSpaceWarningThreshold

uint16 DiskType

boolean NoSinglePointOfFailure

string SubsystemID

string Description

uint16 ParityLayout

uint16 DataOrganization

uint16 PackageRedundancyMax

uint64 UserDataStripeDepthMin

string EmulatedDevice

uint16 CompressionRate

uint16 ThinProvisionedPoolType

uint16 FormFactorType

string ConfigurationName

uint16 ExtentStripeLength

boolean CompressedElement

string CUImage

string SoOrgID

boolean PersistentReplica

uint16 InitialSynchronization

uint16 Encryption

uint16 StorageExtentInitialUsage

uint16 ExtentStripeLengthMin

string ElementName

uint64 ThinProvisionedInitialReserve

string Caption

uint16 DataRedundancyGoal

uint16 PortType

boolean IncrementalDeltas

uint16 StoragePoolInitialUsage

string SoID

uint16 ReplicationPriority

uint16 ChangeableType

uint8 DeltaReservationMin

uint64 Generation

uint32 RPM

uint64 UserDataStripeDepthMax

uint64 SpaceLimit

uint16 SpaceLimitWarningThreshold

uint16 ExtentStripeLengthMax

string[] ComponentSetting

uint16 PackageRedundancyGoal

uint8 DeltaReservationMax

uint16 DataRedundancyMax

uint64 UserDataStripeDepth

uint16 PackageRedundancyMin

Inherited methods

CloneSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageInstCreation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageInstCreation

Class reference

Subclass of CIM_InstCreation

CIM_InstCreation notifies when a new instance is created.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SCSIProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SCSIProtocolEndpoint

Class reference

Subclass of CIM_ProtocolEndpoint

A SCSIProtocolEndpoint represents the protocol (command) aspects of a logical SCSI port, independent of the connection/transport. SCSIProtocolEndpoint is either directly or indirectly associated to one or more instances of LogicalPort (via DeviceSAPImplementation) depending on the underlying transport. Indirect associations aggregate one or more LogicalPorts using intermediate ProtocolEndpoints (iSCSI, etc). SCSIProtocolEndpoint is also associated to a SCSIProtocolController, representing the SCSI device.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint32 TargetRelativePortNumber

For ports on a target device, the port number, relative to the storage system. 0 is reserved by T10, 1 is port A, 2 is port B, etc. These numbers are used in SCSI commands that operate on target port groups.

string Name

The SCSI identifier for the target or initiator device, in the format appropriate for the ConnectionType. If a ConnectionType specific subclass is defined, the subclass may override Name to define the format. For other ConnectionTypes, the format (and content) should match that of PermamnentAddress of the corresponding LogicalPort.

uint16 ConnectionType

The supported connection type for this endpoint. The connection type may be needed before the port(s) are associated and also is used in some SCSI commands.

		ValueMap
		Values

		1
		Other

		2
		Fibre Channel

		3
		Parallel SCSI

		4
		SSA

		5
		IEEE 1394

		6
		RDMA

		7
		iSCSI

		8
		SAS

		9
		ADT

string OtherConnectionType

The connection type, if ConnectionType is “Other”.

uint16 Role

For iSCSI, each SCSIProtocolEndpoint MUST act as either a target or an initiator endpoint. Other transports allow a SCSI PE to act as both an initiator and target endpoint. This property indicates which role this ProtocolEndpoint implements.

		ValueMap
		Values

		0
		Unknown

		2
		Initiator

		3
		Target

		4
		Both Initiator and Target

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string NameFormat

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string CreationClassName

string OtherTypeDescription

uint16[] AvailableRequestedStates

string Caption

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDBasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDBasedOn

Class reference

Subclass of CIM_BasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents. For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be defined independently and realized in a PhysicalElement or can be ‘based on’ Volatile or NonVolatileStorageExtents.

Key properties

Dependent

Antecedent

Local properties

uint16 OrderIndex

If there is an order to the BasedOn associations that describe how a higher level StorageExtent is assembled, the OrderIndex property indicates this. When an order exists, the instances of BasedOn with the same Dependent value (i.e., the same higher level Extent) should place unique values in the OrderIndex property. The lowest value implies the first member of the collection of lower level Extents, and increasing values imply successive members of the collection. If there is no ordered relationship, a value of zero should be specified. An example of the use of this property is to define a RAID-0 striped array of 3 disks. The resultant RAID array is a StorageExtent that is dependent on (BasedOn) the StorageExtents that describe each of the 3 disks. The OrderIndex of each BasedOn association from the disk Extents to the RAID array could be specified as 1, 2 and 3 to indicate the order in which the disk Extents are used to access the RAID data.

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_StorageExtent Antecedent

uint64 StartingAddress

uint64 EndingAddress

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LAGPort8023ad.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LAGPort8023ad

Class reference

Subclass of CIM_ProtocolEndpoint

LAGPort8023ad contains the configuration information for a port (LANEndpoint) which is a member of a link aggregation. This port aspect is associated to LANEndpoint using the ConcreteIdentity relationship. A port may be attached to an instance of LinkAggregator8023ad. This is described using the BindsTo association. The latter is described in the IEEE 802.3ad document, Subclause 30.7.2.1.13, and maps the information in MIB.IEEE|IEEE8023-LAG-MIB.dot3adAggPortAttachedAggID.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string ActorSystemID

A 6-octet MAC address value that defines the value of the System ID for the System that contains this Aggregation Port. For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.3. Note that the MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469.

uint16 ActorPort

The port number locally assigned to the Aggregation Port. The port number is communicated in LACPDUs as the Actor_Port. For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.14.

uint16 ActorPortPriority

The priority value locally assigned to this Aggregation Port. For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.15.

uint16[] ActorAdminState

An enumerated array allowing administrator control of the Port’s state (described in the IEEE 802.3ad document, Subclause 30.7.2.1.20, and transmitted by the Actor in LACPDUs).

		ValueMap
		Values

		0
		Unknown/Undefined

		2
		LACP_Activity

		3
		LACP_Timeout

		4
		Aggregation

		5
		Synchronization

		6
		Collecting

		7
		Distributing

		8
		Defaulted

		9
		Expired

uint16 ActorSystemPriority

A 2-octet value used to define the priority value associated with the Actor’s System ID. For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.2.

boolean RepresentsAggregate

A Boolean value indicating whether the Aggregation Port is able to Aggregate (`TRUE’) or is only able to operate as an Individual link (‘FALSE’). For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.24.

uint32 SelectedAggID

The identifier value of the Aggregator that this Aggregation Port has currently selected. Zero indicates that the Aggregation Port has not selected an Aggregator, either because it is in the process of detaching from an Aggregator or because there is no suitable Aggregator available for it to select. For more information, refer to the IEEE 802.3ad document, Subclause 30.7.2.1.12.

uint16 ActorOperKey

The current operational value of the 16-bit Key for the Aggregation Port. The meaning of particular Key values is of local significance. For more information, refer to the IEEE 802.3 document, Subclause 30.7.2.1.5.

uint16[] ActorOperState

An enumerated array corresponding to the currentoperational values of Actor_State as transmitted by the Actor in LACPDUs and described in the IEEE 802.3ad document, Subclause 30.7.2.1.21.

		ValueMap
		Values

		0
		Unknown/Undefined

		2
		LACP_Activity

		3
		LACP_Timeout

		4
		Aggregation

		5
		Synchronization

		6
		Collecting

		7
		Distributing

		8
		Defaulted

		9
		Expired

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 EnabledDefault

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

uint16 PrimaryStatus

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StorageCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StorageCapabilities

Class reference

Subclass of CIM_Capabilities

A subclass of Capabilities that defines the Capabilities of a StorageService or StoragePool. For example, an instance of StorageCapabilities could be associated with either a StorageConfigurationService or StoragePool by using ElementCapabilities.

Key properties

InstanceID

Local properties

uint16[] SupportedDataOrganizations

Types of volume data organizations supported.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		Fixed Block

		3
		Variable Block

		4
		Count Key Data

uint32[] AvailableRPM

The rotational speed of disk media which are be available. Values are in revolutions per minute. SSD devices shall report 0.

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the maximum is defined by PackageRedundancyMax.

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the maximum is defined by DataRedundancyMax.

uint16 Encryption

This property reflects support of the encryption feature implemented by some disk drives.

		ValueMap
		Values

		0
		Unknown

		1
		Not Supported

		2
		Supported

boolean NoSinglePointOfFailure

Indicates whether or not the associated element supports no single point of failure. Values are: FALSE = does not support no single point of failure, and TRUE = supports no single point of failure.

uint16 PackageRedundancyDefault

PackageRedundancyDefault describes the default number of redundant packages that will be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds for redundancy are specified using the properties, PackageRedundancyMax and PackageRedundancyMin.

uint16 ElementType

Enumeration indicating the type of element to which this StorageCapabilities applies.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		Any Type

		3
		StorageVolume

		4
		StorageExtent

		5
		StoragePool

		6
		StorageConfigurationService

		7
		LogicalDisk

		8
		StorageTier

uint16[] AvailableDiskType

Enumeration indicating the type of DiskDrives which may be available.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Hard Disk Drive

		3
		Solid State Drive

		4
		Hybrid

uint16 DataRedundancyDefault

DataRedundancyDefault describes the default number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds for the redundancy (max and min) are defined by DataRedundancyMax and DataRedundancyMin.

uint64[] AvailableInterconnectSpeed

The speed of disk interfaces which are be available. Values are in bits/second.

boolean NoSinglePointOfFailureDefault

Indicates the default value for the NoSinglePointOfFailure property.

uint16[] SupportedCompressionRates

The SupportedCompressionRates identifies the compression rates that are supported by the implementation, including “None”. If “None” is specified, then no other rate may be identified.

		ValueMap
		Values

		1
		None

		2
		High

		3
		Medium

		4
		Low

		5
		DMTF Reserved

		
		Implementation Decides

		32768..65535
		Vendor Specific

uint16 ParityLayoutDefault

ParityLayout specifies whether a parity-based storage organization is using rotated or non-rotated parity. If this capabilities instance is associated with a pool that was created with a range of QOS then ParityLayoutDefault represents the default value. Other available values can be determined by using the ‘GetSupportedParityLayouts’ method. If the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and ParityLayout is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedParityLayouts’ method cannot be used, and the ParityLayoutGoal property in StorageSetting instances used in child element operations on this pool MUST be set to NULL. A NULL value for ParityLayoutDefault indicates that the system does not support configuration of storage by specifying ParityLayout.

		ValueMap
		Values

		2
		Non-Rotated Parity

		3
		Rotated Parity

uint16 DeltaReservationMin

DeltaReservationMin is a number between 1 (1%) and a 100 (100%) that specifies the minimum amount of space that should be reserved in a replica for caching changes. For a complete copy this would be 100%, but it can be lower in some implementations. This parameter sets the lower limit, while DeltaReservationMax sets the upper limit.

uint16 DeltaReservationDefault

Delta reservation is a number between 1 (1%) and a 100 (100%) that specifies how much space should be reserved by default in a replica for caching changes. For a complete copy this would be 100%, but it can be lower in some implementations. This parameter sets the default value, while DeletaReservationMax and DeltReservationMin set the upper and lower bounds.

uint16 DeltaReservationMax

DeltaReservatioMax is a number between 1 (1%) and a 100 (100%) that specifies the maximum amount of space reserved in a replica for caching changes. For a complete copy this would be 100%, but it can be lower in some implementations. This parameter sets the upper limit, while DeltaReservationMin sets the lower limit.

uint16[] AvailableInterconnectType

Enumeration indicating the type of disk interfaces which may be available.

		ValueMap
		Values

		0
		Unknown

		1
		other

		2
		SAS

		3
		SATA

		4
		SAS/SATA

		5
		FC

		6
		SOP

uint16 ExtentStripeLengthDefault

Extent Stripe Length describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’.

A NULL value for ExtentStripeLengthDefault indicates that the system does not support configuration of storage by specifying Stripe Length.

If Extent Stripe Length is supported, and this Capabilities instance is associated with a pool that was created with a range of QOS then ExtentStripeLengthDefault represents the default value. Other available values(such as min, max, and discrete values) can be determined by using the ‘GetSupportedStripeLengths’ and ‘GetSupportedStripeLengthRange’ methods.

If Extent Stripe Length is supported and the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and Extent Stripe Length is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedStripeLength’ methods cannot be used, and in a StorageSetting instance used as a goal when creating or modifying a child element of the pool, ExtentStripeLengthGoal, ExtentStripeLengthMin, and ExtentStripeLengthMax MUST be set to NULL.

uint16[] AvailableFormFactorType

Enumeration indicating the types of disk form factors which may be available.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Reported

		3
		5.25 inch

		4
		3.5 inch

		5
		2.5 inch

		6
		1.8 inch

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data that can be maintained. Examples would be RAID 5 (where 1 copy is maintained) and RAID 1 (where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the minimum is defined by DataRedundancyMin.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the minimum is defined by PackageRedundancyMin.

uint64 UserDataStripeDepthDefault

User Data Stripe Depth describes the number of bytes forming a strip in common striping-based storage organizations. The strip is defined as the size of the portion of a stripe that lies on one extent. Thus, ExtentStripeLength * UserDataStripeDepth will yield the size of one stripe of user data. A NULL value for UserDataStripeDepthDefault indicates that the system does not support configuration of storage by specifying Stripe Depth.

If User Data Stripe Depth is supported, and this Capabilities instance is associated with a pool that was created with a range of QOS then UserDataStripeDepthDefault represents the default value. Other available values(such as min, max, and discrete values) can be determined by using the ‘GetSupportedStripeDepths’ and ‘GetSupportedStripeDepthRange’ methods.

If User Data Stripe Depth is supported and the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and User Data Stripe Depth is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedStripeDepth’ methods cannot be used, and in a StorageSetting instance used as a goal when creating or modifying a child element of the pool, UserDataStripeDepthGoal, UserDataStripeDepthMin, and UserDataStripeDepthMax MUST be set to NULL.

Local methods

uint32 GetSupportedStripeLengths (uint16[] StripeLengths)

For systems that support discrete ExtentStripeLengths for volume or pool creation, this method can be used to retrieve a list of supported values. Note that different implementations may support either the GetSupportedStripeLengths or the GetSupportedStripeLengthRange method. Also note that the advertised sizes may change after the call due to requests from other clients. If the system only supports a range of sizes, then the return value will be set to 3.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Choices not available for this Capability

		3
		Use GetSupportedStripeLengthRange instead

Parameters

		OUT uint16[] StripeLengths

		List of supported ExtentStripeLengths for a Volume/Pool creation or modification.

uint32 GetSupportedParityLayouts (uint16[] ParityLayout)

For systems that support Parity-based storage organizations for volume or pool creation, this method can be used to the supported parity layouts.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Choice not aavailable for this capability

Parameters

		OUT uint16[] ParityLayout

		List of supported Parity for a Volume/Pool creation or modification.

		ValueMap
		Values

		2
		Non-Rotated Parity

		3
		Rotated Parity

uint32 GetSupportedStripeDepthRange (uint64 MinimumStripeDepth, uint64 MaximumStripeDepth, uint64 StripeDepthDivisor)

For systems that support a range of UserDataStripeDepths for volume or pool creation, this method can be used to retrieve the supported range. Note that different implementations may support either the GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only supports discrete values, then the return value will be set to 2.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedStripeDepths instead

Parameters

		OUT uint64 MinimumStripeDepth

		The minimum UserDataStripeDepth for a volume/pool in bytes.

		OUT uint64 MaximumStripeDepth

		The maximum UserDataStripeDepth for a volume/pool in bytes.

		OUT uint64 StripeDepthDivisor

		A volume/pool UserDataStripeDepth must be a multiple of this value which is specified in bytes.

uint32 GetSupportedStripeLengthRange (uint16 MinimumStripeLength, uint16 MaximumStripeLength, uint32 StripeLengthDivisor)

For systems that support a range of ExtentStripeLengths for volume or pool creation, this method can be used to retrieve the supported range. Note that different implementations may support either the GetSupportedExtentLengths or the GetSupportedExtentLengthRange method. Also note that the advertised sizes may change after the call due to requests from other clients. If the system only supports discrete values, then the return value will be set to 3.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Choices not available for this Capability

		3
		Use GetSupportedStripeLengths instead

Parameters

		OUT uint16 MinimumStripeLength

		The minimum ExtentStripeDepth for a volume/pool in bytes.

		OUT uint16 MaximumStripeLength

		The maximum ExtentStripeLength for a volume/pool in bytes.

		OUT uint32 StripeLengthDivisor

		A volume/pool ExtentStripeLength must be a multiple of this value which is specified in bytes.

uint32 GetSupportedStripeDepths (uint64[] StripeDepths)

For systems that support discrete UserDataStripeDepths for volume or pool creation, this method can be used to retrieve a list of supported values. Note that different implementations may support either the GetSupportedStripeDepths or the GetSupportedStripeDepthRange method. If the system only supports a range of sizes, then the return value will be set to 2.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedStripeDepthRange instead

Parameters

		OUT uint64[] StripeDepths

		List of supported UserDataStripeDepths for a Volume/Pool creation or modification.

uint32 CreateSetting (uint16 SettingType, CIM_StorageSetting NewSetting)

Method to create and populate a StorageSetting instance from a StorageCapability instance. This removes the need to populate default settings and other settings in the context of each StorageCapabilities (which could be numerous). If the underlying instrumentation supports the StorageSettingWithHints subclass, then an instance of that class will be created instead.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 SettingType

		If ‘Default’ is passed for the CreateDefault parameter, the Max, Goal, and Min setting attributes are set to the Default values of the parent StorageCapabilities when the instance is created.

If set to ‘Goal’ the new StorageSetting attributes are set to the related attributes of the parent StorageCapabilities, e.g. Min to Min, Goal to Default, and Max to Max.

This method maybe deprecated in lieu of intrinsics once limitations in the CIM Operations are addressed.

		ValueMap
		Values

		2
		Default

		3
		Goal

		OUT CIM_StorageSetting NewSetting

		Reference to the created StorageSetting instance.

Inherited properties

string InstanceID

string ElementName

string Description

uint64 Generation

string Caption

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedSoftwareInstallationServiceCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedSoftwareInstallationServiceCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

uint16[] Characteristics

Characteristics provides descriptive information about the Capabilities. when the value 2 “Default” is specified, the associated Capabilities shall represent the default capabilities of the associated Managed Element

when the value 2 “Default” is not specified, the Capabilities instance may represent the default capabilities of the Managed Element

When the value 3 “Current” is specified, the associated Capabilities shall represent the current capabilities of the associated Managed Element

When the value 3 “Current” is not specified, the Capabilities instance may represent the current capabilities of the Managed Element.

		ValueMap
		Values

		2
		Default

		3
		Current

		
		DMTF Reserved

		32768..65535
		Vendor Specific

LMI_SoftwareInstallationServiceCapabilities Capabilities

The Capabilities object associated with the element.

LMI_SoftwareInstallationService ManagedElement

The managed element.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EnabledAccountCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EnabledAccountCapabilities

Class reference

Subclass of CIM_EnabledLogicalElementCapabilities

EnabledLogicalElementCapabilities describes the capabilities supported for changing the state of the assciated EnabledLogicalElement.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string ElementName

uint16 MaxElementNameLen

string Caption

uint16[] RequestedStatesSupported

string ElementNameMask

uint64 Generation

string InstanceID

uint16[] StateAwareness

boolean ElementNameEditSupported

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalConnector.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalConnector

Class reference

Subclass of CIM_PhysicalElement

The PhysicalConnector class represents any PhysicalElement that is used to connect to other Elements. Any object that can be used to connect and transmit signals or power between two or more PhysicalElements is a descendant (or member) of this class. For example, Slots and D-shell connectors are types of PhysicalConnectors.

Key properties

Tag

CreationClassName

Local properties

string[] OtherElectricalCharacteristics

A string describing the connector’s electrical characteristics - used when the ConnectorElectricalCharacteristics property contains an entry of 1 (Other). OtherElectricalCharacteristics should be set to NULL when ConnectorElectricalCharacteristics does not contain an value of 1.

uint16 ConnectorGender

Describes the gender of the connector.

		ValueMap
		Values

		0
		Unknown

		2
		Male

		3
		Female

string ConnectorDescription

A string describing the Connector - used when the ConnectorLayout property is set to 1 (“Other”). Connector Description should be set to NULL when ConnectorLayout is any value other than 1.

uint16 ConnectorLayout

Describes the type of packaging normally associated with this type of connector.16 (PCI) - describes the generic PCI connector layout. 17 (PCI-X) - describes the PCI Extended connector layout. 18 (PCI-E) - describes the PCI Express connector layout, where the actual layout as far as the length is concerned is unknown. 19 - 25 (PCI-E xN) - describes the PCI Express connector layout, where N is the lane count that appropriately descirbes the length of the PCI-E connector.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		RS232

		3
		BNC

		4
		RJ11

		5
		RJ45

		6
		DB9

		7
		Slot

		8
		SCSI High Density

		9
		SCSI Low Density

		10
		Ribbon

		11
		AUI

		12
		Fiber SC

		13
		Fiber ST

		14
		FDDI-MIC

		15
		Fiber-RTMJ

		16
		PCI

		17
		PCI-X

		18
		PCI-E

		19
		PCI-E x1

		20
		PCI-E x2

		21
		PCI-E x4

		22
		PCI-E x8

		23
		PCI-E x16

		24
		PCI-E x32

		25
		PCI-E x64

		26..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

uint16[] ConnectorElectricalCharacteristics

Describes the electrical characteristic for this connector.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Single Ended

		3
		Differential

		4
		Low Voltage Differential

		5
		Optical

		6
		Copper

		7
		Shielded

		8
		Unshielded

uint16[] ConnectorType

An array of integers defining the type of PhysicalConnector. An array is specified to allow the description of ‘combinations’ of Connector information. For example, one array entry could specify RS-232 (value=25), another DB-25 (value=23) and a third entry define the Connector as “Male” (value=2).

This single property is being deprecated in lieu of using separate properties to describe the various aspects of the connector. The separation allows for a more generic means of describing the connectors. Obsolete connectors were intentionally removed from the new list.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Male

		3
		Female

		4
		Shielded

		5
		Unshielded

		6
		SCSI (A) High-Density (50 pins)

		7
		SCSI (A) Low-Density (50 pins)

		8
		SCSI (P) High-Density (68 pins)

		9
		SCSI SCA-I (80 pins)

		10
		SCSI SCA-II (80 pins)

		11
		Fibre Channel (DB-9, Copper)

		12
		Fibre Channel (Optical Fibre)

		13
		Fibre Channel SCA-II (40 pins)

		14
		Fibre Channel SCA-II (20 pins)

		15
		Fibre Channel BNC

		16
		ATA 3-1/2 Inch (40 pins)

		17
		ATA 2-1/2 Inch (44 pins)

		18
		ATA-2

		19
		ATA-3

		20
		ATA/66

		21
		DB-9

		22
		DB-15

		23
		DB-25

		24
		DB-36

		25
		RS-232C

		26
		RS-422

		27
		RS-423

		28
		RS-485

		29
		RS-449

		30
		V.35

		31
		X.21

		32
		IEEE-488

		33
		AUI

		34
		UPT Category 3

		35
		UPT Category 4

		36
		UPT Category 5

		37
		BNC

		38
		RJ11

		39
		RJ45

		40
		Fiber MIC

		41
		Apple AUI

		42
		Apple GeoPort

		43
		PCI

		44
		ISA

		45
		EISA

		46
		VESA

		47
		PCMCIA

		48
		PCMCIA Type I

		49
		PCMCIA Type II

		50
		PCMCIA Type III

		51
		ZV Port

		52
		CardBus

		53
		USB

		54
		IEEE 1394

		55
		HIPPI

		56
		HSSDC (6 pins)

		57
		GBIC

		58
		DIN

		59
		Mini-DIN

		60
		Micro-DIN

		61
		PS/2

		62
		Infrared

		63
		HP-HIL

		64
		Access.bus

		65
		NuBus

		66
		Centronics

		67
		Mini-Centronics

		68
		Mini-Centronics Type-14

		69
		Mini-Centronics Type-20

		70
		Mini-Centronics Type-26

		71
		Bus Mouse

		72
		ADB

		73
		AGP

		74
		VME Bus

		75
		VME64

		76
		Proprietary

		77
		Proprietary Processor Card Slot

		78
		Proprietary Memory Card Slot

		79
		Proprietary I/O Riser Slot

		80
		PCI-66MHZ

		81
		AGP2X

		82
		AGP4X

		83
		PC-98

		84
		PC-98-Hireso

		85
		PC-H98

		86
		PC-98Note

		87
		PC-98Full

		88
		SSA SCSI

		89
		Circular

		90
		On Board IDE Connector

		91
		On Board Floppy Connector

		92
		9 Pin Dual Inline

		93
		25 Pin Dual Inline

		94
		50 Pin Dual Inline

		95
		68 Pin Dual Inline

		96
		On Board Sound Connector

		97
		Mini-jack

		98
		PCI-X

		99
		Sbus IEEE 1396-1993 32 bit

		100
		Sbus IEEE 1396-1993 64 bit

		101
		MCA

		102
		GIO

		103
		XIO

		104
		HIO

		105
		NGIO

		106
		PMC

		107
		MTRJ

		108
		VF-45

		109
		Future I/O

		110
		SC

		111
		SG

		112
		Electrical

		113
		Optical

		114
		Ribbon

		115
		GLM

		116
		1x9

		117
		Mini SG

		118
		LC

		119
		HSSC

		120
		VHDCI Shielded (68 pins)

		121
		InfiniBand

		122
		AGP8X

string OtherTypeDescription

A string describing the Connector - used when the ConnectorType property is set to 1 (“Other”). OtherType Description should be set to NULL when ConnectorType is any value other than 1.

The use of this property is deprecated in lieu of Connector Description.

uint32 NumPhysicalPins

Describes the number of physical pins (male/female) that are present on this connector.

string ConnectorPinout

A free-form string describing the pin configuration and/or signal usage of a PhysicalConnector.

Local methods

None

Inherited properties

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

uint16 CommunicationStatus

string Version

string PartNumber

string Status

string ElementName

boolean CanBeFRUed

string Description

uint16[] OperationalStatus

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string Caption

string Model

uint16 PrimaryStatus

uint64 Generation

string Tag

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Dependency.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Dependency

Class reference

CIM_Dependency is a generic association used to establish dependency relationships between ManagedElements.

Key properties

Dependent

Antecedent

Local properties

CIM_ManagedElement Dependent

Dependent represents the object that is dependent on the Antecedent.

CIM_ManagedElement Antecedent

Antecedent represents the independent object in this association.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkHostedAccessPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkHostedAccessPoint

Class reference

Subclass of CIM_HostedAccessPoint

LMI_NetworkHostedAccessPoint is an association between IPNetworkConnection or IPProtocolEndpoint representation and the System on which it is provided.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

LMI_IPNetworkConnection or LMI_IPProtocolEndpoint that are hosted on this ComputerSystem.

CIM_ComputerSystem Antecedent

The hosting ComputerSystem.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxPort

Class reference

Subclass of LMI_SELinuxElement

Class representing an SELinux port. It can encompass multiple individual network ports, or even their ranges.

Key properties

InstanceID

Local properties

uint16 Protocol

Protocol type. Only UDP and TCP are supported.

		ValueMap
		Values

		0
		UDP

		1
		TCP

string SELinuxContext

SELinux context.

string[] Ports

Array of open ports that the SELinux port corresponds to.

Individual values can be specified either as a single number, or a range.

The range would be represented as ‘<port_low>-<port_high>’, e.g. ‘1024-2048’.Note that a network port can be labeled with multiple labels at the same time.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PhysicalMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PhysicalMemory

Class reference

Subclass of CIM_PhysicalMemory

PhysicalMemory is a subclass of CIM_Chip, representing low level memory devices - SIMMS, DIMMs, raw memory chips, etc.

Key properties

Tag

CreationClassName

Local properties

uint64 Capacity

The total capacity of this PhysicalMemory, in bytes.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string PartNumber

The part number assigned by the organization that is responsible for producing or manufacturing the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string BankLabel

A string identifying the physically labeled bank where the Memory is located - for example, ‘Bank 0’ or ‘Bank A’.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

uint16 FormFactor

The implementation form factor for the Chip. For example, values such as SIMM (7), TSOP (9) or PGA (10) can be specified.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		SIP

		3
		DIP

		4
		ZIP

		5
		SOJ

		6
		Proprietary

		7
		SIMM

		8
		DIMM

		9
		TSOP

		10
		PGA

		11
		RIMM

		12
		SODIMM

		13
		SRIMM

		14
		SMD

		15
		SSMP

		16
		QFP

		17
		TQFP

		18
		SOIC

		19
		LCC

		20
		PLCC

		21
		BGA

		22
		FPBGA

		23
		LGA

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 MemoryType

The type of PhysicalMemory. Synchronous DRAM is also known as SDRAM Cache DRAM is also known as CDRAM CDRAM is also known as Cache DRAM SDRAM is also known as Synchronous DRAM BRAM is also known as Block RAM

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		DRAM

		3
		Synchronous DRAM

		4
		Cache DRAM

		5
		EDO

		6
		EDRAM

		7
		VRAM

		8
		SRAM

		9
		RAM

		10
		ROM

		11
		Flash

		12
		EEPROM

		13
		FEPROM

		14
		EPROM

		15
		CDRAM

		16
		3DRAM

		17
		SDRAM

		18
		SGRAM

		19
		RDRAM

		20
		DDR

		21
		DDR-2

		22
		BRAM

		23
		FB-DIMM

		24
		DDR3

		25
		FBD2

		26
		DDR4

		27..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

uint16 DataWidth

Data width of the PhysicalMemory, in bits. A data width of 0 and a TotalWidth of 8 would indicate that the Memory is solely used to provide error correction bits.

uint16 TotalWidth

Total width, in bits, of the PhysicalMemory, including check or error correction bits. If there are no error correction bits, the value in this property should match that specified for DataWidth.

string Description

A textual description of the PhysicalElement.

uint32 ConfiguredMemoryClockSpeed

The configured clock speed (in MHz) of PhysicalMemory.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint32 Speed

The speed of the PhysicalMemory, in nanoseconds.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

uint32 InterleavePosition

uint16 CommunicationStatus

string Version

boolean Removable

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

boolean IsSpeedInMhz

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

uint32 MaxMemorySpeed

string Model

uint16 PrimaryStatus

datetime ManufactureDate

uint64 Generation

uint16 RemovalConditions

uint32 PositionInRow

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PCIBridgeSystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PCIBridgeSystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_PCIBridge PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedMount.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedMount

Class reference

Subclass of CIM_Dependency

This association connects System with all mounts, both persistent and runtime.

Key properties

Dependent

Antecedent

Local properties

LMI_MountedFileSystem Dependent

A mounted filesystem on the system.

CIM_System Antecedent

The hosting system.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDBackend.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDBackend

Class reference

Subclass of LMI_SSSDComponent

SSSD backend. An SSSD component that manages data from one domain and its subdomains.

Key properties

Name

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Name

string InstanceID

boolean IsEnabled

uint64 Generation

string Caption

uint16 DebugLevel

uint16 Type

string Description

Inherited methods

SetDebugLevelPermanently

Enable

Disable

SetDebugLevelTemporarily

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemorySlot.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemorySlot

Class reference

Subclass of CIM_Slot

The Slot class represents Connectors into which Packages are inserted. For example, a PhysicalPackage that is a DiskDrive may be inserted into an SCA ‘Slot’. As another example, a Card (subclass of PhysicalPackage) may be inserted into a 16-, 32-, or 64-bit expansion ‘Slot’ on a HostingBoard. PCI or PCMCIA Type III Slots are examples of the latter.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 ConnectorGender

Describes the gender of the connector.

		ValueMap
		Values

		0
		Unknown

		2
		Male

		3
		Female

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint16 ConnectorLayout

Describes the type of packaging normally associated with this type of connector.16 (PCI) - describes the generic PCI connector layout. 17 (PCI-X) - describes the PCI Extended connector layout. 18 (PCI-E) - describes the PCI Express connector layout, where the actual layout as far as the length is concerned is unknown. 19 - 25 (PCI-E xN) - describes the PCI Express connector layout, where N is the lane count that appropriately descirbes the length of the PCI-E connector.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		RS232

		3
		BNC

		4
		RJ11

		5
		RJ45

		6
		DB9

		7
		Slot

		8
		SCSI High Density

		9
		SCSI Low Density

		10
		Ribbon

		11
		AUI

		12
		Fiber SC

		13
		Fiber ST

		14
		FDDI-MIC

		15
		Fiber-RTMJ

		16
		PCI

		17
		PCI-X

		18
		PCI-E

		19
		PCI-E x1

		20
		PCI-E x2

		21
		PCI-E x4

		22
		PCI-E x8

		23
		PCI-E x16

		24
		PCI-E x32

		25
		PCI-E x64

		26..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

string Description

A textual description of the PhysicalElement.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 Number

The Number property indicates the physical slot number, which can be used as an index into a system slot table, whether or not that slot is physically occupied.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string[] OtherElectricalCharacteristics

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

boolean Powered

string VendorEquipmentType

string PurposeDescription

boolean SpecialPurpose

string OtherIdentifyingInfo

datetime ManufactureDate

uint16 CommunicationStatus

real32 HeightAllowed

string Version

string PartNumber

string Status

string ConnectorDescription

boolean CanBeFRUed

boolean OpenSwitch

uint16[] ConnectorElectricalCharacteristics

uint16[] OperationalStatus

uint16[] ConnectorType

string[] VendorCompatibilityStrings

string Manufacturer

uint16 DetailedStatus

boolean SupportsHotPlug

string SerialNumber

uint16[] VppMixedVoltageSupport

boolean PoweredOn

uint16 MaxDataWidth

uint32 ThermalRating

string OtherTypeDescription

string Model

uint16 PrimaryStatus

uint16[] VccMixedVoltageSupport

real32 LengthAllowed

uint32 NumPhysicalPins

uint16 MaxLinkWidth

uint64 Generation

uint16 OperatingStatus

datetime InstallDate

string ConnectorPinout

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountInstanceDeletionIndication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountInstanceDeletionIndication

Class reference

Subclass of CIM_InstDeletion

Account Instance Deletion Indication

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PortPhysicalConnectorContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PortPhysicalConnectorContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_PortPhysicalConnector PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Component.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Component

Class reference

Subclass of CIM_AbstractComponent

CIM_Component is a generic association used to establish ‘part of’ relationships between Managed Elements. For example, it could be used to define the components or parts of a System.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ManagedElement GroupComponent

The parent element in the association.

CIM_ManagedElement PartComponent

The child element in the association.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalMemory

Class reference

Subclass of CIM_Chip

PhysicalMemory is a subclass of CIM_Chip, representing low level memory devices - SIMMS, DIMMs, raw memory chips, etc.

Key properties

Tag

CreationClassName

Local properties

uint64 Capacity

The total capacity of this PhysicalMemory, in bytes.

uint32 InterleavePosition

The position of this PhysicalMemory in an interleave. 0 indicates non-interleaved. 1 indicates the first position, 2 the second position and so on. For example, in a 2:1 interleave, a value of ‘1’ would indicate that the Memory is in the ‘even’ position.

uint32 MaxMemorySpeed

The maximum speed (in MHz) of PhysicalMemory.

string BankLabel

A string identifying the physically labeled bank where the Memory is located - for example, ‘Bank 0’ or ‘Bank A’.

boolean IsSpeedInMhz

The IsSpeedInMHz property is used to indicate if the Speed property or the MaxMemorySpeed contains the value of the memory speed. A value of TRUE shall indicate that the speed is represented by the MaxMemorySpeed property. A value of FALSE shall indicate that the speed is represented by the Speed property.

uint16 FormFactor

The implementation form factor for the Chip. For example, values such as SIMM (7), TSOP (9) or PGA (10) can be specified.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		SIP

		3
		DIP

		4
		ZIP

		5
		SOJ

		6
		Proprietary

		7
		SIMM

		8
		DIMM

		9
		TSOP

		10
		PGA

		11
		RIMM

		12
		SODIMM

		13
		SRIMM

		14
		SMD

		15
		SSMP

		16
		QFP

		17
		TQFP

		18
		SOIC

		19
		LCC

		20
		PLCC

		21
		BGA

		22
		FPBGA

		23
		LGA

uint16 MemoryType

The type of PhysicalMemory. Synchronous DRAM is also known as SDRAM Cache DRAM is also known as CDRAM CDRAM is also known as Cache DRAM SDRAM is also known as Synchronous DRAM BRAM is also known as Block RAM

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		DRAM

		3
		Synchronous DRAM

		4
		Cache DRAM

		5
		EDO

		6
		EDRAM

		7
		VRAM

		8
		SRAM

		9
		RAM

		10
		ROM

		11
		Flash

		12
		EEPROM

		13
		FEPROM

		14
		EPROM

		15
		CDRAM

		16
		3DRAM

		17
		SDRAM

		18
		SGRAM

		19
		RDRAM

		20
		DDR

		21
		DDR-2

		22
		BRAM

		23
		FB-DIMM

		24
		DDR3

		25
		FBD2

		26
		DDR4

		27..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

uint16 DataWidth

Data width of the PhysicalMemory, in bits. A data width of 0 and a TotalWidth of 8 would indicate that the Memory is solely used to provide error correction bits.

uint16 TotalWidth

Total width, in bits, of the PhysicalMemory, including check or error correction bits. If there are no error correction bits, the value in this property should match that specified for DataWidth.

uint32 ConfiguredMemoryClockSpeed

The configured clock speed (in MHz) of PhysicalMemory.

uint32 PositionInRow

Specifies the position of the PhysicalMemory in a ‘row’. For example, if it takes two 8-bit memory devices to form a 16- bit row, then a value of ‘2’means that this Memory is the second device. 0 is an invalid value for this property.

uint32 Speed

The speed of the PhysicalMemory, in nanoseconds.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

uint16 CommunicationStatus

string Version

boolean Removable

string PartNumber

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

string Manufacturer

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string ElementName

string Caption

string Model

uint16 PrimaryStatus

string Description

datetime ManufactureDate

uint64 Generation

uint16 RemovalConditions

string Tag

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DataFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DataFile

Class reference

Subclass of CIM_LogicalFile

DataFile is a type of LogicalFile that is a named collection of data or executable code.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BlockStatisticsManifestCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BlockStatisticsManifestCollection

Class reference

Subclass of CIM_SystemSpecificCollection

The BlockStatisticsManifestCollection class aggregates, via MemberOfCollection, a set of BlockStatisticsManifests. This collection is associated via AssociatedBlockStatisticsManifestCollection to exactly one StatisticsCollection. The BlockStatisticsManifestCollection is used to filter the retrieval of statistics. For example, a BlockStatisticsManifestCollection is specified as part of the StatisticsService.GetStatisticsCollection method to filter the statistics returned by that method.

Key properties

InstanceID

Local properties

string ElementName

A user-friendly name for the BlockStatisticsManifestCollection. It can be set through the ElementName parameter of the StatisticsService.CreateManifestCollection method.

boolean IsDefault

Denotes whether or not this BlockStatisticsManifestCollection is a provider defined default BlockStatisticsManifestCollection.

Local methods

None

Inherited properties

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartitionElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartitionElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Processor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Processor

Class reference

Subclass of CIM_Processor

Capabilities and management of the Processor LogicalDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SystemName

The System Name of the scoping system.

uint32 ExternalBusClockSpeed

The speed (in MHz) of the external bus interface (also known as the front side bus).

string Architecture

System architecture.

string Role

A free-form string that describes the role of the Processor, for example, “Central Processor” or “Math Processor”.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

uint16 AddressWidth

Processor address width in bits.

uint16[] EnabledProcessorCharacteristics

This property indicates the enabled states of the corresponding processor characteristics. The property array is indexed with ProcessorCharacteristics property array of the associated CIM_ProcessorCapabilities instance through the CIM_ElementCapabilities association. Each of the values in the ProcessorCharacteristics array property shall have its enabled state indicated in the corresponding element of this property array. For example; if the ProcessorCharacteristics array has value - NX-bit - for the first element of the array, then the first element of this property will contain the value for the enabled state of the NX-bit feature of the processor: whether the processor currently differentiates the dedicated storage memory based on the non-execute bit. Unknown - the processor feature is in unknown state. Enabled - the processor feature is enabled and could be used. Disabled - the processor feature is disabled and cannot be used. Not Applicable - the processor feature does not have state context.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Not Applicable

		5..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint32 CurrentClockSpeed

The current speed (in MHz) of this Processor.

uint32 MaxClockSpeed

The maximum speed (in MHz) of this Processor.

string UniqueID

A globally unique identifier for the Processor. This identifier can be unique only within a Processor Family.

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16[] Flags

Flags supported by Processor. (Available only for x86 architecture.)

		ValueMap
		Values

		0
		fpu

		1
		vme

		2
		de

		3
		pse

		4
		tsc

		5
		msr

		6
		pae

		7
		mce

		8
		cx8

		9
		apic

		11
		sep

		12
		mtrr

		13
		pge

		14
		mca

		15
		cmov

		16
		pat

		17
		pse36

		18
		pn

		19
		clflush

		21
		dts

		22
		acpi

		23
		mmx

		24
		fxsr

		25
		sse

		26
		sse2

		27
		ss

		28
		ht

		29
		tm

		30
		ia64

		31
		pbe

		43
		syscall

		51
		mp

		52
		nx

		54
		mmxext

		57
		fxsr_opt

		58
		pdpe1gb

		59
		rdtscp

		61
		lm

		62
		3dnowext

		63
		3dnow

		64
		recovery

		65
		longrun

		67
		lrti

		96
		cxmmx

		97
		k6_mtrr

		98
		cyrix_arr

		99
		centaur_mcr

		100
		k8

		101
		k7

		102
		p3

		103
		p4

		104
		constant_tsc

		105
		up

		106
		fxsave_leak

		107
		arch_perfmon

		108
		pebs

		109
		bts

		110
		syscall32

		111
		sysenter32

		112
		rep_good

		113
		mfence_rdtsc

		114
		lfence_rdtsc

		115
		11ap

		116
		nopl

		118
		xtopology

		119
		tsc_reliable

		120
		nonstop_tsc

		121
		clflush_monitor

		122
		extd_apicid

		123
		amd_dcm

		124
		aperfmperf

		125
		eagerfpu

		128
		pni

		129
		pclmulqdq

		130
		dtes64

		131
		monitor

		132
		ds_cpl

		133
		vmx

		134
		smx

		135
		est

		136
		tm2

		137
		ssse3

		138
		cid

		140
		fma

		141
		cx16

		142
		xtpr

		143
		pdcm

		145
		pcid

		146
		dca

		147
		sse4_1

		148
		sse4_2

		149
		x2apic

		150
		movbe

		151
		popcnt

		152
		tsc_deadline_timer

		153
		aes

		154
		xsave

		155
		osxsave

		156
		avx

		157
		f16c

		158
		rdrand

		159
		hypervisor

		162
		rng

		163
		rng_en

		166
		ace

		167
		ace_en

		168
		ace2

		169
		ace2_en

		170
		phe

		171
		phe_en

		172
		pmm

		173
		pmm_en

		192
		lahf_lm

		193
		cmp_legacy

		194
		svm

		195
		extapic

		196
		cr8_legacy

		197
		abm

		198
		sse4a

		199
		misalignsse

		200
		3dnowprefetch

		201
		osvw

		202
		ibs

		203
		xop

		204
		skinit

		205
		wdt

		207
		lwp

		208
		fma4

		209
		tce

		211
		nodeid_msr

		213
		tbm

		214
		topoext

		215
		perfctr_core

		224
		ida

		225
		arat

		226
		cpb

		227
		epb

		228
		xsaveopt

		229
		pln

		230
		pts

		231
		dtherm

		232
		hw_pstate

		256
		tpr_shadow

		257
		vnmi

		258
		flexpriority

		259
		ept

		260
		vpid

		261
		npt

		262
		lbrv

		263
		svm_lock

		264
		nrip_save

		265
		tsc_scale

		266
		vmcb_clean

		267
		flushbyasid

		268
		decodeassists

		269
		pausefilter

		270
		pfthreshold

		288
		fsgsbase

		289
		tsc_adjust

		291
		bmi1

		292
		hle

		293
		avx2

		295
		smep

		296
		bmi2

		297
		erms

		298
		invpcid

		299
		rtm

		306
		rdseed

		307
		adx

		308
		smap

uint16 CPUStatus

The CPUStatus property that indicates the current status of the Processor. For example, the Processor might be disabled by the user (value=2), or disabled due to a POST error (value=3). Information in this property can be obtained from SMBIOS, the Type 4 structure, and the Status attribute.

		ValueMap
		Values

		0
		Unknown

		1
		CPU Enabled

		2
		CPU Disabled by User

		3
		CPU Disabled By BIOS (POST Error)

		4
		CPU Is Idle

		7
		Other

uint16 NumberOfEnabledCores

Number of processor cores enabled for processor.

string OtherFamilyDescription

A string that describes the Processor Family type. It is used when the Family property is set to 1 (“Other”). This string should be set to NULL when the Family property is any value other than 1.

uint16 Family

The Processor family type. For example, values include “Pentium(R) processor with MMX(TM) technology” (value=14) and “68040” (value=96).

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		8086

		4
		80286

		5
		80386

		6
		80486

		7
		8087

		8
		80287

		9
		80387

		10
		80487

		11
		Pentium(R) brand

		12
		Pentium(R) Pro

		13
		Pentium(R) II

		14
		Pentium(R) processor with MMX(TM) technology

		15
		Celeron(TM)

		16
		Pentium(R) II Xeon(TM)

		17
		Pentium(R) III

		18
		M1 Family

		19
		M2 Family

		20
		Intel(R) Celeron(R) M processor

		21
		Intel(R) Pentium(R) 4 HT processor

		24
		K5 Family

		25
		K6 Family

		26
		K6-2

		27
		K6-3

		28
		AMD Athlon(TM) Processor Family

		29
		AMD(R) Duron(TM) Processor

		30
		AMD29000 Family

		31
		K6-2+

		32
		Power PC Family

		33
		Power PC 601

		34
		Power PC 603

		35
		Power PC 603+

		36
		Power PC 604

		37
		Power PC 620

		38
		Power PC X704

		39
		Power PC 750

		40
		Intel(R) Core(TM) Duo processor

		41
		Intel(R) Core(TM) Duo mobile processor

		42
		Intel(R) Core(TM) Solo mobile processor

		43
		Intel(R) Atom(TM) processor

		48
		Alpha Family

		49
		Alpha 21064

		50
		Alpha 21066

		51
		Alpha 21164

		52
		Alpha 21164PC

		53
		Alpha 21164a

		54
		Alpha 21264

		55
		Alpha 21364

		56
		AMD Turion(TM) II Ultra Dual-Core Mobile M Processor Family

		57
		AMD Turion(TM) II Dual-Core Mobile M Processor Family

		58
		AMD Athlon(TM) II Dual-Core Mobile M Processor Family

		59
		AMD Opteron(TM) 6100 Series Processor

		60
		AMD Opteron(TM) 4100 Series Processor

		61
		AMD Opteron(TM) 6200 Series Processor

		62
		AMD Opteron(TM) 4200 Series Processor

		63
		AMD FX(TM) Series Processor

		64
		MIPS Family

		65
		MIPS R4000

		66
		MIPS R4200

		67
		MIPS R4400

		68
		MIPS R4600

		69
		MIPS R10000

		70
		AMD C-Series Processor

		71
		AMD E-Series Processor

		72
		AMD A-Series Processor

		73
		AMD G-Series Processor

		74
		AMD Z-Series Processor

		75
		AMD R-Series Processor

		76
		AMD Opteron(TM) 4300 Series Processor

		77
		AMD Opteron(TM) 6300 Series Processor

		78
		AMD Opteron(TM) 3300 Series Processor

		79
		AMD FirePro(TM) Series Processor

		80
		SPARC Family

		81
		SuperSPARC

		82
		microSPARC II

		83
		microSPARC IIep

		84
		UltraSPARC

		85
		UltraSPARC II

		86
		UltraSPARC IIi

		87
		UltraSPARC III

		88
		UltraSPARC IIIi

		96
		68040

		97
		68xxx Family

		98
		68000

		99
		68010

		100
		68020

		101
		68030

		102
		AMD Athlon(TM) X4 Quad-Core Processor Family

		103
		AMD Opteron(TM) X1000 Series Processor

		104
		AMD Opteron(TM) X2000 Series APU

		112
		Hobbit Family

		120
		Crusoe(TM) TM5000 Family

		121
		Crusoe(TM) TM3000 Family

		122
		Efficeon(TM) TM8000 Family

		128
		Weitek

		130
		Itanium(TM) Processor

		131
		AMD Athlon(TM) 64 Processor Family

		132
		AMD Opteron(TM) Processor Family

		133
		AMD Sempron(TM) Processor Family

		134
		AMD Turion(TM) 64 Mobile Technology

		135
		Dual-Core AMD Opteron(TM) Processor Family

		136
		AMD Athlon(TM) 64 X2 Dual-Core Processor Family

		137
		AMD Turion(TM) 64 X2 Mobile Technology

		138
		Quad-Core AMD Opteron(TM) Processor Family

		139
		Third-Generation AMD Opteron(TM) Processor Family

		140
		AMD Phenom(TM) FX Quad-Core Processor Family

		141
		AMD Phenom(TM) X4 Quad-Core Processor Family

		142
		AMD Phenom(TM) X2 Dual-Core Processor Family

		143
		AMD Athlon(TM) X2 Dual-Core Processor Family

		144
		PA-RISC Family

		145
		PA-RISC 8500

		146
		PA-RISC 8000

		147
		PA-RISC 7300LC

		148
		PA-RISC 7200

		149
		PA-RISC 7100LC

		150
		PA-RISC 7100

		160
		V30 Family

		161
		Quad-Core Intel(R) Xeon(R) processor 3200 Series

		162
		Dual-Core Intel(R) Xeon(R) processor 3000 Series

		163
		Quad-Core Intel(R) Xeon(R) processor 5300 Series

		164
		Dual-Core Intel(R) Xeon(R) processor 5100 Series

		165
		Dual-Core Intel(R) Xeon(R) processor 5000 Series

		166
		Dual-Core Intel(R) Xeon(R) processor LV

		167
		Dual-Core Intel(R) Xeon(R) processor ULV

		168
		Dual-Core Intel(R) Xeon(R) processor 7100 Series

		169
		Quad-Core Intel(R) Xeon(R) processor 5400 Series

		170
		Quad-Core Intel(R) Xeon(R) processor

		171
		Dual-Core Intel(R) Xeon(R) processor 5200 Series

		172
		Dual-Core Intel(R) Xeon(R) processor 7200 Series

		173
		Quad-Core Intel(R) Xeon(R) processor 7300 Series

		174
		Quad-Core Intel(R) Xeon(R) processor 7400 Series

		175
		Multi-Core Intel(R) Xeon(R) processor 7400 Series

		176
		Pentium(R) III Xeon(TM)

		177
		Pentium(R) III Processor with Intel(R) SpeedStep(TM) Technology

		178
		Pentium(R) 4

		179
		Intel(R) Xeon(TM)

		180
		AS400 Family

		181
		Intel(R) Xeon(TM) processor MP

		182
		AMD Athlon(TM) XP Family

		183
		AMD Athlon(TM) MP Family

		184
		Intel(R) Itanium(R) 2

		185
		Intel(R) Pentium(R) M processor

		186
		Intel(R) Celeron(R) D processor

		187
		Intel(R) Pentium(R) D processor

		188
		Intel(R) Pentium(R) Processor Extreme Edition

		189
		Intel(R) Core(TM) Solo Processor

		190
		K7

		191
		Intel(R) Core(TM)2 Duo Processor

		192
		Intel(R) Core(TM)2 Solo processor

		193
		Intel(R) Core(TM)2 Extreme processor

		194
		Intel(R) Core(TM)2 Quad processor

		195
		Intel(R) Core(TM)2 Extreme mobile processor

		196
		Intel(R) Core(TM)2 Duo mobile processor

		197
		Intel(R) Core(TM)2 Solo mobile processor

		198
		Intel(R) Core(TM) i7 processor

		199
		Dual-Core Intel(R) Celeron(R) Processor

		200
		S/390 and zSeries Family

		201
		ESA/390 G4

		202
		ESA/390 G5

		203
		ESA/390 G6

		204
		z/Architectur base

		205
		Intel(R) Core(TM) i5 processor

		206
		Intel(R) Core(TM) i3 processor

		210
		VIA C7(TM)-M Processor Family

		211
		VIA C7(TM)-D Processor Family

		212
		VIA C7(TM) Processor Family

		213
		VIA Eden(TM) Processor Family

		214
		Multi-Core Intel(R) Xeon(R) processor

		215
		Dual-Core Intel(R) Xeon(R) processor 3xxx Series

		216
		Quad-Core Intel(R) Xeon(R) processor 3xxx Series

		217
		VIA Nano(TM) Processor Family

		218
		Dual-Core Intel(R) Xeon(R) processor 5xxx Series

		219
		Quad-Core Intel(R) Xeon(R) processor 5xxx Series

		221
		Dual-Core Intel(R) Xeon(R) processor 7xxx Series

		222
		Quad-Core Intel(R) Xeon(R) processor 7xxx Series

		223
		Multi-Core Intel(R) Xeon(R) processor 7xxx Series

		224
		Multi-Core Intel(R) Xeon(R) processor 3400 Series

		228
		AMD Opteron(TM) 3000 Series Processor

		229
		AMD Sempron(TM) II Processor Family

		230
		Embedded AMD Opteron(TM) Quad-Core Processor Family

		231
		AMD Phenom(TM) Triple-Core Processor Family

		232
		AMD Turion(TM) Ultra Dual-Core Mobile Processor Family

		233
		AMD Turion(TM) Dual-Core Mobile Processor Family

		234
		AMD Athlon(TM) Dual-Core Processor Family

		235
		AMD Sempron(TM) SI Processor Family

		236
		AMD Phenom(TM) II Processor Family

		237
		AMD Athlon(TM) II Processor Family

		238
		Six-Core AMD Opteron(TM) Processor Family

		239
		AMD Sempron(TM) M Processor Family

		250
		i860

		251
		i960

		254
		Reserved (SMBIOS Extension)

		255
		Reserved (Un-initialized Flash Content - Lo)

		260
		SH-3

		261
		SH-4

		280
		ARM

		281
		StrongARM

		300
		6x86

		301
		MediaGX

		302
		MII

		320
		WinChip

		350
		DSP

		500
		Video Processor

		65534
		Reserved (For Future Special Purpose Assignment)

		65535
		Reserved (Un-initialized Flash Content - Hi)

uint16[] Characteristics

Array of enumerated values that describes the characteristics of the processor. The characteristics include certain features of the processor such as 64 bit support for data width of the processor. Note that if this property does not contain the value corresponding to a feature of the processor, than the feature either is not that some of the features of the processor may exist but may not be enabled. To find the the currently enabled features the processor, reffer to the EnabledProcessorCharacteristics property. Values specified in the enumeration may be obtained from SMBIOS v2.5 Type 4 offset 26h (Processor Characteristics Word). 32-bit Capable - describes whether the processor has the capability for 32 bits data width. 64-bit Capable - describes whether the processor has the capability for 64 bits data width. Enhanced Virtualization - describes whether the processor has the capability for executing enhanced virtualization instructions. Hardware Thread - indicates that the processor is capable of the hardware threading. NX-bit - describes whether the processor has capability to utilize non-execute bit and can differentiate the memory marked strictly for storage. Power/Performance Control - describes whether the processor has capability for load based power savings. Core Frequency Boosting - describes whether the processor has a capability for one processor core to increase its frequency whenever the other core has gone into an idle state.

		ValueMap
		Values

		0
		Unknown

		1
		DMTF Reserved

		2
		64-bit Capable

		3
		32-bit Capable

		4
		Enhanced Virtualization

		5
		Hardware Thread

		6
		NX-bit

		7
		Power/Performance Control

		8
		Core Frequency Boosting

		9..32567
		DMTF Reserved

		32568
		Multi-Core

		32569..65535
		Vendor Reserved

uint16 UpgradeMethod

CPU socket information that includes data on how this Processor can be upgraded (if upgrades are supported). This property is an integer enumeration.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Daughter Board

		4
		ZIF Socket

		5
		Replacement/Piggy Back

		6
		None

		7
		LIF Socket

		8
		Slot 1

		9
		Slot 2

		10
		370 Pin Socket

		11
		Slot A

		12
		Slot M

		13
		Socket 423

		14
		Socket A (Socket 462)

		15
		Socket 478

		16
		Socket 754

		17
		Socket 940

		18
		Socket 939

		19
		Socket mPGA604

		20
		Socket LGA771

		21
		Socket LGA775

		22
		Socket S1

		23
		Socket AM2

		24
		Socket F (1207)

		25
		Socket LGA1366

		26
		Socket G34

		27
		Socket AM3

		28
		Socket C32

		29
		Socket LGA1156

		30
		Socket LGA1567

		31
		Socket PGA988A

		32
		Socket BGA1288

		33
		rPGA988B

		34
		BGA1023

		35
		BGA1224

		36
		LGA1155

		37
		LGA1356

		38
		LGA2011

		39
		Socket FS1

		40
		Socket FS2

		41
		Socket FM1

		42
		Socket FM2

		43
		Socket LGA2011-3

		44
		Socket LGA1356-3

		45
		Socket LGA1150

		46
		Socket BGA1168

string Stepping

Stepping is a free-form string that indicates the revision level of the Processor within the Processor.Family.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint16 DataWidth

Processor data width in bits.

string SystemCreationClassName

The CreationClassName of the scoping system.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

datetime TimeOfLastStateChange

string Status

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

boolean PowerManagementSupported

uint16 LoadPercentage

uint16 DetailedStatus

string[] OtherIdentifyingInfo

datetime InstallDate

uint16 EnabledDefault

uint16 OperatingStatus

uint16[] AdditionalAvailability

uint16[] PowerManagementCapabilities

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 StatusInfo

uint16 LocationIndicator

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint16 Availability

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementSoftwareIdentity

Class reference

Subclass of CIM_Dependency

ElementSoftwareIdentity allows a Managed Element to report its software related asset information (firmware, drivers, configuration software, and etc.)

Key properties

Dependent

Antecedent

Local properties

CIM_ManagedElement Dependent

The ManagedElement that requires or uses the software.

CIM_SoftwareIdentity Antecedent

A LogicalElement’s Software Asset.

uint16 UpgradeCondition

Indicates the element’s ability to upgrade this software asset.

‘Resides off element’(2), indicates the persistence of the software is outside of the element. Typically for a element this software is part of the OperatingSystem is typically upgradeable.

‘Owner Upgradeable’ (3), indicates the persistence of the software is on the element and is upgradeable by the owner.

‘FactoryUpgradeable’ (4),indicates the persistence of the software is on the element and is upgradeable by the manufacturer.

‘Not Upgradeable’ (5), indicates the presistence of the software is on the element and is not upgradeable. (i.e. burned into a non replaceable ROM chip.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Resides off device

		3
		Owner Upgradeable

		4
		Factory Upgradeable

		5
		Not Upgradeable

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

uint16[] ElementSoftwareStatus

A collection of properties describing the status of the software on the managed element. Multiple properties could be set at the same time. For example a ElementSoftwareStatus could have “Installed”, “Default”, “Current” and “FallBack” set at the same time.

“Current” indicates that the software is currently running on or for the Managed Element.

“Next” indicates that the software will run after the next reset or reboot unless superseded by a software with a status of “SingleUse”.

“FallBack” indicates that the software will be run if the software which has a status of “Next” or “SingleUse” fails to run.

“Default” indicates the default version of the software that was originally shipped by the manufacturer.

“Installed” indicates that the software is persistently located and is available for use on the Managed Element.

“SingleUse” indicates that the software will run only after the next reset or reboot but will not run after the subsequent reset or reboot.

“Available” indicates that the software is available for installation on the Managed Element.

“Supports”indicates that the software will work with or operate the Managed Element but is or will be installed on a different Managed Element.

		ValueMap
		Values

		0
		Unknown

		2
		Current

		3
		Next

		4
		FallBack

		5
		Default

		6
		Installed

		7
		Single Use

		8
		Available

		9
		Supports

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherUpgradeCondition

Describes the upgrade condition, when UpgradeCondition is set to 1 (“Other”).

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ResourcePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ResourcePool

Class reference

Subclass of CIM_LogicalElement

A ResourcePool is a logical entity (with associated controls)provided by the host system for the purpose of allocation and assignment of resources. A given ResourcePool may be used to allocate resources of a specific type. Hierarchies of ResourcePools may be created to provide administrative control over allocations. In the cases where resources are subdivided, multiple resource pools may exist (e.g. nodal boundaries in NUMA-like systems). In systems that support over commitment, pools represent the reservable capacity, not an upper bound or limit on the maximum amount that can be allocated. Admission control during power on may detect and prevent systems from powering due to resource exhaustion. For example, over commitment on a ResourcePool with ResourceType=Memory would require that sufficient space be available in some backing-store, that may be managed through a storage ResourcePool.

Key properties

InstanceID

Local properties

uint64 Capacity

This property represents the maximum amount (in units of AllocationUnits) of reservations that the ResourcePool can support.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If the above “preferred” algorithm is not used, the defining entity must ensure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

boolean Primordial

If true, “Primordial” indicates that this ResourcePool is a base from which resources are drawn and returned in the activity of resource management. Being primordial means that this ResourcePool shall not be created or deleted by consumers of this model. However, other actions, modeled or not, may affect the characteristics or size of primordial ResourcePools. If false, “Primordial” indicates that the ResourcePool, a concrete Resource Pool, is subject to resource allocation services functions. This distinction is important because higher-level ResourcePools may be assembled using the Component or ElementAllocatedFromPool associations. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based ResourcePools cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized.

uint64 CurrentlyConsumedResource

This property specifies the amount of resource that the resource pool currently presents to consumers.

This property is different from the Reserved property in that it describes the consumers view of the resource while the Reserved property describes the producers view of the resource.

uint64 MaxConsumableResource

This property specifies the maximum of amount of consumable resource that the resource pool can present to consumers.

This property is different from the Capacity property in that it describes the consumers view of the resource while the Capacity property describes the producers view of the resource.

uint16 ResourceType

The type of resource this ResourcePool may allocate.

		ValueMap
		Values

		1
		Other

		2
		Computer System

		3
		Processor

		4
		Memory

		5
		IDE Controller

		6
		Parallel SCSI HBA

		7
		FC HBA

		8
		iSCSI HBA

		9
		IB HCA

		10
		Ethernet Adapter

		11
		Other Network Adapter

		12
		I/O Slot

		13
		I/O Device

		14
		Floppy Drive

		15
		CD Drive

		16
		DVD drive

		17
		Disk Drive

		18
		Tape Drive

		19
		Storage Extent

		20
		Other storage device

		21
		Serial port

		22
		Parallel port

		23
		USB Controller

		24
		Graphics controller

		25
		IEEE 1394 Controller

		26
		Partitionable Unit

		27
		Base Partitionable Unit

		28
		Power

		29
		Cooling Capacity

		30
		Ethernet Switch Port

		31
		Logical Disk

		32
		Storage Volume

		33
		Ethernet Connection

		
		DMTF reserved

		0x8000..0xFFFF
		Vendor Reserved

string PoolID

An opaque identifier for the pool. This property is used to provide correlation across save and restore of configuration data to underlying persistent storage.

string AllocationUnits

This property specifies the units of allocation used by the Reservation and Limit properties. For example, when ResourceType=Processor, AllocationUnits may be set to hertz*10^6 or percent. When ResourceType=Memory, AllocationUnits may be set to bytes*10^3. The value of this property shall be a legal value of the Programmatic Units qualifier as defined in Appendix C.1 of DSP0004 V2.4 or later.

string OtherResourceType

A string that describes the resource type when a well defined value is not available and ResourceType is set to 0 for Other.

uint64 Reserved

This property represents the current reservations (in units of AllocationUnits) spread across all active allocations from this pool. In a hierarchical configuration, this represents the sum of all descendant ResourcePool current reservations.

string ResourceSubType

A string describing an implementation specific sub-type for this pool. For example, this may be used to distinguish different models of the same resource type.

string ConsumedResourceUnits

This property specifies the units for the MaxConsumable and the Consumed properties.

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 DetailedStatus

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStorageStatisticsElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStorageStatisticsElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxMethodResult

Class reference

Subclass of LMI_MethodResult

Jobs are sometimes used to represent extrinsic method invocations that execute for times longer than the length of time is reasonable to require a client to wait. The method executing continues beyond the method return to the client. The class provides the result of the execution of a Job that was itself started by the side-effect of this extrinsic method invocation.

The indication instances embedded an instance of this class shall be the same indications delivered to listening clients or recorded, all or in part, to logs. Basically, this approach is a corollary to the functionality provided by an instance of ListenerDestinationLog (as defined in the Interop Model). The latter provides a comprehensive, persistent mechanism for recording Job results, but is also more resource-intensive and requires supporting logging functionality. Both the extra resources and logging may not be available in all environments (for example, embedded environments). Therefore, this instance-based approach is also provided.

The MethodResult instances shall not exist after the associated ConcreteJob is deleted.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

string InstanceID

instance PostCallIndication

uint64 Generation

instance PreCallIndication

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxInstDeletion.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxInstDeletion

Class reference

Subclass of CIM_InstDeletion

CIM_InstDeletion notifies when an existing instance is deleted.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DirectoryContainsFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DirectoryContainsFile

Class reference

Subclass of CIM_Component

Specifies the hierarchical arrangement of LogicalFiles in a Directory.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_Directory GroupComponent

The Directory.

CIM_LogicalFile PartComponent

The LogicalFile ‘contained within’ the Directory.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareIdentityChecks.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareIdentityChecks

Class reference

This association ties a SoftwareIdentity to a specific Check to validate its state. Each file installed by corresponding RPM package to local file system yields one instance of this class.

Key properties

Check

Element

Local properties

LMI_SoftwareIdentityFileCheck Check

The Check for the file.

LMI_SoftwareIdentity Element

The SoftwareIdentity being checked.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageConfigurationService

Class reference

Subclass of CIM_StorageConfigurationService

This service allows the active management of a Storage Server. It allows jobs to be started for the creation, modification and deletion of storage objects (StoragePools, StorageVolumes and LogicalDisks).

For now, it supports Volume Group creation and modification (CreateOrModifyStoragePool), allocation/modification of Logical Volume (CreateOrModifyElementFromStoragePool), Creation of MD RAID array () and destruction of all this (DeleteStoragePool, ReturnToStoragePool,).

In future, it may support creation of MD RAID containers (i.e. another kind of storage pools), allocation of MD RAIDs from these containers, snapshots of Logical Volumes (AttachReplica), advanced Logical Volumes (for example with RAID characteristics), thin pools and this Logical Volumes and so on.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

boolean Started

Started is a Boolean that indicates whether the Service has been started (TRUE), or stopped (FALSE).

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string StartMode

Deprecated!
Note: The use of this element is deprecated in lieu of the EnabledDefault property that is inherited from EnabledLogicalElement. The EnabledLogicalElement addresses the same semantics. The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property. To remain compatible with those implementations, StartMode was grandfathered into the schema. Use of the deprecated qualifier allows the maintenance of the existing property but also permits an improved, clarified definition using EnabledDefault.

Deprecated description: StartMode is a string value that indicates whether the Service is automatically started by a System, an Operating System, and so on, or is started only upon request.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

Local methods

uint32 DeleteMDRAID (LMI_MDRAIDStorageExtent TheElement, CIM_ConcreteJob Job)

Delete MD RAID array. All members are detached from the array and all RAID metadata are erased.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN LMI_MDRAIDStorageExtent TheElement

		The MD RAID device to destroy.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

uint32 DeleteLV (CIM_ConcreteJob Job, LMI_LVStorageExtent TheElement)

Start a job to delete a Logical Volume. If 0 is returned, the function completed successfully and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the element. A reference to the Job is returned in the Job parameter.

This method is alias of ReturnToStoragePool().

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN LMI_LVStorageExtent TheElement

		Reference to the element to return to the StoragePool.

uint32 CreateOrModifyThinPool (string ElementName, LMI_VGStorageSetting Goal, LMI_VGStoragePool InPool, LMI_VGStoragePool Pool, uint64 Size, CIM_ConcreteJob Job)

Create or modify Thin Pool. This method is shortcut to CreateOrModifyStoragePool with the right Goal. Lazy applications can use this method to create or modify thin pools, without calculation of the Goal setting.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

Parameters

		IN string ElementName

		Name of the thin pool. If this parameter is not provided, implementation will choose on its own when creating the device.

		IN LMI_VGStorageSetting Goal

		Currently not supported.

		IN LMI_VGStoragePool InPool

		The volume group from which the thin pool should be allocated.

		IN, OUT LMI_VGStoragePool Pool

		On input: thin pool to modify. Do not use this parameter when creating a thin pool.

On output: the created or modified thin pool.

		IN, OUT uint64 Size

		Physical size of the thin pool. The pool can store at most Size bytes of data.

On input, only used when creating a ThinPool.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

uint32 ReturnToStoragePool (CIM_ConcreteJob Job, CIM_LogicalElement TheElement)

Start a job to delete an element previously created from a StoragePool. The freed space is returned to the source StoragePool. If 0 is returned, the function completed successfully and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the element. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_LogicalElement TheElement

		Reference to the element to return to the StoragePool.

uint32 CreateOrModifyVG (string ElementName, LMI_VGStorageSetting Goal, CIM_StorageExtent[] InExtents, LMI_VGStoragePool Pool, CIM_ConcreteJob Job, uint64 Size)

Create or modify Volume Group. This method is shortcut to CreateOrModifyStoragePool with the right Goal. Lazy applications can use this method to create or modify VGs, without calculation of the Goal setting.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

Parameters

		IN string ElementName

		Requested volume group name. If this parameter is not provided, implementation will choose on its own when creating the device.

When modifying a Volume Group, the VG will be renamed to this name.

		IN LMI_VGStorageSetting Goal

		Only for advanced use, simple application should not set this parameter.

		IN CIM_StorageExtent[] InExtents

		List of all Physical Volumes of the VG.

When creating a VG, these devices will be PVs of the VG.

When modifying a VG, this is new list of PVs of the VG. Any existing PVs, which are not listed in InExtents, will be removed from the VG. Any devices, which are listed in InExtents and are not PVs of the VG will be added to the VG.

		IN, OUT LMI_VGStoragePool Pool

		On input: VG to modify. Do not use this parameter when creating a VG.

On output: the created or modified VG.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		OUT uint64 Size

		Size of the volume group.

uint32 CreateOrModifyLV (string ElementName, uint64 Size, LMI_VGStoragePool InPool, LMI_LVStorageSetting Goal, LMI_LVStorageExtent TheElement, CIM_ConcreteJob Job)

Create or modify Logical Volume. This method is shortcut to CreateOrModifyElementFromStoragePool with the right Goal. Lazy applications can use this method to create or modify LVs, without calculation of the Goal setting.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		Requested Logical Volume name. If this parameter is not provided, implementation will choose on its own when creating the device.

When modifying a LV, the LV will be renamed to this name.

		IN, OUT uint64 Size

		Requested LV size. It will be rounded to multiples of VG’s ExtentSize.

When used when modifying a LV, this LV will be resized to this size.

Only growing of LVs is supported, shrinking is not supported now.

		IN LMI_VGStoragePool InPool

		Used only when creating a LV. This parameter specifies from which VG should be the LV allocated.

		IN LMI_LVStorageSetting Goal

		Only for advanced use, simple application should not set this parameter.

		IN, OUT LMI_LVStorageExtent TheElement

		On input: LV to modify. Do not use this parameter when creating a LV.

On output: the created or modified LV.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

uint32 CreateOrModifyElementFromStoragePool (string ElementName, uint16 ElementType, CIM_ConcreteJob Job, CIM_ManagedElement Goal, uint64 Size, CIM_StoragePool InPool, CIM_LogicalElement TheElement)

Start a job to create (or modify) a Logical Volume from a LMI_StoragePool. One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the element. As an output parameter, it specifies the size achieved. The Size is rounded to extent size of the Volume Group. Space is taken from the input StoragePool. The desired settings for the element are specified by the Goal parameter. If the requested size cannot be created, no action will be taken, and the Return Value will be 4097/0x1001. Also, the output value of Size is set to the nearest possible size.

This method supports renaming or resizing of a Logical Volume.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the element being created, i.e. name of the Logical Volume. If NULL, then a system supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element. If not NULL, this parameter will supply a new name when modifying an existing element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created or modified.

Only StorageExtent and ThinlyProvisionedStorageVolume are supported now.

If the input parameter TheElement is specified when the operation is a ‘modify’, this type value must match the type of that instance.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		StorageVolume

		3
		StorageExtent

		4
		LogicalDisk

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement Goal

		The requirements for the element to maintain. If set to a null value, the default configuration from the source pool will be used. This parameter should be a reference to a Setting or Profile appropriate to the element being created. If not NULL, this parameter will supply a new Goal when modifying an existing element.

As we support only Volume Groups and simple Logical Volumes for now, no redundancy or stripping may be specified. Null is the safest option here.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size. The Size will be rounded to extent size of the Volume Group. If not NULL, this parameter will supply a new size when modifying an existing element. As an output parameter Size specifies the size achieved.

		IN CIM_StoragePool InPool

		The Pool from which to create the element. This parameter must be set to null if the input parameter TheElement is specified (in the case of a ‘modify’ operation).

		IN, OUT CIM_LogicalElement TheElement

		As an input parameter: if null, creates a new element. If not null, then the method modifies the specified element. As an output parameter, it is a reference to the resulting element.

uint32 CreateOrModifyStoragePool (string ElementName, CIM_ConcreteJob Job, CIM_StorageSetting Goal, uint64 Size, string[] InPools, string[] InExtents, CIM_StoragePool Pool)

Starts a job to create (or modify) a StoragePool.Only Volume Groups can be created or modified using this method.

LMI supports only creation of pools from whole StorageExtents, it is not possible to allocate only part of an StorageExtent.

One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the pool. It must match sum of all input extent sizes. Error will be returned if not, with correct Size output parameter value.

Any InPools as parameter will result in error.

The capability requirements that the Pool must support are defined using the Goal parameter.

This method supports renaming of a Volume Group and adding and removing StorageExtents to/from a Volume Group.

If a device is being removed from a Volume Group, all its data are automatically moved to any free Physical Volume automatically. This can be lengthy operation! Error is reported if there is no space for safe removal of the device. No data is lost when removing a device from Volume Group.

If 0 is returned, then the task completed successfully and the use of ConcreteJob was not required. If the task will take some time to complete, a ConcreteJob will be created and its reference returned in the output parameter Job.

This method automatically formats the StorageExtents added to a Volume Group as Physical Volumes.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the pool being created.

If a Volume Group is being created or modified, it is used as the Volume Group name.

If null, then a system supplied default name will be used. The value will be stored in the ‘ElementName’ property for the created pool. If not null, this parameter will supply a new name when modifying an existing pool.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_StorageSetting Goal

		Reference to an instance of StorageSetting that defines the desired capabilities of the StoragePool. If set to a null value, the default configuration from the source pool will be used. If not NULL, this parameter will supply a new Goal setting when modifying an existing pool.

As only simple Volume Groups are supported now, no redundancy or stripping may be used. Null is the safest option here.

		IN, OUT uint64 Size

		As an input parameter this specifies the desired pool size in bytes. If provided, it must match sum of sizes of all input StorageExtents.

As an output parameter this specifies the size achieved.

		IN string[] InPools

		This parameter is not supported by LMI and must be null.

		IN string[] InExtents

		Array of strings containing representations of references to CIM_StorageExtent instances, that are used to create the Pool.

If a pool is being modified using this method, these StorageExtent instances are interpreted as requested members of the Volume Groups. All StorageExtents, which are members of the Volume Groups and are not listed in InExtents parameter are removed from the Volume Group. All Storage Extents, which are not members of the Volume Group and are listed in InExtents parameter are added to the Volume Group.

If null, no extents are removed and/or added to to Volume Group.

		IN, OUT CIM_StoragePool Pool

		As an input parameter: if null, creates a new StoragePool. If not null, modifies the referenced Pool. When returned, it is a reference to the resulting StoragePool.

uint32 CreateOrModifyMDRAID (uint16 Level, string ElementName, CIM_StorageExtent[] InExtents, LMI_MDRAIDStorageSetting Goal, LMI_MDRAIDStorageExtent TheElement, CIM_ConcreteJob Job, uint64 Size)

Create or modify MD RAID array. This method is shortcut to CreateOrModifyElementFromElements with the right Goal. Lazy applications can use this method to create or modify MD RAID with the right level, without calculation of the Goal setting.

Either Level or Goal must be specified. If both are specified, they must match.

RAID modification is not yet supported.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 Level

		Requested RAID level.

		ValueMap
		Values

		0
		RAID0

		1
		RAID1

		4
		RAID4

		5
		RAID5

		6
		RAID6

		10
		RAID10

		IN string ElementName

		Requested MD RAID name, i.e. if /dev/md/my_name is created, the ElementName should be set to “my_name”. If this parameter is not provided, implementation will choose on its own when creating the device.

		IN CIM_StorageExtent[] InExtents

		List of CIM_StorageExtents which should be part of the RAID. Any data of these devices will be destroyed.

		IN LMI_MDRAIDStorageSetting Goal

		Requested MD RAID setting. It’s only for very advanced settings, simple applications should use Level parameter.

		IN, OUT LMI_MDRAIDStorageExtent TheElement

		On input: MD RAID device to modify. Do not use this parameter when creating new array.

On output: the created MD RAID.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		OUT uint64 Size

		Size of the RAID device.

uint32 CreateOrModifyElementFromElements (string ElementName, uint16 ElementType, CIM_ConcreteJob Job, CIM_ManagedElement Goal, uint64 Size, CIM_StorageExtent[] InElements, CIM_LogicalElement TheElement)

Start a job to create (or modify) a MD RAID from specified input StorageExtents. Only whole StorageExtents can be added to a RAID.

As an input parameter, Size specifies the desired size of the element and must match size of all input StorageVolumes combined in the RAID. Use null to avoid this calculation. As an output parameter, it specifies the size achieved.

The desired Settings for the element are specified by the Goal parameter.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job.

This method does not support MD RAID modification for now.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the MD RAID, i.e. /dev/md/<ElementName>. If NULL, then a system-supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element. If not NULL, this parameter will supply a new name when modifying an existing element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created or modified.

Only StorageExtent is supported now.

If the input parameter TheElement is specified when the operation is a ‘modify’, this type value must match the type of that instance. The actual CIM class of the created TheElement can be vendor-specific, but it must be a derived class of the appropriate CIM class – i.e., CIM_StorageVolume, CIM_StorageExtent, CIM_LogicalDisk, or CIM_StoragePool.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		Storage Volume

		3
		Storage Extent

		4
		Storage Pool

		5
		Logical Disk

		6
		ThinlyProvisionedStorageVolume

		7
		ThinlyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement Goal

		The requirements for the element to maintain. If set to a null value, the default configuration associated with the Service will be used. This parameter should be a reference to a Setting, SettingData, or Profile appropriate to the element being created. If not NULL, this parameter will supply a new Goal when modifying an existing element.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size. If not NULL, this parameter must match resulting size of the RAID. As an output parameter Size specifies the size achieved.

		IN CIM_StorageExtent[] InElements

		Array of references to storage element instances that are used to create or modify TheElement.

		IN, OUT CIM_LogicalElement TheElement

		As an input parameter: if null, creates a new element. If not null, then the method modifies the specified element. As an output parameter, it is a reference to the resulting element.

uint32 CreateOrModifyThinLV (string ElementName, LMI_VGStoragePool ThinPool, LMI_LVStorageExtent TheElement, uint64 Size, CIM_ConcreteJob Job)

Parameters

		IN string ElementName

		Requested Thin Logical Volume name. If this parameter is not provided, implementation will choose on it’s own when creating the device.

		IN LMI_VGStoragePool ThinPool

		Used only when creating a thin volume. This parameter specifies from which thinpool should be the thin volume allocated.

		IN, OUT LMI_LVStorageExtent TheElement

		On input: LV to modify. Do not use this parameter when creating a LV.

On output: the created or modified LV.

		IN, OUT uint64 Size

		Requested thin LV size. It will be rounded to multiples of VG’s ExtentSize.

In contrast to the size of a thin pool, this size is logical. It can be much higher than the physical size of the underlying storage.

Modification is not supported.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

uint32 DeleteVG (CIM_ConcreteJob Job, CIM_StoragePool Pool)

Start a job to delete a Volume Group. If 0 is returned, the function completed successfully, and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the StoragePool. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_StoragePool Pool

		Reference to the pool to delete.

uint32 DeleteStoragePool (CIM_ConcreteJob Job, CIM_StoragePool Pool)

Start a job to delete a StoragePool. The freed space is returned source StoragePools (indicated by AllocatedFrom StoragePool) or back to underlying storage extents. If 0 is returned, the function completed successfully, and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the StoragePool. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_StoragePool Pool

		Reference to the pool to delete.

uint32 LMI_ScsiScan (CIM_ConcreteJob Job)

This method requests that the system rescan SCSI devices for changes in their configuration. This method may also be used on a storage appliance to force rescanning of attached SCSI devices.

This operation can be disruptive.

The method is LMI version of DMTF’s ScsiScan(), just with ‘4096’ as ‘Method Parameters Checked - Job Started’ return value. Also, the method parameters were trimmed, we may extend it to support complete DMTF ScsiScan parameters.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6..4095
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid Initiator

		4098
		No matching target found

		4099
		No matching LUs found

		4100
		Prohibited by name binding configuration

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

Inherited properties

uint16 RequestedState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 DetailedStatus

string Name

datetime InstallDate

string LoSOrgID

string PrimaryOwnerContact

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

AttachReplica

CreateOrModifyReplicationPipe

RequestStateChange

AttachOrModifyReplica

CreateElementsFromStoragePools

ScsiScan

StopService

CreateReplicationBuffer

GetElementsBasedOnUsage

StartService

CreateReplica

ChangeAffectedElementsAssignedSequence

AssignStorageResourceAffinity

CreateElementsFromStoragePool

ReturnElementsToStoragePool

ModifySynchronization

RequestUsageChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedBlockStatisticsManifestCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedBlockStatisticsManifestCollection

Class reference

Subclass of CIM_AssociatedBlockStatisticsManifestCollection

Instances of this class associate a BlockStatisticsManifestCollection to the StatisticsCollection to which is is applied. The ManifestCollection contains the Manifests that are used to filter requests for the retrieval of statistics.

Key properties

ManifestCollection

Statistics

ManifestCollection

Statistics

Local properties

LMI_BlockStatisticsManifestCollection ManifestCollection

The collection of Manifests applied to the StatisticsCollection.

LMI_StorageStatisticsCollection Statistics

The collection of statistics filtered by the BlockStatisticsManifestCollection.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SymbolicLink.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SymbolicLink

Class reference

Subclass of CIM_SymbolicLink

This class is a special type of LogicalFile that represents a Symbolic Link. This convention is useful for some operating systems that want to represent a single file in multiple places or a single file that is represented via multiple names.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

string TargetFile

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ConcreteJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ConcreteJob

Class reference

Subclass of CIM_Job

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> must include a copyrighted, trademarked or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID, or that is a registered ID that is assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity must assure that the resulting InstanceID is not re-used across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF defined instances, the ‘preferred’ algorithm must be used with the <OrgID> set to ‘CIM’.

string JobOutParameters

The output (including inout), parameters of the job, formatted as an embedded instance with a class name of “__JobOutParameters”.

This property shall be NULL unless JobStatus has the value Completed (7).

In the case where a job represents an intrinsic operation or an extrinsic method call, that embedded instance contains properties representing the output parameters and return value of that call. Each output parameter is mapped to a corresponding property of the same name and type, and the return value is mapped to a property with the name __ReturnValue of the same type. REF-typed parameters and return values are mapped to Reference-qualified properties of type string whose value is the instance path in WBEM URI format.

The value of each such property shall be the value of the corresponding output parameter or return value at the time the job completed.

string MethodName

If not NULL, the name of the intrinsic operation or extrinsic method for which this Job represents an invocation.

When not NULL, and if an extrinsic method, the format shall be <classPath>.MethodName, where classPath is a WBEM-URI-TypedClassPath or a WBEM-URI-UntypedClassPath as defined by DSP0207. And where methodName is a method of that class.

When not NULL, and if an intrinsic operation, the format shall be <namespacePath>.OperationName, where namespacePath is a WBEM-URI-TypedNamespacePath or a WBEM-URI-UntypedNamespacePath as defined by DSP0207. And where OperationName is either the name of a generic operation as defined in DSP0223 or is the name of a protocol specific operation as defined for the protocol used to retrieve the instance.

datetime TimeOfLastStateChange

The date or time when the state of the Job last changed. If the state of the Job has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.

datetime TimeBeforeRemoval

The amount of time that the Job is retained after it has finished executing, either succeeding or failing in that execution. The job must remain in existence for some period of time regardless of the value of the DeleteOnCompletion property.

The default is five minutes.

string Name

The user-friendly name for this instance of a Job. In addition, the user-friendly name can be used as a property for a search or query. (Note: Name does not have to be unique within a namespace.)

boolean DeleteOnCompletion

Indicates whether or not the job should be automatically deleted upon completion. Note that the ‘completion’ of a job includes when the Job is terminated by manual intervention.

If this property is set to false and the job completes, then the intrinsic method DeleteInstance must be used to delete the job instead of updating this property.

If this property is set to true and the job completes, then the job may be deleted after the TimeBeforeRemoval interval.

If there is a CIM_DiagnosticServiceJobCapabilities associated to the service that spawned the job, then the DeleteOnCompletion should be TRUE if CIM_DiagnosticServiceJobCapabilities.DeleteJobSupported is FALSE. If DeleteOnCompletion is FALSE, then CIM_DiagnosticServiceJobCapabilities.CleanupInterval should be non-NULL.

uint16 JobState

JobState is an integer enumeration that indicates the operational state of a Job. It can also indicate transitions between these states, for example, ‘Shutting Down’ and ‘Starting’. Following is a brief description of the states:

New (2) indicates that the job has never been started.

Starting (3) indicates that the job is moving from the ‘New’, ‘Suspended’, or ‘Service’ states into the ‘Running’ state.

Running (4) indicates that the Job is running.

Suspended (5) indicates that the Job is stopped, but can be restarted in a seamless manner.

Shutting Down (6) indicates that the job is moving to a ‘Completed’, ‘Terminated’, or ‘Killed’ state.

Completed (7) indicates that the job has completed normally.

Terminated (8) indicates that the job has been stopped by a ‘Terminate’ state change request. The job and all its underlying processes are ended and can be restarted (this is job-specific) only as a new job.

Killed (9) indicates that the job has been stopped by a ‘Kill’ state change request. Underlying processes might have been left running, and cleanup might be required to free up resources.

Exception (10) indicates that the Job is in an abnormal state that might be indicative of an error condition. Actual status might be displayed though job-specific objects.

Service (11) indicates that the Job is in a vendor-specific state that supports problem discovery, or resolution, or both.

Query pending (12) waiting for a client to resolve a query

		ValueMap
		Values

		2
		New

		3
		Starting

		4
		Running

		5
		Suspended

		6
		Shutting Down

		7
		Completed

		8
		Terminated

		9
		Killed

		10
		Exception

		11
		Service

		12
		Query Pending

		13..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string JobInParameters

The input (including inout), parameters of the job, formatted as an embedded instance with a class name of “__JobInParameters”.

In the case where a job represents an intrinsic operation or an extrinsic method call, that embedded instance contains properties representing the input parameters of that call. Each input parameter is mapped to a corresponding property of the same name and type. REF-typed parameters are represented as Reference-qualified properties of type string whose value is the instance path in WBEM URI format.

The value of each property shall be the value of the corresponding input parameter at the time the job was started.

Local methods

uint32 RequestStateChange (uint16 RequestedState, datetime TimeoutPeriod)

Requests that the state of the job be changed to the value specified in the RequestedState parameter. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost.

If 0 is returned, then the task completed successfully. Any other return code indicates an error condition.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Can NOT complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Transition Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 RequestedState

		RequestStateChange changes the state of a job. The possible values are as follows:

Start (2) changes the state to ‘Running’.

Suspend (3) stops the job temporarily. The intention is to subsequently restart the job with ‘Start’. It might be possible to enter the ‘Service’ state while suspended. (This is job-specific.)

Terminate (4) stops the job cleanly, saving data, preserving the state, and shutting down all underlying processes in an orderly manner.

Kill (5) terminates the job immediately with no requirement to save data or preserve the state.

Service (6) puts the job into a vendor-specific service state. It might be possible to restart the job.

		ValueMap
		Values

		2
		Start

		3
		Suspend

		4
		Terminate

		5
		Kill

		6
		Service

		7..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

		IN datetime TimeoutPeriod

		A timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition.

If this property does not contain 0 or null and the implementation does not support this parameter, a return code of ‘Use Of Timeout Parameter Not Supported’ must be returned.

uint32 ResumeWithAction ()

The CIM_ConcreteJob.ResumeWithAction() method is invoked to resume the execution of a job when it has a JobState of 12 (Query Pending) and an action (rather than input) was requested. The pending query is a request to perform an action and the job program merely needs to know when the action is completed.

The job would request the action(s) through one or more indications. When an indication has been sent, but there has not been a client response the job will have a JobState of Query Pending.

		ValueMap
		Values

		0
		Completed with No Error

		2
		Unknown/Unspecified Error

		3
		The job has already timed out

		4
		Failed

		6
		JobState not Query Pending

		
		DMTF Reserved

		32768..65535
		Vendor specific

Parameters

		None

		

uint32 GetError (string Error)

Deprecated!
GetError is deprecated because Error should be an array,not a scalar.

When the job is executing or has terminated without error, then this method returns no CIM_Error instance. However, if the job has failed because of some internal problem or because the job has been terminated by a client, then a CIM_Error instance is returned.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Access Denied

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT string Error

		If the OperationalStatus on the Job is not “OK”, then this method will return a CIM Error instance. Otherwise, when the Job is “OK”, null is returned.

uint32 ResumeWithInput (string[] Inputs)

The CIM_ConcreteJob.ResumeWithInput() method is invoked to resume the execution of the job when it has a JobState of 12 (Query Pending). The input parameters specify an array of strings that constitute the client supplied inputs to the job program.

The job would request the inputs through one or more indications. When an indication has been sent, but there has not been a client response the job will have a JobState of Query Pending.

		ValueMap
		Values

		0
		Completed with No Error

		2
		Unknown/Unspecified Error

		3
		The job has already timed out

		4
		Failed

		5
		Invalid Parameter

		6
		JobState not Query Pending

		
		DMTF Reserved

		32768..65535
		Vendor specific

Parameters

		IN string[] Inputs

		The input values requested of the client by the job when its state changed to 12 (Query Pending).

If the CIM_ConcreteJob is associated with a CIM_DiagnosticTest, then the CIM_DiagnosticTest.Characteristics property shall contain 3 (Is Interactive).

If the CIM_ConcreteJob is associated with a CIM_DiagnosticTest and a corresponding CIM_DiagnosticServiceJobCapabilities exists, then CIM_DiagnosticServiceJobCapabilities.ClientRetriesMax identifies the number of times this method may be retried and CIM_DiagnosticServiceJobCapabilities.DefaultValuesSupported identifies the whether or not default input values are supported.

If the CIM_ConcreteJob instance is executing under the control of a CIM_JobSettingData, then CIM_JobSettingData.DefaultInputValues shall identify the Default input values to be used if default input values are supported, CIM_JobSettingData.InteractiveTimeout identifies the amount of time to wait for a client to issue the ResumeWithInput and CIM_JobSettingData.ClientRetries identifies the number of retries of the method that the client may execute.

uint32 GetErrors (string[] Errors)

If JobState is “Completed” and Operational Status is “Completed” then no instance of CIM_Error is returned.

If JobState is “Exception” then GetErrors may return intances of CIM_Error related to the execution of the procedure or method invoked by the job.

If Operatational Status is not “OK” or “Completed”then GetErrors may return CIM_Error instances related to the running of the job.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Access Denied

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT string[] Errors

		If the OperationalStatus on the Job is not “OK”, then this method will return one or more CIM Error instance(s). Otherwise, when the Job is “OK”, null is returned.

Inherited properties

uint16 HealthState

string[] StatusDescriptions

uint32 Priority

uint16 CommunicationStatus

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

string Description

sint8 RunDay

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

uint16 DetailedStatus

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

datetime ElapsedTime

string Caption

string JobStatus

datetime TimeSubmitted

uint16 PrimaryStatus

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

KillJob

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedStorageService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedStorageService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_Service Dependent

CIM_System Antecedent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstallationJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstallationJob

Class reference

Subclass of LMI_SoftwareJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

string MethodName

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

string JobStatus

datetime ElapsedTime

string Caption

boolean DeleteOnCompletion

datetime TimeSubmitted

uint16 JobState

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_GenericDiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_GenericDiskPartition

Class reference

Subclass of CIM_GenericDiskPartition

This class represents partitions on devices with other than MBR partition tables.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint64 ExtentStripeLength

If not null, then IsComposite shall be true. Number of contiguous underlying StorageExtents counted before looping back to the first underlying StorageExtent of the current stripe. It is the number of StorageExtents forming the user data stripe.

boolean Primordial

If true, “Primordial” indicates that the containing System does not have the ability to create or delete this operational element. This is important because StorageExtents are assembled into higher-level abstractions using the BasedOn association. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based storage entities cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized. In other words, a Primordial StorageExtent exists in, but is not created by its System and conversely a non-Primordial StorageExtent is created in the context of its System. For StorageVolumes, this property will generally be false. One use of this property is to enable algorithms that aggregate StorageExtent.ConsumableSpace across all, StorageExtents but that also want to distinquish the space that underlies Primordial StoragePools. Since implementations are not required to surface all Component StorageExtents of a StoragePool, this information is not accessible in any other way.

boolean NoSinglePointOfFailure

Indicates whether or not there exists no single point of failure.

string DeviceBusType

Name of bus, used to connect the block device, such as USB, SCSI or ATA. This property is available mostly for disk block devices, not for their descendants like partitions, logical volumes and so on. Note that the list of values may not be complete and is not guaranteed to be stable.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint16 NameNamespace

The preferred source SCSI for volume names is SCSI VPD Page 83 responses. Page 83 returns a list of identifiers for various device elements. The metadata for each identifier includes an Association field, identifiers with association of 0 apply to volumes. Page 83 supports several namespaces specified in the Type field in the identifier metadata. See SCSI SPC-3 specification.

2 = VPD Page 83, Type 3 NAA (NameFormat SHOULD be NAA)

3 = VPD Page 83, Type 2 EUI64 (NameFormat EUI)

4 = VPD Page 83, Type 1 T10 Vendor Identification

(NameFormat T10)

Less preferred volume namespaces from other interfaces:

5 = VPD page 80, Serial number (NameFormat SHOULD be Other)

6 = FC NodeWWN (NameFormat SHOULD be NAA or EUI)

7 = Serial Number/Vendor/Model (NameFormat SHOULD be SNVM)

The preferred namespace for LogigicalDisk names is platform specific device namespace; see LogigicalDIsk Description.

8 = OS Device Namespace.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83Type3

		3
		VPD83Type2

		4
		VPD83Type1

		5
		VPD80

		6
		NodeWWN

		7
		SNVM

		8
		OS Device Namespace

uint16 NameFormat

The list here applies to all StorageExtent subclasses. Please look at the Description in each subclass for guidelines on the approriate values for that subclass. Note that any of these formats could apply to a CompositeExtent.

Note - this property originally touched on two concepts that are now separated into this property and NameNamespace. Values 2,3,4,5,6, and 8 are retained for backwards compatibility but are deprecated in lieu of the corresponding values in CIM_StorageExtent.NameNamespace.

For example, the preferred source for SCSI virtual (RAID) disk names is from Inquiry VPD page 83 response, type 3 identifiers. These will have NameFormat set to ‘NAA’ and NameNamespace to ‘VPD83Type3’.

Format of the Name property. Values for extents representing SCSI volumes are (per SCSI SPC-3):

2 = VPD Page 83, NAA IEEE Registered Extended (VPD83NAA6)

(DEPRECATED)

3 = VPD Page 83, NAA IEEE Registered (VPD83NAA5)

(DEPRECATED)

4 = VPD Page 83, (VPD83Type2) (DEPRECATED)

5 = VPD Page 83,

T10 Vendor Identification (VPD83Type1) (DEPRECATED)

6 = VPD Page 83, Vendor Specific (VPD83Type0) (DEPRECATED)

7 = Serial Number/Vendor/Model (SNVM) SNVM is 3 strings representing the vendor name, product name within the vendor namespace, and the serial number within the model namespace. Strings are delimited with a ‘+’. Spaces may be included and are significant. The serial number is the text representation of the serial number in hexadecimal upper case. This represents the vendor and model ID from SCSI Inquiry data; the vendor field MUST be 8 characters wide and the product field MUST be 16 characters wide. For example,

‘ACME____+SUPER DISK______+124437458’ (_ is a space character)

8 = Node WWN (for single LUN/controller) (NodeWWN)

(DEPRECATED)

9 = NAA as a generic format. See

http://standards.ieee.org/regauth/oui/tutorials/fibrecomp_id.html. Formatted as 16 or 32 unseparated uppercase hex characters (2 per binary byte). For example ‘21000020372D3C73’

10 = EUI as a generic format (EUI64) See

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

Formatted as 16 unseparated uppercase hex characters (2 per binary byte)

11 = T10 vendor identifier format as returned by SCSI Inquiry VPD page 83, identifier type 1. See T10 SPC-3 specification. This is the 8-byte ASCII vendor ID from the T10 registry followed by a vendor specific ASCII identifier; spaces are permitted. For non SCSI volumes, ‘SNVM’ may be the most appropriate choice. 12 = OS Device Name (for LogicalDisks). See LogicalDisk Name description for details.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83NAA6

		3
		VPD83NAA5

		4
		VPD83Type2

		5
		VPD83Type1

		6
		VPD83Type0

		7
		SNVM

		8
		NodeWWN

		9
		NAA

		10
		EUI64

		11
		T10VID

		12
		OS Device Name

string Name

A unique identifier for the Extent.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

string[] ExtentDiscriminator

An array of strings used to discriminate the association context in which this StorageExtent is instantiated. Each element of the array should be prefixed by a well known organization name followed by a colon and followed by a string defined by that organization. For example, SNIA SMI-S compliant instances might contain one or more of the following values:

‘SNIA:Pool Component’ - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool and has an AssociatedComponentExtent to its StoragePool, but is not a remaining extent.

‘SNIA:Remaining’ - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool (representing free storage in the StoragePool).

‘SNIA:Intermediate’ - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

‘SNIA:Composite’ - A StorageExtent that is a CompositeExtent.

‘SNIA:DiskDrive’ - A StorageExtent that is the media on a Disk Drive.

‘SNIA:Imported’ - A StorageExtent that is imported from an external source.

‘SNIA:Allocated’ - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an AllocatedFromStoragePool association from a Concrete StoragePool.

‘SNIA:Shadow’ - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes exported by Arrays).

‘SNIA:Spare’ - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare association).

‘SNIA:Reserved’ - A StorageExtent that is reserved for some system use within the autonomous profile (e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

uint16 PackageRedundancy

How many physical packages can currently fail without data loss. For example, in the storage domain, this might be disk spindles.

uint16 DataRedundancy

Number of complete copies of data currently maintained.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] Names

All names, under which this device is known. All these names are symlinks to one block device.

uint16[] ExtentStatus

StorageExtents have additional status information beyond that captured in the OperationalStatus and other properties, inherited from ManagedSystemElement. This additional information (for example, “Protection Disabled”, value=9) is captured in the ExtentStatus property.

‘In-Band Access Granted’ says that access to data on an extent is granted to some consumer and is only valid when ‘Exported’ is also set. It is set as a side effect of PrivilegeManagementService.ChangeAccess or equivalent interfaces.

‘Imported’ indicates that the extent is used in the current system, but known to be managed by some other system. For example, a server imports volumes from a disk array.

‘Exported’ indicates the extent is meant to be used by some comsumer. A disk array’s logical units are exported.

Intermediate composite extents may be neither imported nor exported.

‘Relocating’ indicates the extent is being relocated.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		None/Not Applicable

		3
		Broken

		4
		Data Lost

		5
		Dynamic Reconfig

		6
		Exposed

		7
		Fractionally Exposed

		8
		Partially Exposed

		9
		Protection Disabled

		10
		Readying

		11
		Rebuild

		12
		Recalculate

		13
		Spare in Use

		14
		Verify In Progress

		15
		In-Band Access Granted

		16
		Imported

		17
		Exported

		18
		Relocating

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 ConsumableBlocks

The maximum number of blocks, of size BlockSize, which are available for consumption when layering StorageExtents using the BasedOn association. This property only has meaning when this StorageExtent is an Antecedent reference in a BasedOn relationship. For example, a StorageExtent could be composed of 120 blocks. However, the Extent itself may use 20 blocks for redundancy data. If another StorageExtent is BasedOn this Extent, only 100 blocks would be available to it. This information (‘100 blocks is available for consumption’) is indicated in the ConsumableBlocks property.

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

boolean ErrorCleared

string Signature

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

string SystemName

uint16 CompressionRate

uint16 Usage

string Description

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

uint64 Generation

datetime InstallDate

string OtherNameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint16[] ClientSettableUsage

uint16 OperatingStatus

uint16 EnabledDefault

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

uint16[] PowerManagementCapabilities

boolean Bootable

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

boolean Allocatable

string OtherEnabledState

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

string SignatureState

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ManagedSystemElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ManagedSystemElement

Class reference

Subclass of CIM_ManagedElement

CIM_ManagedSystemElement is the base class for the System Element hierarchy. Any distinguishable component of a System is a candidate for inclusion in this class. Examples of system components include:

		software components such as application servers, databases, and applications

		operating system components such as files, processes, and threads

		device components such as disk drives, controllers, processors, and printers

		physical components such as chips and cards.

Key properties

Local properties

string Status

A string indicating the current status of the object. Various operational and non-operational statuses are defined. This property is deprecated in lieu of OperationalStatus, which includes the same semantics in its enumeration. This change is made for 3 reasons:

		Status is more correctly defined as an array. This definition overcomes the limitation of describing status using a single value, when it is really a multi-valued property (for example, an element might be OK AND Stopped.

		A MaxLen of 10 is too restrictive and leads to unclear enumerated values.

		The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property and did not want to modify their code. Therefore, Status was grandfathered into the Schema. Use of the deprecated qualifier allows the maintenance of the existing property, but also permits an improved definition using OperationalStatus.

uint16 DetailedStatus

DetailedStatus compliments PrimaryStatus with additional status detail. It consists of one of the following values: Not Available, No Additional Information, Stressed, Predictive Failure, Error, Non-Recoverable Error, SupportingEntityInError. Detailed status is used to expand upon the PrimaryStatus of the element.

A Null return indicates the implementation (provider) does not implement this property.

“Not Available” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“No Additional Information” indicates that the element is functioning normally as indicated by PrimaryStatus = “OK”.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning normally but a failure is predicted in the near future.

“Non-Recoverable Error ” indicates that this element is in an error condition that requires human intervention.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

		ValueMap
		Values

		0
		Not Available

		1
		No Additional Information

		2
		Stressed

		3
		Predictive Failure

		4
		Non-Recoverable Error

		5
		Supporting Entity in Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

datetime InstallDate

A datetime value that indicates when the object was installed. Lack of a value does not indicate that the object is not installed.

uint16 CommunicationStatus

CommunicationStatus indicates the ability of the instrumentation to communicate with the underlying ManagedElement. CommunicationStatus consists of one of the following values: Unknown, None, Communication OK, Lost Communication, or No Contact.

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“Not Available” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Communication OK ” indicates communication is established with the element, but does not convey any quality of service.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the Managed Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Communication OK

		3
		Lost Communication

		4
		No Contact

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions.

OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“None” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Servicing” describes an element being configured, maintained, cleaned, or otherwise administered.

“Starting” describes an element being initialized.

“Stopping” describes an element being brought to an orderly stop.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Migrating” element is being moved between host elements.

“Immigrating” element is being moved to new host element.

“Emigrating” element is being moved away from host element.

“Shutting Down” describes an element being brought to an abrupt stop.

“In Test” element is performing test functions.

“Transitioning” describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable.

“In Service” describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Servicing

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		8
		Completed

		9
		Migrating

		10
		Emigrating

		11
		Immigrating

		12
		Snapshotting

		13
		Shutting Down

		14
		In Test

		15
		Transitioning

		16
		In Service

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] StatusDescriptions

Strings describing the various OperationalStatus array values. For example, if “Stopping” is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.

Local methods

None

Inherited properties

string Caption

string InstanceID

string ElementName

string Description

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LocalFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LocalFileSystem

Class reference

Subclass of CIM_FileSystem

A class derived from FileSystem that represents the file store controlled by a ComputerSystem through local means (e.g., direct device driver access). In this case, the file store is managed directly by the ComputerSystem without the need for another computer to act as a file server. This definition does not breakdown in the case of a Clustered File System. In this scenario, the FileSystem is a LocalFileSystem, weak to the Cluster.

Key properties

CSName

Name

CSCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint32 MaxFileNameLength

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

uint16 CommunicationStatus

uint32 ClusterSize

string EncryptionMethod

boolean ReadOnly

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 ResizeIncrement

boolean CasePreserved

datetime TimeOfLastStateChange

uint16 PrimaryStatus

boolean CaseSensitive

uint16[] OperationalStatus

uint64 FileSystemSize

string OtherPersistenceType

string CompressionMethod

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

uint64 NumberOfFiles

string Caption

string Root

uint16[] AvailableRequestedStates

uint16 PersistenceType

uint64 Generation

string FileSystemType

string CSCreationClassName

string OtherEnabledState

uint16 IsFixedSize

uint64 AvailableSpace

uint16 OperatingStatus

uint16[] CodeSet

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedPowerManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedPowerManagementService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_PowerManagementService Dependent

The Service hosted on the System.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BlockStorageStatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BlockStorageStatisticalData

Class reference

Subclass of CIM_StatisticalData

A subclass of StatisticalData which identifies individual statistics for an element of a block storage system. This class defines the metrics that MAY be kept for managed elements of the system.

Key properties

InstanceID

Local properties

uint64 WriteHitIOTimeCounter

The cumulative elapsed time using ClockTickInterval units for all Write I/Os written to cache for all cumulative Write I/Os.

uint64 ReadHitIOTimeCounter

The cumulative elapsed time for all Read I/Os read from cache for all cumulative Read I/Os.

uint64 MaintTimeCounter

The cumulative elapsed disk mainenance time. Maintainance response time is added to this counter at the completion of each measured maintenance operation using ClockTickInterval units.

uint64 IdleTimeCounter

The cumulative elapsed idle time using ClockTickInterval units (Cumulative Number of Time Units for all idle time in the array).

uint64 KBytesRead

The cumulative count of data read in Kbytes (1024bytes = 1KByte).

uint64 ReadHitIOs

The cumulative count of all read cache hits (Reads from Cache).

uint64 TotalIOs

The cumulative count of I/Os for the object.

uint64 KBytesTransferred

The cumulative count of data transferred in Kbytes (1024bytes = 1KByte).

uint64 WriteIOTimeCounter

The cumulative elapsed time for all Write I/Os for all cumulative Writes.

uint64 ReadIOs

The cumulative count of all reads.

uint16 ElementType

Defines the role that the element played for which this statistics record was collected. If the metered element is a system or a component of a system associated to a RegisteredProfile, then that profile may provide a more specialized definition and additional usage information for this property.

Generally, the ElementTypes defined here have the following meaning in the context of this class: 2, “Computer System”: Cumulative statistics for the storage system. In the case of a complex system with multiple component Computer Systems, these are the statistics for the top-level aggregate Computer System. 3, “Front-end Computer System”: Statistics for a component computer system that communicate with systems that initiate IO requests. 4, “Peer Computer System”: Statistics for a component computer system that communicates with peer storage systems e.g. to provide remote mirroring of a volume. 5, “Back-end Computer System”: Statistics for a component computer system that communicates with back-end storage. 6, “Front-end Port”: Statistics for a port that communicates with systems that initiate IO requests. 7, “Back-end Port”: Statistics for a port that initiates IO requests to storage devices. 8, “Volume”: Statistics for an exposable storage extent, such as a StorageVolume or LogicalDisk. 9, “Extent”: Statistics for an intermediate storage extent, i.e. an extent that is neither a volume or a disk. 10, “Disk Drive: Statistics for a StorageExtent that is associated to a DiskDrive through the MediaPresent association. 11, “Arbitrary LUs”: Statistics that derive from access to Logical Units that are NOT StorageVolumes (e.g., controller commands). 12, “Remote Replica Group”: Statistics for control IOs between an array and a remote mirror across a Network. Note that statistics for the actual movement of data to the remote mirror are attributed to the targeted StorageVolume (or LogicalDisk). Note that a particular element could be associated to multiple BlockStorageStatisticalData instances if it had multiple roles. For example, a storage array could contain redundant component computer systems that communicate both with hosts on the front end and disks on the back end. Such a device could have one BlockStorageStatisticalData instance where ElementType=3 and another instance where ElementType=5.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint64 KBytesWritten

The cumulative count of data written in Kbytes (1024bytes = 1KByte).

uint64 ReadIOTimeCounter

The cumulative elapsed time for all Read I/Os for all cumulative Read I/Os.

uint64 IOTimeCounter

The cumulative elapsed I/O time (number of Clock Tick Intervals) for all I/Os as defined in ‘Total I/Os’. I/O response time is added to this counter at the completion of each measured I/O using ClockTickInterval units. This value can be divided by number of IOs to obtain an average response time.

uint64 MaintOp

The cumulative count of all disk maintenance operations (SCSI commands such as: Verify, skip-mask, XOR read, XOR write-read, etc).This is needed to understand the load on the disks that may interfere with normal read and write operations.

uint64 WriteHitIOs

The cumulative count of Write Cache Hits (Writes that went directly to Cache).

uint64 WriteIOs

The cumulative count of all writes.

Local methods

None

Inherited properties

datetime StartStatisticTime

string InstanceID

string ElementName

string Description

string Caption

datetime StatisticTime

uint64 Generation

datetime SampleInterval

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_JournalLogRecord.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_JournalLogRecord

Class reference

Subclass of CIM_LogRecord

The LogRecord object can describe the definitional format for entries in a MessageLog, or can be used to instantiate the actual records in the Log. The latter approach provides a great deal more semantic definition and management control over the individual entries in a MessageLog, than do the record manipulation methods of the Log class. It is recommended that the data in individual Log entries be modeled using subclasses of LogRecord, to avoid the creation of LogRecords with one property (such as RecordData) without semantics.

Definitional formats for LogRecords could be specified by establishing a naming convention for the RecordID and Message Timestamp key properties.

Key properties

LogCreationClassName

MessageTimestamp

RecordID

LogName

CreationClassName

LogCreationClassName

MessageTimestamp

RecordID

LogName

CreationClassName

Local properties

uint64 ProcessID

Denotes numerical ID of the process that sent the message.

uint64 UserID

Denotes numerical effective user ID of the process that sent the message. This ID is system specific and usually maps to a local POSIX account.

string SystemdUnit

The systemd unit name, not set when message has not been logged natively through journald (i.e. through syslog transport).

string LogCreationClassName

The scoping Log’s CreationClassName.

datetime MessageTimestamp

A LogRecord’s key structure includes a timestamp for the entry. If the timestamp for the entry is unknown, the value 99990101000000.000000+000 SHOULD be used.

uint16 SyslogSeverity

A syslog severity level of the message, defined by RFC 5424.

		ValueMap
		Values

		0
		Emergency

		1
		Alert

		2
		Critical

		3
		Error

		4
		Warning

		5
		Notice

		6
		Informational

		7
		Debug

string HostName

Hostname of the system where the log record has been sent from.

uint64 GroupID

Denotes numerical effective group ID of the process that sent the message. This ID is system specific and usually maps to a local POSIX account.

string LogName

The scoping Log’s Name.

string SyslogIdentifier

A syslog identifier string, usually carrying process name that logged the message.

uint16 SyslogFacility

A syslog facility level specifying what type of program is logging the message. Values are defined by RFC 3164.

		ValueMap
		Values

		0
		kern

		1
		user

		2
		mail

		3
		daemon

		4
		auth

		5
		syslog

		6
		lpr

		7
		news

		8
		uucp

		9
		clock

		10
		authpriv

		11
		ftp

		12
		ntp

		13
		audit

		14
		alert

		15
		cron

		16
		local0

		17
		local1

		18
		local2

		19
		local3

		20
		local4

		21
		local5

		22
		local6

		23
		local7

string DataFormat

Deprecated!
A free-form string describing the LogRecord’s data structure.

uint16 PerceivedSeverity

An enumerated value that describes the severity of the Indication from the notifier’s point of view:

1 - Other, by CIM convention, is used to indicate that the Severity’s value can be found in the OtherSeverity property.

3 - Degraded/Warning should be used when its appropriate to let the user decide if action is needed.

4 - Minor should be used to indicate action is needed, but the situation is not serious at this time.

5 - Major should be used to indicate action is needed NOW.

6 - Critical should be used to indicate action is needed NOW and the scope is broad (perhaps an imminent outage to a critical resource will result).

7 - Fatal/NonRecoverable should be used to indicate an error occurred, but it’s too late to take remedial action.

2 and 0 - Information and Unknown (respectively) follow common usage. Literally, the Indication is purely informational or its severity is simply unknown.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Information

		3
		Degraded/Warning

		4
		Minor

		5
		Major

		6
		Critical

		7
		Fatal/NonRecoverable

string RecordID

RecordID, with the MessageTimestamp property, serve to uniquely identify the LogRecord within a MessageLog. Note that this property is different than the RecordNumber parameters of the MessageLog methods. The latter are ordinal values only, useful to track position when iterating through a Log. On the other hand, RecordID is truly an identifier for an instance of LogRecord. It may be set to the record’s ordinal position, but this is not required.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string InstanceID

string ElementName

uint64 Generation

string RecordFormat

string Caption

string RecordData

string Description

string Locale

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AbstractBasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AbstractBasedOn

Class reference

Subclass of CIM_Dependency

Abstract BasedOn is an association describing how StorageExtents (or views of StorageExtents) can be assembled from lower level Extents (or views of extents).

Key properties

Dependent

Antecedent

Local properties

CIM_ManagedElement Dependent

The higher level StorageExtent (or view of the extent).

CIM_ManagedElement Antecedent

The lower level StorageExtent (or view of the extent).

uint64 StartingAddress

StartingAddress indicates where in lower level storage, the higher level Extent begins.

uint64 EndingAddress

EndingAddress indicates where in lower level storage, the higher level Extent ends. This property is useful when mapping non-contiguous Extents into a higher level grouping.

uint16 OrderIndex

If there is an order to the BasedOn associations that describe how a higher level StorageExtent is assembled, the OrderIndex property indicates this. When an order exists, the instances of BasedOn with the same Dependent value (i.e., the same higher level Extent) should place unique values in the OrderIndex property. The lowest value implies the first member of the collection of lower level Extents, and increasing values imply successive members of the collection. If there is no ordered relationship, a value of zero should be specified. An example of the use of this property is to define a RAID-0 striped array of 3 disks. The resultant RAID array is a StorageExtent that is dependent on (BasedOn) the StorageExtents that describe each of the 3 disks. The OrderIndex of each BasedOn association from the disk Extents to the RAID array could be specified as 1, 2 and 3 to indicate the order in which the disk Extents are used to access the RAID data.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PowerManagementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PowerManagementCapabilities

Class reference

Subclass of CIM_Capabilities

A class derived from Capabilities that describes the power management aspects of an element (typically a system or device). The element’s power management capabilities are decoupled from a PowerManagementService, since a single service could apply to multiple elements, each with specific capabilities.

Key properties

InstanceID

Local properties

string OtherPowerChangeCapabilities

A string describing the additional power management capabilities of the element, used when the PowerChangeCapabilities is set to the value 1, “Other”.

string[] OtherPowerCapabilitiesDescriptions

An array of strings describing an element’s additional power management capabilities, used when the PowerCapabilities array includes the value 1, “Other”.

uint16[] RequestedPowerStatesSupported

An enumeration that indicates the requested power states supported by the power management service. Because this is an array, multiple values can be specified. The current values in the enumeration are:

2=On, corresponding to ACPI state G0 or S0 or D0.

3=Sleep - Light, corresponding to ACPI state G1, S1/S2, or D1.

4=Sleep - Deep, corresponding to ACPI state G1, S3, or D2.

5=Power Cycle (Off - Soft), corresponding to ACPI state G2, S5, or D3, but where the managed element is set to return to power state “On” at a pre-determined time.

6=Off - Hard, corresponding to ACPI state G3, S5, or D3.

7=Hibernate (Off - Soft), corresponding to ACPI state S4, where the state of the managed element is preserved and will be recovered upon powering on.

8=Off - Soft, corresponding to ACPI state G2, S5, or D3. 9= Power Cycle (Off-Hard), corresponds to the managed element reaching the ACPI state G3 followed by ACPI state S0.

10=Master Bus Reset, corresponds to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system master bus reset. 11=Diagnostic Interrupt (NMI), corresponding to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system non-maskable interrupt. 12=Off - Soft Graceful, equivalent to Off Soft but preceded by a request to the managed element to perform an orderlyshutdown.

13=Off - Hard Graceful, equivalent to Off Hard but preceded by a request to the managed element to perform an orderly shutdown.

14=Master Bus Rest Graceful, equivalent to Master Bus Reset but preceded by a request to the managed element to perform an orderly shutdown.

15=Power Cycle (Off - Soft Graceful), equivalent to Power Cycle (Off - Soft) but preceded by a request to the managed element to perform an orderly shutdown.

16=Power Cycle (Off - Hard Graceful), equivalent to Power Cycle (Off - Hard) but preceded by a request to the managed element to perform an orderly shutdown.

17=Diagnostic Interrupt (INIT), equivalent to Diagnostic Interrupt (NMI) but performed by an INIT switch instead because the NMI signal is masked.

..=DMTF Reserved.

0x7FFF..0xFFFF = Vendor Specific.

		ValueMap
		Values

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Off - Soft Graceful

		13
		Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		17
		Diagnostic Interrupt (INIT)

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

uint16[] PowerChangeCapabilities

An enumeration indicating the specific power-related capabilities of a managed element. Since this is an array, multiple values may be specified. The current values in the enumeration are:

0 = Unknown

1 = Other

2 = Power Saving Modes Entered Automatically, describing that a managed element can change its power state based on usage or other criteria

3 = Power State Settable, indicating that the RequestPowerStateChange method is supported

4 = Power Cycling Supported, indicating that the RequestPowerStateChange method can be invoked with the PowerState input variable set to ‘Power Cycle (Off Soft)’

5 = Timed Power On Supported, indicating that the RequestPowerStateChange method can be invoked with the PowerState input variable set to ‘Power On’ and the Time parameter set to a specific date and time, or interval, for power-on.8 = Graceful Shutdown Supported, indicating that the managed element can be sent a hardware signal requesting an orderly shutdown prior to the requested power state change.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Power Saving Modes Entered Automatically

		3
		Power State Settable

		4
		Power Cycling Supported

		5
		Timed Power On Supported

		6
		Off Hard Power Cycling Supported

		7
		HW Reset Supported

		8
		Graceful Shutdown Supported

uint16[] PowerCapabilities

An enumeration indicating the specific power-related capabilities of a managed element. Since this is an array, multiple values may be specified. The current values in the enumeration are:

0 = Unknown

1 = Other

2 = Power Saving Modes Entered Automatically, describing that a managed element can change its power state based on usage or other criteria

3 = Power State Settable, indicating that the SetPowerState method is supported

4 = Power Cycling Supported, indicating that the SetPowerState method can be invoked with the PowerState input variable set to ‘Power Cycle’

5 = Timed Power On Supported, indicating that the SetPowerState method can be invoked with the PowerState input variable set to ‘Power Cycle’ and the Time parameter set to a specific date and time, or interval, for power-on.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Power Saving Modes Entered Automatically

		3
		Power State Settable

		4
		Power Cycling Supported

		5
		Timed Power On Supported

uint16[] PowerStatesSupported

An enumeration that indicates the power states supported by a managed element. Because this is an array, multiple values can be specified. The current values in the enumeration are:

2=On, corresponding to ACPI state G0 or S0 or D0.

3=Sleep - Light, corresponding to ACPI state G1, S1/S2, or D1.

4=Sleep - Deep, corresponding to ACPI state G1, S3, or D2.

5=Power Cycle (Off - Soft), corresponding to ACPI state G2, S5, or D3, but where the managed element is set to return to power state “On” at a pre-determined time.

6=Off - Hard, corresponding to ACPI state G3, S5, or D3.

7=Hibernate (Off - Soft), corresponding to ACPI state S4, where the state of the managed element is preserved and will be recovered upon powering on.

8=Off - Soft, corresponding to ACPI state G2, S5, or D3. 9= Power Cycle (Off-Hard), corresponds to the managed element reaching the ACPI state G3 followed by ACPI state S0.

10=Master Bus Reset, corresponds to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system master bus reset. 11=Diagnostic Interrupt (NMI), corresponding to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system non-maskable interrupt. 12=Off - Soft Graceful, equivalent to Off Soft but preceded by a request to the managed element to perform an orderlyshutdown.

13=Off - Hard Graceful, equivalent to Off Hard but preceded by a request to the managed element to perform an orderly shutdown.

14=Master Bus Rest Graceful, equivalent to Master Bus Reset but preceded by a request to the managed element to perform an orderly shutdown.

15=Power Cycle (Off - Soft Graceful), equivalent to Power Cycle (Off - Soft) but preceded by a request to the managed element to perform an orderly shutdown.

16=Power Cycle (Off - Hard Graceful), equivalent to Power Cycle (Off - Hard) but preceded by a request to the managed element to perform an orderly shutdown.

..=DMTF Reserved.

0x7FFF..0xFFFF = Vendor Specific.

		ValueMap
		Values

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Off - Soft Graceful

		13
		Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

string InstanceID

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSSSDService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSSSDService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_SSSDService Dependent

Instance of SSSD service.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPConfigurationServiceAffectsElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPConfigurationServiceAffectsElement

Class reference

Subclass of CIM_ServiceAffectsElement

IPConfigurationServiceAffectsElement represents an association between IPConfigurationService and the ManagedElements that might be affected by its execution.

Key properties

AffectedElement

AffectingElement

AffectedElement

AffectingElement

Local properties

CIM_ManagedElement AffectedElement

The Managed Element that is affected by the Service.

LMI_IPConfigurationService AffectingElement

The Service that is affecting the ManagedElement.

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

uint16[] ElementEffects

uint16 AssignedSequence

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StaticIPAssignmentSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StaticIPAssignmentSettingData

Class reference

Subclass of CIM_IPAssignmentSettingData

CIM_StaticIPAssignmentSettingData defines a basic IP configuration which could be statically assigned to an IPProtocolEndpoint. This class defines a partial configuration. Instances are aggregated into an instance of IPAssignmentSettingData which defines a full configuration.

Key properties

InstanceID

Local properties

string IPv6Address

The IPv6 address that this ProtocolEndpoint represents.

string SubnetMask

The subnet mask for the IPv4 address of this ProtocolEndpoint, if one is defined.

uint16 IPv6AddressType

IPv6AddressType identifies the type of address found in the IPv6Address property of this class. The values of this property shall be interpreted according to RFC4291, Section 2.4

		ValueMap
		Values

		2
		Unspecified

		3
		Loopback

		4
		Multicast

		5
		Link Local Unicast

		6
		Global Unicast

		7
		Embedded IPv4 Address

		8
		Site Local Unicast

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string GatewayIPv4Address

The IP v4 address of the default gateway.

string GatewayIPv6Address

GatewayIPv6Address is used to identify the IPv6 address of the Gateway

uint16 IPv6SubnetPrefixLength

IPv6SubnetPrefixLength is used to identify the prefix length of the IPv6Address property that is used to specify a subnet

string IPv4Address

The IPv4 address that will be assigned to the ProtocolEndpoint.

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint. A value of 2 indicates that the application of the IPAssignmentSettingData instance does not affect these properties.

		ValueMap
		Values

		0..2
		DMTF Reserved

		3
		Static

		4..32767
		DMTF Reserved

		32768..
		Vendor Reserved

Local methods

None

Inherited properties

uint16 AddressPrefixOrigin

string InstanceID

string ElementName

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

string Caption

uint16 AddressSuffixOrigin

string Description

string SoID

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxInstModification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxInstModification

Class reference

Subclass of CIM_InstModification

CIM_InstModification notifies when an instance is modified.

Key properties

Local properties

None

Local methods

None

Inherited properties

string[] ChangedPropertyNames

string OtherSeverity

string PreviousInstance

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/networking/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Networking Scripts documentation

Contents:

		Networking command line reference
		net

		Networking Script python reference
		Networking Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BaseboardContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BaseboardContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_Baseboard PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Processor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Processor

Class reference

Subclass of CIM_LogicalDevice

Capabilities and management of the Processor LogicalDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 LoadPercentage

Loading of this Processor, averaged over the last minute, in Percent.

uint32 ExternalBusClockSpeed

The speed (in MHz) of the external bus interface (also known as the front side bus).

uint32 MaxClockSpeed

The maximum speed (in MHz) of this Processor.

string UniqueID

A globally unique identifier for the Processor. This identifier can be unique only within a Processor Family.

uint16 AddressWidth

Processor address width in bits.

uint32 CurrentClockSpeed

The current speed (in MHz) of this Processor.

string Stepping

Stepping is a free-form string that indicates the revision level of the Processor within the Processor.Family.

uint16 DataWidth

Processor data width in bits.

uint16 NumberOfEnabledCores

Number of processor cores enabled for processor.

string OtherFamilyDescription

A string that describes the Processor Family type. It is used when the Family property is set to 1 (“Other”). This string should be set to NULL when the Family property is any value other than 1.

uint16 Family

The Processor family type. For example, values include “Pentium(R) processor with MMX(TM) technology” (value=14) and “68040” (value=96).

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		8086

		4
		80286

		5
		80386

		6
		80486

		7
		8087

		8
		80287

		9
		80387

		10
		80487

		11
		Pentium(R) brand

		12
		Pentium(R) Pro

		13
		Pentium(R) II

		14
		Pentium(R) processor with MMX(TM) technology

		15
		Celeron(TM)

		16
		Pentium(R) II Xeon(TM)

		17
		Pentium(R) III

		18
		M1 Family

		19
		M2 Family

		20
		Intel(R) Celeron(R) M processor

		21
		Intel(R) Pentium(R) 4 HT processor

		24
		K5 Family

		25
		K6 Family

		26
		K6-2

		27
		K6-3

		28
		AMD Athlon(TM) Processor Family

		29
		AMD(R) Duron(TM) Processor

		30
		AMD29000 Family

		31
		K6-2+

		32
		Power PC Family

		33
		Power PC 601

		34
		Power PC 603

		35
		Power PC 603+

		36
		Power PC 604

		37
		Power PC 620

		38
		Power PC X704

		39
		Power PC 750

		40
		Intel(R) Core(TM) Duo processor

		41
		Intel(R) Core(TM) Duo mobile processor

		42
		Intel(R) Core(TM) Solo mobile processor

		43
		Intel(R) Atom(TM) processor

		48
		Alpha Family

		49
		Alpha 21064

		50
		Alpha 21066

		51
		Alpha 21164

		52
		Alpha 21164PC

		53
		Alpha 21164a

		54
		Alpha 21264

		55
		Alpha 21364

		56
		AMD Turion(TM) II Ultra Dual-Core Mobile M Processor Family

		57
		AMD Turion(TM) II Dual-Core Mobile M Processor Family

		58
		AMD Athlon(TM) II Dual-Core Mobile M Processor Family

		59
		AMD Opteron(TM) 6100 Series Processor

		60
		AMD Opteron(TM) 4100 Series Processor

		61
		AMD Opteron(TM) 6200 Series Processor

		62
		AMD Opteron(TM) 4200 Series Processor

		63
		AMD FX(TM) Series Processor

		64
		MIPS Family

		65
		MIPS R4000

		66
		MIPS R4200

		67
		MIPS R4400

		68
		MIPS R4600

		69
		MIPS R10000

		70
		AMD C-Series Processor

		71
		AMD E-Series Processor

		72
		AMD A-Series Processor

		73
		AMD G-Series Processor

		74
		AMD Z-Series Processor

		75
		AMD R-Series Processor

		76
		AMD Opteron(TM) 4300 Series Processor

		77
		AMD Opteron(TM) 6300 Series Processor

		78
		AMD Opteron(TM) 3300 Series Processor

		79
		AMD FirePro(TM) Series Processor

		80
		SPARC Family

		81
		SuperSPARC

		82
		microSPARC II

		83
		microSPARC IIep

		84
		UltraSPARC

		85
		UltraSPARC II

		86
		UltraSPARC IIi

		87
		UltraSPARC III

		88
		UltraSPARC IIIi

		96
		68040

		97
		68xxx Family

		98
		68000

		99
		68010

		100
		68020

		101
		68030

		102
		AMD Athlon(TM) X4 Quad-Core Processor Family

		103
		AMD Opteron(TM) X1000 Series Processor

		104
		AMD Opteron(TM) X2000 Series APU

		112
		Hobbit Family

		120
		Crusoe(TM) TM5000 Family

		121
		Crusoe(TM) TM3000 Family

		122
		Efficeon(TM) TM8000 Family

		128
		Weitek

		130
		Itanium(TM) Processor

		131
		AMD Athlon(TM) 64 Processor Family

		132
		AMD Opteron(TM) Processor Family

		133
		AMD Sempron(TM) Processor Family

		134
		AMD Turion(TM) 64 Mobile Technology

		135
		Dual-Core AMD Opteron(TM) Processor Family

		136
		AMD Athlon(TM) 64 X2 Dual-Core Processor Family

		137
		AMD Turion(TM) 64 X2 Mobile Technology

		138
		Quad-Core AMD Opteron(TM) Processor Family

		139
		Third-Generation AMD Opteron(TM) Processor Family

		140
		AMD Phenom(TM) FX Quad-Core Processor Family

		141
		AMD Phenom(TM) X4 Quad-Core Processor Family

		142
		AMD Phenom(TM) X2 Dual-Core Processor Family

		143
		AMD Athlon(TM) X2 Dual-Core Processor Family

		144
		PA-RISC Family

		145
		PA-RISC 8500

		146
		PA-RISC 8000

		147
		PA-RISC 7300LC

		148
		PA-RISC 7200

		149
		PA-RISC 7100LC

		150
		PA-RISC 7100

		160
		V30 Family

		161
		Quad-Core Intel(R) Xeon(R) processor 3200 Series

		162
		Dual-Core Intel(R) Xeon(R) processor 3000 Series

		163
		Quad-Core Intel(R) Xeon(R) processor 5300 Series

		164
		Dual-Core Intel(R) Xeon(R) processor 5100 Series

		165
		Dual-Core Intel(R) Xeon(R) processor 5000 Series

		166
		Dual-Core Intel(R) Xeon(R) processor LV

		167
		Dual-Core Intel(R) Xeon(R) processor ULV

		168
		Dual-Core Intel(R) Xeon(R) processor 7100 Series

		169
		Quad-Core Intel(R) Xeon(R) processor 5400 Series

		170
		Quad-Core Intel(R) Xeon(R) processor

		171
		Dual-Core Intel(R) Xeon(R) processor 5200 Series

		172
		Dual-Core Intel(R) Xeon(R) processor 7200 Series

		173
		Quad-Core Intel(R) Xeon(R) processor 7300 Series

		174
		Quad-Core Intel(R) Xeon(R) processor 7400 Series

		175
		Multi-Core Intel(R) Xeon(R) processor 7400 Series

		176
		Pentium(R) III Xeon(TM)

		177
		Pentium(R) III Processor with Intel(R) SpeedStep(TM) Technology

		178
		Pentium(R) 4

		179
		Intel(R) Xeon(TM)

		180
		AS400 Family

		181
		Intel(R) Xeon(TM) processor MP

		182
		AMD Athlon(TM) XP Family

		183
		AMD Athlon(TM) MP Family

		184
		Intel(R) Itanium(R) 2

		185
		Intel(R) Pentium(R) M processor

		186
		Intel(R) Celeron(R) D processor

		187
		Intel(R) Pentium(R) D processor

		188
		Intel(R) Pentium(R) Processor Extreme Edition

		189
		Intel(R) Core(TM) Solo Processor

		190
		K7

		191
		Intel(R) Core(TM)2 Duo Processor

		192
		Intel(R) Core(TM)2 Solo processor

		193
		Intel(R) Core(TM)2 Extreme processor

		194
		Intel(R) Core(TM)2 Quad processor

		195
		Intel(R) Core(TM)2 Extreme mobile processor

		196
		Intel(R) Core(TM)2 Duo mobile processor

		197
		Intel(R) Core(TM)2 Solo mobile processor

		198
		Intel(R) Core(TM) i7 processor

		199
		Dual-Core Intel(R) Celeron(R) Processor

		200
		S/390 and zSeries Family

		201
		ESA/390 G4

		202
		ESA/390 G5

		203
		ESA/390 G6

		204
		z/Architectur base

		205
		Intel(R) Core(TM) i5 processor

		206
		Intel(R) Core(TM) i3 processor

		210
		VIA C7(TM)-M Processor Family

		211
		VIA C7(TM)-D Processor Family

		212
		VIA C7(TM) Processor Family

		213
		VIA Eden(TM) Processor Family

		214
		Multi-Core Intel(R) Xeon(R) processor

		215
		Dual-Core Intel(R) Xeon(R) processor 3xxx Series

		216
		Quad-Core Intel(R) Xeon(R) processor 3xxx Series

		217
		VIA Nano(TM) Processor Family

		218
		Dual-Core Intel(R) Xeon(R) processor 5xxx Series

		219
		Quad-Core Intel(R) Xeon(R) processor 5xxx Series

		221
		Dual-Core Intel(R) Xeon(R) processor 7xxx Series

		222
		Quad-Core Intel(R) Xeon(R) processor 7xxx Series

		223
		Multi-Core Intel(R) Xeon(R) processor 7xxx Series

		224
		Multi-Core Intel(R) Xeon(R) processor 3400 Series

		228
		AMD Opteron(TM) 3000 Series Processor

		229
		AMD Sempron(TM) II Processor Family

		230
		Embedded AMD Opteron(TM) Quad-Core Processor Family

		231
		AMD Phenom(TM) Triple-Core Processor Family

		232
		AMD Turion(TM) Ultra Dual-Core Mobile Processor Family

		233
		AMD Turion(TM) Dual-Core Mobile Processor Family

		234
		AMD Athlon(TM) Dual-Core Processor Family

		235
		AMD Sempron(TM) SI Processor Family

		236
		AMD Phenom(TM) II Processor Family

		237
		AMD Athlon(TM) II Processor Family

		238
		Six-Core AMD Opteron(TM) Processor Family

		239
		AMD Sempron(TM) M Processor Family

		250
		i860

		251
		i960

		254
		Reserved (SMBIOS Extension)

		255
		Reserved (Un-initialized Flash Content - Lo)

		260
		SH-3

		261
		SH-4

		280
		ARM

		281
		StrongARM

		300
		6x86

		301
		MediaGX

		302
		MII

		320
		WinChip

		350
		DSP

		500
		Video Processor

		65534
		Reserved (For Future Special Purpose Assignment)

		65535
		Reserved (Un-initialized Flash Content - Hi)

uint16[] Characteristics

Array of enumerated values that describes the characteristics of the processor. The characteristics include certain features of the processor such as 64 bit support for data width of the processor. Note that if this property does not contain the value corresponding to a feature of the processor, than the feature either is not that some of the features of the processor may exist but may not be enabled. To find the the currently enabled features the processor, reffer to the EnabledProcessorCharacteristics property. Values specified in the enumeration may be obtained from SMBIOS v2.5 Type 4 offset 26h (Processor Characteristics Word). 32-bit Capable - describes whether the processor has the capability for 32 bits data width. 64-bit Capable - describes whether the processor has the capability for 64 bits data width. Enhanced Virtualization - describes whether the processor has the capability for executing enhanced virtualization instructions. Hardware Thread - indicates that the processor is capable of the hardware threading. NX-bit - describes whether the processor has capability to utilize non-execute bit and can differentiate the memory marked strictly for storage. Power/Performance Control - describes whether the processor has capability for load based power savings. Core Frequency Boosting - describes whether the processor has a capability for one processor core to increase its frequency whenever the other core has gone into an idle state.

		ValueMap
		Values

		0
		Unknown

		1
		DMTF Reserved

		2
		64-bit Capable

		3
		32-bit Capable

		4
		Enhanced Virtualization

		5
		Hardware Thread

		6
		NX-bit

		7
		Power/Performance Control

		8
		Core Frequency Boosting

		9..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

uint16 UpgradeMethod

CPU socket information that includes data on how this Processor can be upgraded (if upgrades are supported). This property is an integer enumeration.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Daughter Board

		4
		ZIF Socket

		5
		Replacement/Piggy Back

		6
		None

		7
		LIF Socket

		8
		Slot 1

		9
		Slot 2

		10
		370 Pin Socket

		11
		Slot A

		12
		Slot M

		13
		Socket 423

		14
		Socket A (Socket 462)

		15
		Socket 478

		16
		Socket 754

		17
		Socket 940

		18
		Socket 939

		19
		Socket mPGA604

		20
		Socket LGA771

		21
		Socket LGA775

		22
		Socket S1

		23
		Socket AM2

		24
		Socket F (1207)

		25
		Socket LGA1366

		26
		Socket G34

		27
		Socket AM3

		28
		Socket C32

		29
		Socket LGA1156

		30
		Socket LGA1567

		31
		Socket PGA988A

		32
		Socket BGA1288

		33
		rPGA988B

		34
		BGA1023

		35
		BGA1224

		36
		LGA1155

		37
		LGA1356

		38
		LGA2011

		39
		Socket FS1

		40
		Socket FS2

		41
		Socket FM1

		42
		Socket FM2

		43
		Socket LGA2011-3

		44
		Socket LGA1356-3

		45
		Socket LGA1150

		46
		Socket BGA1168

uint16[] EnabledProcessorCharacteristics

This property indicates the enabled states of the corresponding processor characteristics. The property array is indexed with ProcessorCharacteristics property array of the associated CIM_ProcessorCapabilities instance through the CIM_ElementCapabilities association. Each of the values in the ProcessorCharacteristics array property shall have its enabled state indicated in the corresponding element of this property array. For example; if the ProcessorCharacteristics array has value - NX-bit - for the first element of the array, then the first element of this property will contain the value for the enabled state of the NX-bit feature of the processor: whether the processor currently differentiates the dedicated storage memory based on the non-execute bit. Unknown - the processor feature is in unknown state. Enabled - the processor feature is enabled and could be used. Disabled - the processor feature is disabled and cannot be used. Not Applicable - the processor feature does not have state context.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Not Applicable

		5..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Role

A free-form string that describes the role of the Processor, for example, “Central Processor” or “Math Processor”.

uint16 CPUStatus

The CPUStatus property that indicates the current status of the Processor. For example, the Processor might be disabled by the user (value=2), or disabled due to a POST error (value=3). Information in this property can be obtained from SMBIOS, the Type 4 structure, and the Status attribute.

		ValueMap
		Values

		0
		Unknown

		1
		CPU Enabled

		2
		CPU Disabled by User

		3
		CPU Disabled By BIOS (POST Error)

		4
		CPU Is Idle

		7
		Other

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

datetime TimeOfLastStateChange

uint16 CommunicationStatus

string CreationClassName

uint64 PowerOnHours

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

string DeviceID

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 OperatingStatus

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

string SystemName

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string Name

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkDeviceSAPImplementation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkDeviceSAPImplementation

Class reference

Subclass of CIM_DeviceSAPImplementation

An association between a ServiceAccessPoint (NetworkPort in this case) and how it is implemented (LANEndpoint).

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The instance of LMI_LANEndpoint that represent same device as Antecedent.

CIM_NetworkPort Antecedent

The instance of CIM_NetworkPort subclass representing network device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PVFormat.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PVFormat

Class reference

Subclass of LMI_DataFormat

This class represents Physical Volume metadata present on a StorageExtent. The StorageExtent can be member of existing Volume Group or its Volume Group has been destroyed.

Key properties

Name

CSName

CSCreationClassName

CreationClassName

Local properties

string UUID

UUID of the Physical Volume.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

string FormatTypeDescription

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

uint16 DetailedStatus

uint16 FormatType

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16 PrimaryStatus

uint64 Generation

string CSCreationClassName

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPVersionElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPVersionElementSettingData

Class reference

Subclass of CIM_ElementSettingData

LMI_IPVersionElementSettingData is association between IPVersionSettingData and ComputerSystem or IPNetworkConnection.

Association with ComputerSystem means that the ComputerSystem supports given IP version. Association with IPNetworkConnection means that the IPNetworkConnection supports given IP version.

Key properties

SettingData

ManagedElement

SettingData

ManagedElement

Local properties

CIM_IPVersionSettingData SettingData

The SettingData object associated with the element.

CIM_ManagedElement ManagedElement

The managed element.

Local methods

None

Inherited properties

uint16 IsMinimum

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MediaPresent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MediaPresent

Class reference

Subclass of CIM_Dependency

Where a StorageExtent must be accessed through a MediaAccess Device, this relationship is described by the MediaPresent association.

Key properties

Dependent

Antecedent

Local properties

CIM_StorageExtent Dependent

The StorageExtent accessed using the MediaAccessDevice.

CIM_MediaAccessDevice Antecedent

The MediaAccessDevice.

boolean FixedMedia

Boolean indicating that the accessed StorageExtent is fixed in the MediaAccessDevice and can not be ejected.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageStatisticsCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageStatisticsCollection

Class reference

Subclass of CIM_StatisticsCollection

A subclass of SystemSpecificCollection which collects together statistics for a system. This class forms an ‘anchor point’ from which all the statistics kept for the system can be found (via the MemberOfCollection associations).

Key properties

InstanceID

Local properties

datetime SampleInterval

This property provides the minimum sampling interval for the associated statistics so that client applications can determine the minimum interval that the StatisticsCollection should be sampled. If the statistics are sampled at different cycles, this property MUST be set to a zero time interval.

Local methods

None

Inherited properties

string ElementName

datetime TimeLastSampled

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDAvailableDomain.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDAvailableDomain

Class reference

All domains managed by SSSD.

Key properties

Domain

SSSD

Local properties

LMI_SSSDDomain Domain

LMI_SSSDService SSSD

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDProvider.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDProvider

Class reference

Subclass of CIM_ManagedElement

Data provider module information.

Key properties

Type

Module

Local properties

string Module

Name of the module that provides the desired data.

string Type

Name of data class handled by the provider.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PowerManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PowerManagementService

Class reference

Subclass of CIM_Service

A class derived from Service that describes power management functionality, hosted on a System. Whether this service might be used to affect the power state of a particular element is defined by the CIM_ServiceAvailable ToElement association.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 SetPowerState (uint16 PowerState, CIM_ManagedElement ManagedElement, datetime Time)

Deprecated!
The CIM_PowerManagementService.RequestPowerStateChange method should be used instead of SetPowerState method, which is deprecated. SetPowerState defines the desired power state of the managed element and when the element should be put into that state. The SetPowerState method has three input parameters, no output parameters, and a result.

		PowerState indicates the desired power state.

		ManagedElement indicates the element whose state is set. This element should be associated with the service using the ServiceAvailableToElement relationship.

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received).

Note that when the PowerState parameter is equal to 5, “Power Cycle (Off -Soft)”, the Time parameter indicates when the managed element should be powered on again. Power-off is immediate.

SetPowerState should return 0 if successful, 1 if the specified State and Time request is not supported for the element, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

		IN uint16 PowerState

		The power state for ManagedElement.

		ValueMap
		Values

		1
		On

		2
		Sleep - Light

		3
		Sleep -Deep

		4
		Vendor Specific

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		IN CIM_ManagedElement ManagedElement

		ManagedElement indicates the element whose state is set.

		IN datetime Time

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received.

uint32 RequestPowerStateChange (uint16 PowerState, CIM_ManagedElement ManagedElement, datetime Time, CIM_ConcreteJob Job, datetime TimeoutPeriod)

RequestPowerStateChange defines the desired power state of the managed element, and when the element should be put into that state. The RequestPowerStateChange method has five input parameters and a result code.

		PowerState indicates the desired power state.

		ManagedElement indicates the element whose state is set. This element SHOULD be associated to the service using the AssociatedPowerManagementService relationship.

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received).

		Job is a reference to the job if started.

		TimeOutPeriod indicates the maximum amount of time a client is expects the transition to take.

See CIM_PowerStateCapabilities for descriptions of PowerState parameter enumerations.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown or Unspecified Error

		3
		Cannot complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 PowerState

		The power state for ManagedElement.

		ValueMap
		Values

		2
		Power On

		3
		Sleep - Light

		4
		Sleep - Deep

		5
		Power Cycle (Off Soft)

		6
		Power Off - Hard

		7
		Hibernate

		8
		Power Off - Soft

		9
		Power Cycle (Off Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Power Off - Soft Graceful

		13
		Power Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		IN CIM_ManagedElement ManagedElement

		ManagedElement indicates the element whose state is set.

		IN datetime Time

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received.

		OUT CIM_ConcreteJob Job

		Reference to the job (can be null if the task is completed).

		IN datetime TimeoutPeriod

		A timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition.

If this property does not contain 0 or null and the implementation does not support this parameter, a return code of ‘Use Of Timeout Parameter Not Supported’ must be returned.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstDeletion.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstDeletion

Class reference

Subclass of CIM_InstIndication

CIM_InstDeletion notifies when an existing instance is deleted.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_HostedFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_HostedFileSystem

Class reference

Subclass of CIM_SystemComponent

A link between the System (such as a Computer or Application System) and the FileSystem that is a part of it.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_System GroupComponent

The System that hosts the FileSystem.

CIM_FileSystem PartComponent

The FileSystem that is part of the System and hosted on it.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogRecord.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogRecord

Class reference

Subclass of CIM_RecordForLog

The LogRecord object can describe the definitional format for entries in a MessageLog, or can be used to instantiate the actual records in the Log. The latter approach provides a great deal more semantic definition and management control over the individual entries in a MessageLog, than do the record manipulation methods of the Log class. It is recommended that the data in individual Log entries be modeled using subclasses of LogRecord, to avoid the creation of LogRecords with one property (such as RecordData) without semantics.

Definitional formats for LogRecords could be specified by establishing a naming convention for the RecordID and Message Timestamp key properties.

Key properties

LogCreationClassName

MessageTimestamp

RecordID

LogName

CreationClassName

Local properties

string LogCreationClassName

The scoping Log’s CreationClassName.

datetime MessageTimestamp

A LogRecord’s key structure includes a timestamp for the entry. If the timestamp for the entry is unknown, the value 99990101000000.000000+000 SHOULD be used.

string RecordID

RecordID, with the MessageTimestamp property, serve to uniquely identify the LogRecord within a MessageLog. Note that this property is different than the RecordNumber parameters of the MessageLog methods. The latter are ordinal values only, useful to track position when iterating through a Log. On the other hand, RecordID is truly an identifier for an instance of LogRecord. It may be set to the record’s ordinal position, but this is not required.

string DataFormat

Deprecated!
A free-form string describing the LogRecord’s data structure.

string LogName

The scoping Log’s Name.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string Caption

string Description

string RecordFormat

uint64 Generation

string ElementName

string Locale

string InstanceID

uint16 PerceivedSeverity

string RecordData

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementStatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementStatisticalData

Class reference

Subclass of CIM_AbstractElementStatisticalData

CIM_ElementStatisticalData is an association that relates a ManagedElement to its StatisticalData. Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the ElementStatisticalData association for the referenced instance of CIM_StatisticalData. ElementStatisticalData describes the existence requirements and context for the CIM_StatisticalData, relative to a specific ManagedElement.

Key properties

Stats

ManagedElement

Stats

ManagedElement

Local properties

CIM_StatisticalData Stats

The statistic information/object.

CIM_ManagedElement ManagedElement

The ManagedElement for which statistical or metric data is defined.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSystemSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSystemSetting

Class reference

Subclass of CIM_SettingData

The FileSystemSetting describes the attribute values set when creating a FileSystem by a FileSystemConfigurationService. These settings can be associated via the ElementSettingData association with the created FileSystem. If the setting is associated via SettingAssociatedToCapabilities to a FileSystemCapabilities, it is one of the canned settings supported by this capabilities instance. A setting can also be an embedded instance parameter to a method (for instance, when used as a Goal parameter).

A NULL value for a property in a canned setting indicates support for a vendor-specific default. A NULL value for a property when the setting is used as a Goal parameter to a method indicates that the client does not care what value that property will have on creation and will accept any vendor-supplied default. When used with a FileSystem, a NULL value for a property must be interpreted as “Unknown”. The ActualFileSystemType property cannot have a default value in any context. If this Setting is associated with a FileSystemCapabilities element via SettingAssociatedToCapabilities, the value of ActualFileSystemType in the Setting and the Capabilities MUST match.

This class also supports persistence and recoverability of a FileSystem and its contained elements as defined in CIM 2.8 for the use of DatabaseStorageArea.

Key properties

InstanceID

Local properties

uint16[] FilenameLengthMax

An array of integers that specify the maximum number of characters in a filename corresponding to an entry in the FilenameFormats property.

An entry of ‘0xFFFF’ (the largest 16-bit integer) is interpreted as an indefinite length.

uint16[] FilenameStreamFormats

An array of enumerated integers representing the filename stream formats that the file system can support for access. The interpretation of these stream formats can be specific to vendors, or provided by some standard. But even within those constraints, the interpretation could be locale-specific or version-specific. For instance, Bytestream is locale-specific and is interpreted as ASCII for NFS v2 and v3 but UTF-8 in NFS v4. This additional information will normally be provided in the setting for the protocol used to access an element of this file system.

		ValueMap
		Values

		1
		ASCII

		2
		WideChar

		3
		MBCS

		4
		UTF-8

		5
		UNICODE UCS-16

		6
		UNICODE UCS-32

		7
		CIFS Client-interpreted

		8
		Bytestream

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] ObjectSizeMax

An array of integers that specifies the maximum size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific maximum associated with this setting.

uint16[] FilenameFormats

An array of enumerated values that specify the filename formats supported on this FileSystem for naming files. Some common formats are:

		DOS 8.3

		VMS ‘name.extension;version’ where the extension specifies a file type

		Unix name (file type is not specified in the name)

		Windows ‘name{.ext}*’ where any of the exts can specify a file type

For each entry in this array there is an associated maximum length for the name and an associated reserved set of characters.

The interpretation of the maximum length of the name as well as the FilenameReservedCharacterSet string is vendor-specific.

		ValueMap
		Values

		1
		DOS8.3

		2
		Unix

		3
		VMS

		4
		Windows LongNames

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 DataExtentsSharing

An enumerated value that specifies if the FileSystem supports or enforces sharing of data extents between objects.

		ValueMap
		Values

		0
		Unknown

		1
		No Sharing

		2
		Sharing Possible/Optional

		3
		Sharing Enforced

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] ObjectTypes

An array of enumerated values that specifies the set of object types that this FileSystem supports. This array is associated with a number of correspondingly indexed properties that specify the size and number of such objects.

When used as a goal, the client needs to specify only the subset of objects that they wish to specify; when used in a Setting associated with the FileSystem, this should contain all the types that the provider knows about; when used in a Setting associated with a Capabilities, this may only contain the types that the client can modify.

“inodes” indicates that the number of required inodes is specified.”files” indicates that the number of required files is specified.”directories” indicates that the number of required directories is specified.”links” indicates that the number of required links is specified.”devices” indicates that the number of required devices is specified.”files/directories” indicates that the number of required files and directories is specified.”blocks” indicates that the size of required storage in client-specific storage units is specified. This represents the desired size of available space in the filesystem, exclusive of space reserved for meta-data and for other system functions. If “blocks” is specified, the corresponding ObjectSize properties must all be the same and must specify the intended size of the blocks in bytes.

		ValueMap
		Values

		2
		inodes

		3
		files

		4
		directories

		5
		links

		6
		devices

		7
		files/directories

		8
		Blocks

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 CopyTarget

An enumerated value that specifies if this FileSystem can be a target for synchronization with or mirror of another FileSystem, or if it cannot be a target.

		ValueMap
		Values

		0
		Unknown

		1
		Can be a Primary only

		2
		Can be a Mirror only

		3
		Can be a Synchronization Target

		4
		Can be a Backup Target

		5
		Write Once

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 FilenameCaseAttributes

An enumerated value that specifies how this FileSystem supports the case of characters in the Filename. Note that the host and the service may support multiple conflicting features, but each FileSystem must be configured with only one of the supported features.

		ValueMap
		Values

		0
		Unknown

		1
		Case-sensitive

		2
		Case-forced to upper case

		3
		Case-forced to lower-case

		4
		Case-indifferent but lost

		5
		Case-indifferent but preserved

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] SupportedAuthorizationProtocols

An array of enumerated values that represent the authorization protocols that the FileSystem will support for access to objects by users, groups, accounts, etc. A FileSystem can support more than one authorization protocol.

		ValueMap
		Values

		1
		Posix Permissions

		2
		Posix ACLs

		3
		NFSv4 ACLs

		4
		NTFS4

		5
		NTFS5

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] ObjectSizeMin

An array of integers that specifies the minimum size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific minimum associated with this setting.

uint16[] SupportedAuthenticationProtocols

An array of enumerated values that represent the authentication protocols that the FileSystem will support for access to objects by users, groups, accounts, etc..

An entry of ‘0’ is not allowed.

A FileSystem can support more than one authentication protocol.

		ValueMap
		Values

		1
		AUTH_NONE

		2
		AUTH_SYS

		3
		AUTH_DH

		4
		AUTH_KRB4

		5
		AUTH_KRB5

		6
		RPCSEC_GSS LIPKEY

		7
		RPCSEC_GSS SPKM-3

		8
		RPCSEC_GSS Challenge-Response

		9
		NTLM v1

		10
		NTLM v2

		11
		Plain Text

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] NumberOfObjects

An array of integers that specifies the number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific number associated with this setting. When the Setting is associated with a FileSystemCapabilities element, this is the default; When the Setting is associated with a FileSystem element, this is the expected value; When the Setting is used as an embedded parameter to a method this is the goal.

string[] FilenameReservedCharacterSet

An array of strings that specifies the characters that may not appear in the name of any file contained by this FileSystem corresponding to the entry in the FilenameFormats property.

Note: It is not clear exactly how this works with the FilenameStreamFormats property above, since the format implicitly specifies the set of allowed characters.

uint16[] SupportedLockingSemantics

An array of enumerated values that represent the locking semantics that the FileSystem can support for controlled access. A file system can support more than one locking model. Just because a file system supports more than one model does not imply that it supports them simultaneously for an element.

		ValueMap
		Values

		1
		NLM/NFSv3

		2
		NFSv4 Share Reservations

		3
		NFSv4 Byte-range locking

		4
		NFSv4 Delegations

		5
		CIFS Sharing locks

		6
		CIFS Byte-range locks

		7
		CIFS Exclusive/Batch oplocks

		8
		CIFS Level II oplocks

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] NumberOfObjectsMin

An array of integers that specifies the minimum number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem MUST be able to contain. A value of 0 implies that there is no specific minimum associated with this setting.

uint64[] NumberOfObjectsMax

An array of integers that specifies the maximum number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem MUST be able to contain. A value of 0 implies that there is no specific maximum associated with this setting.

string[] OtherPersistenceTypes

An array of strings describing the persistence attributes where the corresponding entry in the PersistenceTypes property has a value of “Other”. This value is ignored in all other cases.

uint16 ActualFileSystemType

An enumerated value that indicates the file system implementation type supported by this Setting. This property MUST exist and have a value.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] ObjectSize

An array of integers that specifies the size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific number associated with this setting. When the Setting is associated with a FileSystemCapabilities element, this is the default; When the Setting is associated with a FileSystem element, this is the expected value; When the Setting is used as an embedded parameter to a method this is the goal.

uint16[] PersistenceTypes

An array of enumerated values representing the persistence attributes of the FileSystem. A value of “Persistent” indicates that the FileSystem supports persistence, can be preserved through an orderly shutdown and could be protected. A value of “Temporary” indicates that the FileSystem supports non-persistence, may not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem could controlled outside of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the corresponding entry of the OtherPersistenceTypes property, and is expected to be rarely, if ever, used.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

		5..
		DMTF Reserved

Local methods

None

Inherited properties

string InstanceID

string ElementName

string Description

string ConfigurationName

string SoOrgID

string Caption

string SoID

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStatisticsManifest.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStatisticsManifest

Class reference

Subclass of CIM_BlockStatisticsManifest

Instances of this class define a list of supported or desired properties of BlockStatisticalData instances. In the case where a BlockStatisticsManifest instance is a member of a BlockStatisticsManifestCollection used in a BlockStatisticsService.GetStatisticsCollection request, for each of the boolean “include” properties set to true in that BlockStatisticsManifest, the corresponding BlockStatisticalData property will be included, if available, in the statistics returned for BlockStatisticalData instances whose ElementType matches the ElementType of the BlockStatisticsManifest.

Key properties

InstanceID

Local properties

boolean IncludeIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed I/O time (number of Clock Tick Intervals) for all I/Os for that element as defined in ‘Total I/Os’.

boolean IncludeIdleTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed idle time for that element.

boolean IncludeReadIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all cumulative Read I/Os for that element.

boolean IncludeKBytesWritten

Whether to include in a filter for a metered element the cumulative count of data written in Kbytes for that element.

boolean IncludeReadIOs

Whether to include in a filter for a metered element the cumulative count of all reads for that element.

boolean IncludeMaintTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed maintenance time for that element.

boolean IncludeStartStatisticTime

Indicates whether or not the Statistics property of StatisticsService.GetStatisticsCollection method will include the time at time when statistics for this BlockStatisticsManifest were first captured.

boolean IncludeWriteHitIOs

Whether to include in a filter for a metered element the cumulative count of Write Cache Hits (Writes that went directly to Cache) for that element.

boolean IncludeTotalIOs

Whether to include in a filter for a metered element the cumulative count of I/Os for that element.

boolean IncludeMaintOp

Whether to include in a filter for a metered element the cumulative count of all maintenance operations for that element.

boolean IncludeWriteIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Write I/Os for that element.

boolean IncludeStatisticTime

Indicates whether or not the Statistics property of StatisticsService.GetStatisticsCollection method will include the time when statistics for this BlockStatisticsManifest were last captured.

boolean IncludeKBytesTransferred

Whether to include in a filter for a metered element the cumulative count of data transferred in Kbytes for that element.

uint16 ElementType

Determines the type of elements that this BlockStatisticsManifest can be applied to (e.g. during a GetStatisticsCollection request). This is used when the same set of statistical metrics is calculated for several types of devices. In this way, a single BlockStatisticsManifest instance can be used to filter all the StatsiticalData instances that contain metrics for the same type of element in a StatisticsCollection. If used, a subclass should override this property to specify the element types supported by that class, preferably through ValueMap and Values qualifiers to allow clients to programmatically retrieve those supported types.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

boolean IncludeWriteIOs

Whether to include in a filter for a metered element the cumulative count of all writes for tat element.

boolean IncludeReadHitIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Read I/Os read from cache for that element.

boolean IncludeWriteHitIOTimeCounter

Whether to include in a filter for a metered element the cumulative elapsed time for all Write I/Os written to cache for that element.

boolean IncludeKBytesRead

Whether to include in a filter for a metered element the cumulative count of data read in Kbytes for that element.

boolean IncludeReadHitIOs

Whether to include in a filter for a metered element the cumulative count of all read cache hits (Reads from Cache) for that element.

string[] CSVSequence

The sequence of BlockStorageStatisticalData property names for properties that will be returned are encoded in the CSVSequence array. Properties that are not included will not be returned with GetStatisticsCollection. Properties that are included in CSVSequence will be returned in the order they appear in CSVSequence.

Local methods

None

Inherited properties

string InstanceID

string ElementName

string Description

string Caption

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/logicalfile/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Logical File Scripts documentation

Contents:

		Logical File command line reference
		file

		Logical File Script python reference

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGStorageCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGStorageCapabilities

Class reference

Subclass of CIM_StorageCapabilities

This class represents capability of LMI_StorageConfigurationService to create Volume Groups. It describes, which properties and which values can be used in LMI_VGStorageSetting.

There are no additional properties for now.

Key properties

InstanceID

Local properties

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the maximum is defined by PackageRedundancyMax.

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the maximum is defined by DataRedundancyMax.

boolean NoSinglePointOfFailure

Indicates whether or not the associated element supports no single point of failure. Values are: FALSE = does not support no single point of failure, and TRUE = supports no single point of failure.

uint16 PackageRedundancyDefault

PackageRedundancyDefault describes the default number of redundant packages that will be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds for redundancy are specified using the properties, PackageRedundancyMax and PackageRedundancyMin.

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

uint64 ExtentSizeDefault

Default size of Volume Group physical extents.

uint16 DataRedundancyDefault

DataRedundancyDefault describes the default number of complete copies of data that can be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds for the redundancy (max and min) are defined by DataRedundancyMax and DataRedundancyMin.

uint16[] SupportedStorageElementTypes

Support for allocation of thinly provisioned StoragePools.

		ValueMap
		Values

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		7
		ThinlyProvisionedAllocatedStoragePool

		8
		ThinlyProvisionedQuotaStoragePool

		9
		ThinlyProvisionedLimitlessStoragePool

		32768
		ThinlyProvisionedStorageExtent

boolean NoSinglePointOfFailureDefault

Indicates the default value for the NoSinglePointOfFailure property.

uint64 ThinProvisionedClientSettableReserve

uint64 ThinProvisionedDefaultReserve

uint16 ExtentStripeLengthDefault

Extent Stripe Length describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’.

A NULL value for ExtentStripeLengthDefault indicates that the system does not support configuration of storage by specifying Stripe Length.

If Extent Stripe Length is supported, and this Capabilities instance is associated with a pool that was created with a range of QOS then ExtentStripeLengthDefault represents the default value. Other available values(such as min, max, and discrete values) can be determined by using the ‘GetSupportedStripeLengths’ and ‘GetSupportedStripeLengthRange’ methods.

If Extent Stripe Length is supported and the pool was created with a single specific QOS, representing a Raid group, set, or rank, then this property represents the current/fixed value for the pool, and Extent Stripe Length is not supported in subsequent creation of elements from this pool. Consequently, the ‘GetSupportedStripeLength’ methods cannot be used, and in a StorageSetting instance used as a goal when creating or modifying a child element of the pool, ExtentStripeLengthGoal, ExtentStripeLengthMin, and ExtentStripeLengthMax MUST be set to NULL.

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data that can be maintained. Examples would be RAID 5 (where 1 copy is maintained) and RAID 1 (where 2 or more copies are maintained). Possible values are 1 to n. The default redundancy is specified using DataRedundancyDefault, while the minimum is defined by DataRedundancyMin.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages that can be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The default redundancy is specified using PackageRedundancyDefault, while the minimum is defined by PackageRedundancyMin.

Local methods

uint32 CreateVGStorageSetting (CIM_StorageExtent[] InExtents, LMI_StorageSetting Setting)

This method creates new instance of LMI_VGStorageSetting. Applications then do not need to calculate DataRedundancy, PackageRedundancy and ExtentStripeLength.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		IN CIM_StorageExtent[] InExtents

		List of devices, from which the new Volume Group will be created. The created LMI_VGStorageSetting will take redundancy and striping of these devices into account.

That means, to create volume group on top of two devices, the application passes InExtents=(FirstExtent, SecondExtent). Resulting LMI_VGStorageSetting will have DataRedundancy, PackageRedundancy and ExtentStripeLength as minimum of both input extents, indicating that the created Volume Group does not add any additional redundancy or stripping.

For example if the application wants to create volume group on top of two RAID1 devices, it passes InExtents = (FirstRAID1Extent, SecondRAID1Extent). Resulting LMI_MDRAIDStorageSetting will have DataRedundancy, PackageRedundancy and ExtentStripeLength as the minimum of the first and the second RAID1 extents.

		OUT LMI_StorageSetting Setting

		Created LMI_StorageSetting.

Inherited properties

uint16[] SupportedDataOrganizations

uint32[] AvailableRPM

string InstanceID

uint16 Encryption

uint16 ParityLayoutDefault

string Description

uint16[] AvailableDiskType

uint64 Generation

uint64[] AvailableInterconnectSpeed

string Caption

uint16[] SupportedCompressionRates

uint16 ElementType

uint16 DeltaReservationMin

uint16 DeltaReservationDefault

uint16[] AvailableInterconnectType

uint16[] AvailableFormFactorType

uint16 DeltaReservationMax

uint64 UserDataStripeDepthDefault

Inherited methods

GetSupportedStripeLengths

GetSupportedParityLayouts

GetSupportedStripeDepthRange

CreateGoalSettings

GetSupportedStripeLengthRange

GetSupportedStripeDepths

CreateSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SystemSlot.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SystemSlot

Class reference

Subclass of CIM_Slot

The Slot class represents Connectors into which Packages are inserted. For example, a PhysicalPackage that is a DiskDrive may be inserted into an SCA ‘Slot’. As another example, a Card (subclass of PhysicalPackage) may be inserted into a 16-, 32-, or 64-bit expansion ‘Slot’ on a HostingBoard. PCI or PCMCIA Type III Slots are examples of the latter.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 ConnectorGender

Describes the gender of the connector.

		ValueMap
		Values

		0
		Unknown

		2
		Male

		3
		Female

string ConnectorDescription

A string describing the Connector - used when the ConnectorLayout property is set to 1 (“Other”). Connector Description should be set to NULL when ConnectorLayout is any value other than 1.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint16 ConnectorLayout

Describes the type of packaging normally associated with this type of connector.16 (PCI) - describes the generic PCI connector layout. 17 (PCI-X) - describes the PCI Extended connector layout. 18 (PCI-E) - describes the PCI Express connector layout, where the actual layout as far as the length is concerned is unknown. 19 - 25 (PCI-E xN) - describes the PCI Express connector layout, where N is the lane count that appropriately descirbes the length of the PCI-E connector.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		RS232

		3
		BNC

		4
		RJ11

		5
		RJ45

		6
		DB9

		7
		Slot

		8
		SCSI High Density

		9
		SCSI Low Density

		10
		Ribbon

		11
		AUI

		12
		Fiber SC

		13
		Fiber ST

		14
		FDDI-MIC

		15
		Fiber-RTMJ

		16
		PCI

		17
		PCI-X

		18
		PCI-E

		19
		PCI-E x1

		20
		PCI-E x2

		21
		PCI-E x4

		22
		PCI-E x8

		23
		PCI-E x16

		24
		PCI-E x32

		25
		PCI-E x64

		26..32567
		DMTF Reserved

		32568..65535
		Vendor Reserved

string Description

A textual description of the PhysicalElement.

boolean SupportsHotPlug

Boolean indicating whether the Slot supports hot-plug of adapter Cards.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

uint16 MaxDataWidth

Maximum bus width of adapter Cards that can be inserted into this Slot, in bits. If the value is ‘unknown’, enter 0. If the value is other than 8, 16, 32, 64 or 128, enter 1.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 MaxLinkWidth

Maximum link width of a switching bus type, such as Infiniband and PCI Express. The width is expressed in number of communication lines, or lanes, between port and devices. This property dictates the maximum link width, in lanes, of adapter Cards that can be inserted into this Slot. If the value is ‘unknown’, enter 0.

		ValueMap
		Values

		0
		Unknown

		2
		x1

		3
		x2

		4
		x4

		5
		x8

		6
		x12

		7
		x16

		8
		x32

		9..
		DMTF Reserved

uint16 Number

The Number property indicates the physical slot number, which can be used as an index into a system slot table, whether or not that slot is physically occupied.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string[] OtherElectricalCharacteristics

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

boolean Powered

string VendorEquipmentType

string PurposeDescription

boolean SpecialPurpose

string OtherIdentifyingInfo

datetime ManufactureDate

uint16 CommunicationStatus

real32 HeightAllowed

string Version

string PartNumber

string Status

boolean CanBeFRUed

boolean OpenSwitch

uint16[] ConnectorElectricalCharacteristics

uint16[] OperationalStatus

uint16[] ConnectorType

string[] VendorCompatibilityStrings

string Manufacturer

uint16 DetailedStatus

string SerialNumber

uint16[] VppMixedVoltageSupport

boolean PoweredOn

uint32 ThermalRating

string OtherTypeDescription

string Model

uint16 PrimaryStatus

uint16[] VccMixedVoltageSupport

real32 LengthAllowed

uint32 NumPhysicalPins

uint64 Generation

uint16 OperatingStatus

datetime InstallDate

string ConnectorPinout

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedSoftwareJobMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedSoftwareJobMethodResult

Class reference

Subclass of LMI_AssociatedJobMethodResult

AssociatedJobMethodResult represents an association between a ConcreteJob and the MethodResult expressing the parameters for the Job when the job was created by side-effect of the execution of an extrinsic method.

Key properties

Job

JobParameters

Local properties

LMI_SoftwareJob Job

The associated ConcreteJob.

LMI_SoftwareMethodResult JobParameters

The associated MethodResult.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemCapabilities

Class reference

Subclass of CIM_FileSystemCapabilities

FileSystemCapabilities specifies the combination of properties that a FileSystemService can support when creating or maintaining FileSystems. Each supported combination of properties is specified by a FileSystemSetting that is associated with the FileSystemCapabilities element via ElementSettingData.

A FileSystemCapabilities element specifies the properties supported when using it.

This class does not provide a CreateGoal method! Use CreateSetting instead, which works similarly to LMI_StorageCapabilities.CreateSetting.

Key properties

InstanceID

Local properties

uint16[] SupportedProperties

An array of property names of the Setting that this Capabilities element supports. The Object-related parameters are not specified because they must always be supported even if not used.

		ValueMap
		Values

		2
		DataExtentsSharing

		3
		CopyTarget

		4
		FilenameCaseAttributes

		5
		FilenameStreamFormats

		6
		FilenameFormats

		7
		LockingSemantics

		8
		AuthorizationProtocols

		9
		AuthenticationProtocols

		10
		Persistence

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] SupportedPersistenceTypes

Deprecated!
An array of enumerated values representing the persistence capabilities of the FileSystem. A value of “Persistent” indicates that the FileSystem supports persistence, can be preserved through an orderly shutdown and could be protected. A value of “Temporary” indicates that the FileSystem supports non-persistence, may not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem could controlled outside of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the OtherPersistenceType attribute, and is expected to be rarely, if ever, used.

		ValueMap
		Values

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

uint16 ActualFileSystemType

An enumerated value that indicates the file system implementation type supported by this Capabilities.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		32769
		EXT4

		32770
		BTRFS

		32771
		JFS

		32772
		TMPFS

		32773
		VFAT

Local methods

uint16 LMI_CreateSetting (LMI_FileSystemSetting Setting)

Creates a supported FileSystemSetting. Caller can modify the setting via ModifyInstance intrinsic method.Unlike CIM standard CreateGoal, LMI_CreateSetting works with references to LMI_FileSystemSetting stored on the CIMOM, not with embedded instances and does not require iterating through several CreateGoal calls. The functionality is very similar to CIM_StorageCapabilities and CIM_StorageSetting.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		OUT LMI_FileSystemSetting Setting

		Created setting.

Inherited properties

string Description

string[] SupportedOtherPersistenceTypes

string InstanceID

uint16[] SupportedOperations

string ElementName

string Caption

uint64 Generation

Inherited methods

GetRequiredStorageSize

CreateGoalSettings

CreateGoal

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/sssd/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI SSSD Scripts documentation

Contents:

		SSSD command line reference
		sssd

		SSSD Script python reference

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AccountSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AccountSettingData

Class reference

Subclass of CIM_SettingData

CIM_AccountSettingData provides the ability to manage the desired configuration for an instance of CIM_Account. When associated with an instance of CIM_AccountManagementService, this class may be used to constrain the properties of instances of CIM_Accountcreated using the service. When associated with an instance of CIM_Account, this class may be used to manage the configuration of the CIM_Acount instance.

Key properties

InstanceID

Local properties

datetime MaximumPasswordExpiration

MaximumPasswordExpiration indicates the maximum password age enforced for the Account. The value shall be expressed in interval format or shall be NULL. A value of NULL shall indicate that the password aging is not enforced.

uint16 MaximumSuccessiveLoginFailures

MaximumSuccessiveLoginFailures indicates the number of successive failed login attempts that shall result in the Account being disabled. A value of zero shall indicate that the Account will not be disabled due to successive failed login attempts.

uint16[] ComplexPasswordRulesEnforced

ComplexPasswordRulesEnforced indicates the rules for constructing a complex password enforced by the Account.

Minimum Length a minimum length is enforced for passwords for the account.

Preclude User ID inclusion precluding the password from including the user ID is supported.

Maximum Repeating Characters a limit will be enforced on the number of times a character can occur consecutively.

Lower Case Alpha at least one lower case alpha character is required.

Upper Case Alpha at least one upper case alpha character is required.

Numeric Character at least one numeric character is required.

Special Character at least one special character is required.

		ValueMap
		Values

		2
		Minimum Length

		3
		Preclude User ID Inclusion

		4
		Maximum Repeating Characters

		5
		Lower Case Alpha

		6
		Upper Case Alpha

		7
		Numeric Character

		8
		Special Character

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

datetime InactivityTimeout

InactivityTimeout specifies the interval after which if an account has been inactive, it shall be Disabled. The value shall be expressed in interval format or shall be NULL. A value of NULL shall indicate that the Account will not be disabled due to inactivity.

uint16 PasswordHistoryDepth

PasswordHistoryDepth indicates the number of previous passwords that shall be maintained for the Account. The Account shall preclude the selection of a password if it occurs in the password history. A value of zero shall indicate that a password history is not maintained.

Local methods

None

Inherited properties

string SoOrgID

string SoID

string ElementName

string ConfigurationName

string Description

uint16 ChangeableType

string InstanceID

string[] ComponentSetting

string Caption

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StorageConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StorageConfigurationService

Class reference

Subclass of CIM_Service

This service allows the active management of a Storage Server. It allows jobs to be started for the creation, modification and deletion of storage objects (StoragePools, StorageVolumes and LogicalDisks).

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 AttachReplica (CIM_ConcreteJob Job, CIM_ManagedElement SourceElement, CIM_ManagedElement TargetElement, uint16 CopyType)

Create (or start a job to create) a StorageSynchronized relationship between two existing storage objects. Note that using the input parameter, CopyType, this function can be used to to create an ongoing association between the source and replica. If 0 is returned, the function completed successfully and no ConcreteJob instance is created. If 0x1000 is returned, a ConcreteJob is started, a reference to which is returned in the Job output parameter. A return value of 1 indicates the method is not supported. All other values indicate some type of error condition.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..0xFFFF
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if the task completed).

		IN CIM_ManagedElement SourceElement

		The source storage object which may be a StorageVolume or other storage object.

		IN CIM_ManagedElement TargetElement

		Reference to the target storage element (i.e., the replica).

		IN uint16 CopyType

		CopyType describes the type of Synchronized relationship that will be created. Values are:

Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.

UnSyncUnAssoc: Create unassociated copy of the source element.

		ValueMap
		Values

		2
		Async

		3
		Sync

		4
		UnSyncAssoc

		5
		UnSyncUnAssoc

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Specific

uint32 ReturnToStoragePool (CIM_ConcreteJob Job, CIM_LogicalElement TheElement)

Start a job to delete an element previously created from a StoragePool. The freed space is returned to the source StoragePool. If 0 is returned, the function completed successfully and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the element. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_LogicalElement TheElement

		Reference to the element to return to the StoragePool.

uint32 CreateOrModifyReplicationPipe (string PipeElementName, CIM_ComputerSystem SourceSystem, CIM_ComputerSystem TargetSystem, CIM_ProtocolEndpoint[] SourceEndpoint, CIM_ProtocolEndpoint[] TargetEndpoint, string Goal, CIM_NetworkPipe ReplicationPipe)

This method establishes a peer-to-peer connection identified by a NetworkPipe element and two ProtocolEndpoint elements created by the method provider. The NetworkPipe is associated to a special peer-to-peer Network element. The provider will verify that two systems are capable of a peer relationship. If endpoints are assigned to the pipe, the same number of source and target endpoints must be supplied by the client to form a set of endpoint pairs. If ReplicationPipe is not supplied as an input parameter, a new pipe is created. If a pipe is supplied, a new set of endpoints is assigned to the existing pipe.

If Success (0) is returned, the function completed successfully.

A return value of Not Supported (1) indicates the method is not supported.

A return value of Busy (0x1000) indicates the method is not supported.

All other values indicate some type of error condition.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		0x1000
		Busy

		0x1001..0x7FFF
		Method Reserved

		0x8000..0xFFFF
		Vendor Specific

Parameters

		IN string PipeElementName

		A user-friendly name for the element created.

		IN CIM_ComputerSystem SourceSystem

		One of the two peer systems participating in the established peer-to-peer connection. If the provider supports uni-directional connections, this must identify the system hosting replica source elements.

		IN CIM_ComputerSystem TargetSystem

		One of the two peer systems participating in the established peer-to-peer connection. If the provider supports uni-directional connections, this must identify the system hosting replica target elements.

		IN CIM_ProtocolEndpoint[] SourceEndpoint

		References to source system endpoints/ports assigned to the pipe. If a new pipe is created, this is the initial set of endpoints assigned. If an existing pipe is modified, this set replaces the previous set. The list must be null if a provider does not allow the client to manage port assignment.

		IN CIM_ProtocolEndpoint[] TargetEndpoint

		References to target system endpoints/ports assigned to the pipe. If a new pipe is created, this is the initial set of endpoints assigned. If an existing pipe is modified, this set replaces the previous set. The list must be null if a provider does not allow the client to manage port assignment.

		IN string Goal

		The setting properties to be maintained for the peer-to-peer connection.

		IN, OUT CIM_NetworkPipe ReplicationPipe

		Reference to the created or modified NetworkPipe.

uint32 AttachOrModifyReplica (CIM_ConcreteJob Job, CIM_ManagedElement SourceElement, CIM_ManagedElement TargetElement, uint16 CopyType, string Goal, CIM_NetworkPipe ReplicationPipe)

Create (or start a job to create) a StorageSynchronized mirror relationship between two storage elements. The target element may be a local or a remote storage element. A remote mirror pair may be scoped by a peer-to-peer connection modeled as a NetworkPipe between peers.

If Job Completed with No Error (0) is returned, the function completed successfully and a ConcreteJob instance is not created.

If Method Parameters Checked - Job Started (0x1000) is returned, a ConcreteJob is started, a reference to which is returned in the Job output parameter.

A return value of Not Supported (1) indicates the method is not supported.

All other values indicate some type of error condition.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..0xFFFF
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if the task completed).

		IN CIM_ManagedElement SourceElement

		The source storage element which may be a StorageVolume, StorageExtent, LogicalFile, FileSystem, CommonDatabase, or any other storage object. For this reason, the type is made very generic.

		IN CIM_ManagedElement TargetElement

		Reference to the target storage element (i.e., the replica). The target storage element which may be a StorageVolume, StorageExtent, LogicalFile, FileSystem, CommonDatabase, or any other storage object. For this reason, the type is made very generic.

		IN uint16 CopyType

		CopyType describes the type of Synchronized relationship that will be created. Values are: Async: Create and maintain an asynchronous copy of the source. Sync: Create and maintain a synchronized copy of the source. UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source element.

UnSyncUnAssoc: Create an unassociated copy of the source element.

UnSyncAssoc and UnSyncUnAssoc are not supported for remote mirror replicas.

		ValueMap
		Values

		2
		Async

		3
		Sync

		4
		UnSyncAssoc

		5
		UnSyncUnAssoc

		6..4095
		DMTF Reserved

		0x1000..0xFFFF
		Vendor Specific

		IN string Goal

		The StorageSetting properties to be created or modified for the target element.

		IN CIM_NetworkPipe ReplicationPipe

		The NetworkPipe element that scopes the remote mirror pair. If the value is null, remote mirrors do not require a pre-established connection.

uint32 CreateElementsFromStoragePools (string[] ElementNames, uint16 ElementType, uint64 ElementCount, CIM_ConcreteJob Job, CIM_SettingData Goal, uint64 Size, CIM_StoragePool[] InPools, CIM_LogicalElement[] TheElements)

Start a job to create (or modify) a specified elements (for example StorageVolumes or StorageExtents) from StoragePools. One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the element. As an output parameter, it specifies the size achieved. Space is taken from the input StoragePool. The desired settings for the element are specified by the Goal parameter. If the requested size cannot be created, no action will be taken, and the Return Value will be 4097/0x1001. Also, the output value of Size is set to the nearest possible size. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job. If the number of elements created is less than the number of elements requested, the return value will be 4098/0x1002.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098
		Partially Completed Operation

		4099..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string[] ElementNames

		One or more user relevant names for the element being created. If NULL, then system supplied default names may be used. The value will be stored in the “ElementName” property for the created element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created. With ElementType of “2” and “3”, the implementation decides the provisioning of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		StorageVolume

		3
		StorageExtent

		4
		LogicalDisk

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		7
		FullyProvisionedStorageVolume

		8
		FullyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN uint64 ElementCount

		Count of elements to create. If null, it defaults to one element.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_SettingData Goal

		The requirements for the element to maintain. If set to a null value, the default configuration from the source pool will be used. This parameter should be a reference to a Setting or Profile appropriate to the element being created.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size for each element created. As an output parameter Size specifies the size achieved.

		IN CIM_StoragePool[] InPools

		The Pools from which to create the elements. If not supplied, system locates the appropriate pools.

		OUT CIM_LogicalElement[] TheElements

		Reference to the resulting elements.

uint32 CreateOrModifyElementFromStoragePool (string ElementName, uint16 ElementType, CIM_ConcreteJob Job, CIM_ManagedElement Goal, uint64 Size, CIM_StoragePool InPool, CIM_LogicalElement TheElement)

Start a job to create (or modify) a specified element (for example a StorageVolume or StorageExtent) from a StoragePool. One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the element. As an output parameter, it specifies the size achieved. Space is taken from the input StoragePool. The desired settings for the element are specified by the Goal parameter. If the requested size cannot be created, no action will be taken, and the Return Value will be 4097/0x1001. Also, the output value of Size is set to the nearest possible size. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the element being created. If NULL, then a system supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element. If not NULL, this parameter will supply a new name when modifying an existing element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created or modified. If the input parameter TheElement is specified when the operation is a ‘modify’, this type value must match the type of that instance. With ElementType of “2” and “3”, the implementation decides the provisioning of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		StorageVolume

		3
		StorageExtent

		4
		LogicalDisk

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		7
		FullyProvisionedStorageVolume

		8
		FullyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement Goal

		The requirements for the element to maintain. If set to a null value, the default configuration from the source pool will be used. This parameter should be a reference to a Setting or Profile appropriate to the element being created. If not NULL, this parameter will supply a new Goal when modifying an existing element.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size. If not NULL, this parameter will supply a new size when modifying an existing element. As an output parameter Size specifies the size achieved.

		IN CIM_StoragePool InPool

		The Pool from which to create the element. This parameter must be set to null if the input parameter TheElement is specified (in the case of a ‘modify’ operation).

		IN, OUT CIM_LogicalElement TheElement

		As an input parameter: if null, creates a new element. If not null, then the method modifies the specified element. As an output parameter, it is a reference to the resulting element.

uint32 CreateOrModifyStoragePool (string ElementName, CIM_ConcreteJob Job, CIM_StorageSetting Goal, uint64 Size, string[] InPools, string[] InExtents, CIM_StoragePool Pool)

Starts a job to create (or modify) a StoragePool. The StoragePool will be (or must be) scoped to the same System as this Service. One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the pool. As an output parameter, it specifies the size achieved. Space is taken from either or both of the specified input StoragePools and StorageExtents (InPools and InExtents). The capability requirements that the Pool must support are defined using the Goal parameter. If the requested pool size cannot be created, no action will be taken, the Return Value will be 4097/0x1001, and the output value of Size will be set to the nearest possible size. If 0 is returned, then the task completed successfully and the use of ConcreteJob was not required. If the task will take some time to complete, a ConcreteJob will be created and its reference returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the pool being created. If NULL, then a system supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created pool. If not NULL, this parameter will supply a new name when modifying an existing pool.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_StorageSetting Goal

		Reference to an instance of StorageSetting that defines the desired capabilities of the StoragePool. If set to a null value, the default configuration from the source pool will be used. If not NULL, this parameter will supply a new Goal setting when modifying an existing pool.

		IN, OUT uint64 Size

		As an input parameter this specifies the desired pool size in bytes. As an output parameter this specifies the size achieved.

		IN string[] InPools

		Array of strings containing representations of references to CIM_StoragePool instances, that are used to create the Pool or modify the source pools.

		IN string[] InExtents

		Array of strings containing representations of references to CIM_StorageExtent instances, that are used to create the Pool or modify the source extents.

		IN, OUT CIM_StoragePool Pool

		As an input parameter: if null, creates a new StoragePool. If not null, modifies the referenced Pool. When returned, it is a reference to the resulting StoragePool.

uint32 ScsiScan (CIM_ConcreteJob Job, uint16 ConnectionType, string OtherConnectionType, CIM_SCSIProtocolEndpoint[] Initiators, string[] Targets, string[] LogicalUnits)

This method requests that the system rescan SCSI devices for changes in their configuration. If called on a general-purpose host, the changes are reflected in the list of devices available to applications (for example, the UNIX ‘device tree’. This method may also be used on a storage appliance to force rescanning of attached SCSI devices.

This operation can be disruptive; optional parameters allow the caller to limit the scan to a single or set of SCSI device elements. All parameters are optional; if parameters other Job are passed in as null, a full scan is invoked.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6..4095
		DMTF Reserved

		4096
		Invalid connection type

		4097
		Invalid Initiator

		4098
		No matching target found

		4099
		No matching LUs found

		4100
		Prohibited by name binding configuration

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		IN, OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint16 ConnectionType

		The type of connection, constrains the scan to initiator ports of this type. Only used if the Initiators parameter is null.

		ValueMap
		Values

		1
		Other

		2
		Fibre Channel

		3
		Parallel SCSI

		4
		SSA

		5
		IEEE 1394

		6
		RDMA

		7
		iSCSI

		8
		SAS

		9
		ADT

		IN string OtherConnectionType

		The connection type, if the ConnectionType parameter is “Other”.

		IN CIM_SCSIProtocolEndpoint[] Initiators

		A list of references to initiators. Scanning will be limited to SCSI targets attached to these initiators. If this parameter is null and connection is specified, all initiators of that connection type are scanned. If this parameter and ConnectionType are null, all targets on all system initiators are probed.

		IN string[] Targets

		A list of names or numbers for targets. These should be formatted to match the appropriate connection type, For example, PortWWNs would be specified for Fibre Channel targets.

		IN string[] LogicalUnits

		A list of SCSI logical unit numbers representing logical units hosted on the targets specified in the Targets argument.

uint32 CreateOrModifyElementFromElements (string ElementName, uint16 ElementType, CIM_ConcreteJob Job, CIM_ManagedElement Goal, uint64 Size, CIM_StorageExtent[] InElements, CIM_LogicalElement TheElement)

Start a job to create (or modify) a specified storage element from specified input StorageExtents. The created or modified storage element can be a StorageExtent, StorageVolume, LogicalDisk, or StoragePool. An input list of InElements must be specified. The GetAvailableExtents method can be used to get a list of valid extents that can be used to achieve a desired goal. Validity of the extents is determined by the implementation. As an input parameter, Size specifies the desired size of the element. As an output parameter, it specifies the size achieved. Space is taken from the input InElements. The desired Settings for the element are specified by the Goal parameter. If the size of Extents passed is less than the size requested, then the capacity is drawn from the extents in the order, left to right, that the Extents were specified. The partial consumption of an Extent is represented by an Extent for the capacity used and an Extent for the capacity not used. If the Size is NULL, then a configuration using all Extents passed will be attempted. If the requested size cannot be created, no action will be taken, and the Return Value will be 4097/0x1001. Also, the output value of Size is set to the nearest possible size. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the element being created. If NULL, then a system-supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element. If not NULL, this parameter will supply a new name when modifying an existing element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created or modified. If the input parameter TheElement is specified when the operation is a ‘modify’, this type value must match the type of that instance. The actual CIM class of the created TheElement can be vendor-specific, but it must be a derived class of the appropriate CIM class – i.e., CIM_StorageVolume, CIM_StorageExtent, CIM_LogicalDisk, or CIM_StoragePool.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		Storage Volume

		3
		Storage Extent

		4
		Storage Pool

		5
		Logical Disk

		6
		ThinlyProvisionedStorageVolume

		7
		ThinlyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement Goal

		The requirements for the element to maintain. If set to a null value, the default configuration associated with the Service will be used. This parameter should be a reference to a Setting, SettingData, or Profile appropriate to the element being created. If not NULL, this parameter will supply a new Goal when modifying an existing element.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size. If not NULL, this parameter will supply a new size when modifying an existing element. As an output parameter Size specifies the size achieved.

		IN CIM_StorageExtent[] InElements

		Array of references to storage element instances that are used to create or modify TheElement.

		IN, OUT CIM_LogicalElement TheElement

		As an input parameter: if null, creates a new element. If not null, then the method modifies the specified element. As an output parameter, it is a reference to the resulting element.

uint32 CreateReplicationBuffer (CIM_ConcreteJob Job, CIM_ManagedElement Host, CIM_StorageExtent TargetElement, CIM_StoragePool TargetPool, CIM_Memory ReplicaBuffer)

Create (or start a job to create) a replication buffer that buffers asynchronous write operations for remote mirror pairs. The buffer is an instance of CIM_Memory with an AssociatedMemory association to a hosting system or to a replication network pipe. The buffer element may be created based on a StorageExtent, in a pool or in a manner opaque to a client. If 0 is returned, the function completed successfully and no ConcreteJob instance is created. If 0x1000 is returned, a ConcreteJob is started, a reference to which is returned in the Job output parameter. A return value of 1 indicates the method is not supported. All other values indicate some type of error condition.

If Job Completed with No Error (0) is returned, the function completed successfully and a ConcreteJob instance is not created.

If Method Parameters Checked - Job Started (0x1000) is returned, a ConcreteJob is started, a reference to which is returned in the Job output parameter.

A return value of Not Supported (1) indicates the method is not supported.

All other values indicate some type of error condition.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..0xFFFF
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if the task completed).

		IN CIM_ManagedElement Host

		The hosting system or replication pipe that will be antecedent to the created buffer.

		IN CIM_StorageExtent TargetElement

		Reference to a component extent for the buffer element.

		IN CIM_StoragePool TargetPool

		Reference to a container pool for the buffer element.

		OUT CIM_Memory ReplicaBuffer

		Reference to the created replica buffer element.

uint32 GetElementsBasedOnUsage (uint16 ElementType, uint16 Usage, uint16 Criteria, CIM_StoragePool ThePool, CIM_ManagedSystemElement[] TheElements)

Allows retrieving elements that meet the specified Usage. The criteria can be “available only”, “in use only”, or both.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 ElementType

		Enumeration indicating the type of elements to get.

		ValueMap
		Values

		0
		Unknown

		2
		StorageVolume

		3
		StorageExtent

		4
		StoragePool

		5
		Logical Disk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN uint16 Usage

		The specific Usage to be retrieved.

		IN uint16 Criteria

		Specifies whether to retrieve all elements, available elements only, or the elements that are in use.

		ValueMap
		Values

		0
		Unknown

		2
		All

		3
		Available Only

		4
		In Use Only

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN CIM_StoragePool ThePool

		Limit the search for the elements that satisfy the criteria to this StoragePool only. If null, all appropriate StoragePools will be considered.

		OUT CIM_ManagedSystemElement[] TheElements

		Array of references to storage element instances retrieved.

uint32 CreateReplica (string ElementName, CIM_ConcreteJob Job, CIM_LogicalElement SourceElement, CIM_LogicalElement TargetElement, CIM_StorageSetting TargetSettingGoal, CIM_StoragePool TargetPool, uint16 CopyType)

Start a job to create a new storage object which is a replica of the specified source storage object. (SourceElement). Note that using the input paramter, CopyType, this function can be used to instantiate the replica, and to create an ongoing association between the source and replica. If 0 is returned, the function completed successfully and no ConcreteJob instance is created. If 4096/0x1000 is returned, a ConcreteJob is started, a reference to which is returned in the Job output parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the element being created. If NULL, then a system supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_LogicalElement SourceElement

		The source storage object which may be a StorageVolume or storage object.

		OUT CIM_LogicalElement TargetElement

		Reference to the created target storage element (i.e., the replica).

		IN CIM_StorageSetting TargetSettingGoal

		The definition for the StorageSetting to be maintained by the target storage object (the replica).

		IN CIM_StoragePool TargetPool

		The underlying storage for the target element (the replica) will be drawn from TargetPool if specified, otherwise the allocation is implementation specific.

		IN uint16 CopyType

		CopyType describes the type of copy that will be made. Values are:

Async: Create and maintain an asynchronous copy of the source.

Sync: Create and maintain a synchronized copy of the source.

UnSyncAssoc: Create an unsynchronized copy and maintain an association to the source.

UnSyncUnAssoc: Create unassociated copy of the source element.

		ValueMap
		Values

		2
		Async

		3
		Sync

		4
		UnSyncAssoc

		5
		UnSyncUnAssoc

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint32 AssignStorageResourceAffinity (uint16 ResourceType, CIM_ConcreteJob Job, CIM_ComputerSystem StorageProcessor, CIM_LogicalElement[] StorageResources)

Start a job to assign affinity of a StoragePool(s) or StorageVolume(s) to a storage processor. At the conclusion of the operation, the resource will be a member of the StorageResourceLoadGroup with the primary affinity for the specified storage processor. Support for this method is indicated by the presence of an instance of StorageServerAsymmetryCapabilites in which the property StorageResourceAffinityAssignable is ‘true’. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a job will be started to assign the element. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 ResourceType

		Enumeration indicating the type of resource being assigned or modified. .

		ValueMap
		Values

		2
		StorageVolume

		3
		StoragePool

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN, OUT CIM_ComputerSystem StorageProcessor

		Reference to the storage processor to which to assign the resource.

		IN CIM_LogicalElement[] StorageResources

		Array of references to storage resource instances to be assigned.

uint32 CreateElementsFromStoragePool (string[] ElementNames, uint16 ElementType, uint64 ElementCount, CIM_ConcreteJob Job, CIM_ManagedElement Goal, uint64 Size, CIM_StoragePool InPool, CIM_LogicalElement[] TheElements)

Start a job to create (or modify) a specified elements (for example StorageVolumes or StorageExtents) from a StoragePool. One of the parameters for this method is Size. As an input parameter, Size specifies the desired size of the element. As an output parameter, it specifies the size achieved. Space is taken from the input StoragePool. The desired settings for the element are specified by the Goal parameter. If the requested size cannot be created, no action will be taken, and the Return Value will be 4097/0x1001. Also, the output value of Size is set to the nearest possible size. If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. The Job’s reference will be returned in the output parameter Job. If the number of elements created is less than the number of elements requested, the return value will be 4098/0x1002.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Size Not Supported

		4098
		Partially Completed Operation

		4099..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string[] ElementNames

		One or more user relevant names for the element being created. If NULL, then system supplied default names may be used. The value will be stored in the “ElementName” property for the created element.

		IN uint16 ElementType

		Enumeration indicating the type of element being created.

		ValueMap
		Values

		0
		Unknown

		1
		Reserved

		2
		StorageVolume

		3
		StorageExtent

		4
		LogicalDisk

		5
		ThinlyProvisionedStorageVolume

		6
		ThinlyProvisionedLogicalDisk

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN uint64 ElementCount

		Count of elements to create.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement Goal

		The requirements for the element to maintain. If set to a null value, the default configuration from the source pool will be used. This parameter should be a reference to a Setting or Profile appropriate to the element being created.

		IN, OUT uint64 Size

		As an input parameter Size specifies the desired size for each element created. As an output parameter Size specifies the size achieved.

		IN CIM_StoragePool InPool

		The Pool from which to create the elements. If not supplied, system locates an appropriate pool.

		OUT CIM_LogicalElement[] TheElements

		Reference to the resulting elements.

uint32 DeleteStoragePool (CIM_ConcreteJob Job, CIM_StoragePool Pool)

Start a job to delete a StoragePool. The freed space is returned source StoragePools (indicated by AllocatedFrom StoragePool) or back to underlying storage extents. If 0 is returned, the function completed successfully, and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the StoragePool. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_StoragePool Pool

		Reference to the pool to delete.

uint32 ReturnElementsToStoragePool (uint16 Options, CIM_ConcreteJob Job, CIM_LogicalElement[] TheElements)

Start a job to delete elements previously created from StoragePools. The freed space is returned to the source StoragePool. If 0 is returned, the function completed successfully and no ConcreteJob was required. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the element. A reference to the Job is returned in the Job parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 Options

		Additional options.

Continue on nonexistent element: if the method encounters a non-existent element in the list of elements supplied, the method continues to delete the remaining elements. Return error on nonexistent element: if the method encounters a non-existent element in the list of elements supplied, the method returns an error.

		ValueMap
		Values

		2
		Continue on nonexistent element

		3
		Return error on nonexistent element

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_LogicalElement[] TheElements

		References to the elements to return to the StoragePool.

uint32 ModifySynchronization (uint16 Operation, CIM_ConcreteJob Job, CIM_StorageSynchronized Synchronization)

Modify (or start a job to modify) the synchronization association between two storage objects. If 0 is returned, the function completed successfully and no ConcreteJob instance was created. If 0x1000 is returned, a ConcreteJob was started and a reference to this Job is returned in the Job output parameter. A return value of 1 indicates the method is not supported. All other values indicate some type of error condition.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..0xFFFF
		Vendor Specific

Parameters

		IN uint16 Operation

		Operation describes the type of modification to be made to the replica. Values are:

Detach: ‘Forget’ the synchronization between two storage objects. Start to treat the objects as independent.

Fracture: Suspend the synchronization between two storage objects using Sync or Async replication.

The association and (typically) changes are remembered to allow a fast resynchronization. This may be used during a backup cycle to allow one of the objects to be copied while the other remains in production.

Resync Replica: Re-establish the synchronization of a Sync or Async replication. This will negate the action of a previous Fracture operation. Recreate a Point In Time image for an UnSyncAssoc replication.

Restore from Replica: Renew the contents of the original storage object from a replica.

Prepare: Get the link ready for a Resync operation to take place. Some implementations will require this operation to be invoked to keep the Resync operation as fast as possible. May start the copy engine.

Unprepare: Clear a prepared state if a Prepare is not to be followed by a Resync operation.

Quiesce: Some applications require notification so that they can ready the link for an operation. For example flush any cached data or buffered changes. The copy engine is stopped for UnSyncAssoc replications.

Unquiesce: Take the link from the quiesced state (without executing the intended operation.

Start Copy: initiate a full background copy of the source to the UnSyncAssoc replica. Replica enters Frozen state when copy operation is completed.

Stop Copy: stop the background copy previously started. Reset To Sync: Change the CopyType of the association to Sync (e.g., from the Async CopyType).

Reset To Async: Change the CopyType of the association to Async (e.g., from the Sync CopyType).

		ValueMap
		Values

		0
		DMTF Reserved

		1
		DMTF Reserved

		2
		Detach

		3
		Fracture

		4
		Resync Replica

		5
		Restore from Replica

		6
		Prepare

		7
		Unprepare

		8
		Quiesce

		9
		Unquiesce

		10
		Reset To Sync

		11
		Reset To Async

		12
		Start Copy

		13
		Stop Copy

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Specific

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if the task completed).

		IN CIM_StorageSynchronized Synchronization

		The referenced to the StorageSynchronized association describing the storage source/replica relationship.

uint32 RequestUsageChange (uint16 Operation, uint16 UsageValue, string OtherUsageDescription, CIM_ConcreteJob Job, CIM_LogicalElement TheElement)

Allows a client to request the Usage to be set if the client has access to the element supplied and the request is valid.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Not Authorized

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 Operation

		The action to perform.

		ValueMap
		Values

		2
		Set

		3
		Modify “Other” description only

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN uint16 UsageValue

		Applicable requested usage/restriction – see the appropriate Usage ValueMap.

		IN string OtherUsageDescription

		New description text. Applicable when the usage value includes “Other”.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_LogicalElement TheElement

		The storage element to modify.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

StartService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_GenericDiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_GenericDiskPartition

Class reference

Subclass of CIM_MediaPartition

A DiskPartition is a presentation of a contiguous range of logical blocks that is identifiable by the Operating System by the associated DiskPartitionConfigurationCapabilities and by the properties of the subclasses of this class.

Each concrete partition style (the subclasses of GenericDiskPartition) has some way of tracking a starting block number and either the ending block or number of blocks. CIM models this with the StartingAddress and EndingAddress properties of the BasedOn association between the partition and its underlying volume/extent. The NumberOfBlocks and ConsumableBlocks properties inherited from StorageExtent also need to be consistent or omitted by the instrumentation. Partition numbers are modeled as BasedOn.OrderIndex.

Note that all the concrete DiskPartition instances BasedOn the same underlying extent) MUST share the same partition style (i.e. all must have the same subclass type).

The abstract qualifier can not be used on this class because its superclass is not abstract. But instances of subclasses this class should be instantiated, not instances of GenericDiskPartition itself.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean Allocatable

string[] StatusDescriptions

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string[] ExtentDiscriminator

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

uint16 EnabledDefault

string InstanceID

uint16[] OperationalStatus

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

boolean IsBasedOnUnderlyingRedundancy

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

string Name

uint16[] PowerManagementCapabilities

boolean Bootable

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

uint16 NameNamespace

boolean IsComposite

uint16 StatusInfo

string DeviceID

string Signature

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

string SignatureState

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_InstalledSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_InstalledSoftwareIdentity

Class reference

Subclass of CIM_InstalledSoftwareIdentity

The InstalledSoftwareIdentity association identifies the System on which a SoftwareIdentity is installed. This class is a corollary to InstalledSoftwareElement, but deals with the asset aspects of software (as indicated by SoftwareIdentity), versus the deployment aspects (as indicated by SoftwareElement).

Key properties

InstalledSoftware

System

Local properties

LMI_SoftwareIdentity InstalledSoftware

The SoftwareIdentity that is installed.

CIM_ComputerSystem System

The system on which the software is installed.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_RemoteServiceAccessPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_RemoteServiceAccessPoint

Class reference

Subclass of CIM_ServiceAccessPoint

RemoteServiceAccessPoint describes access or addressing information or a combination of this information for a remote connection that is known to a local network element. This information is scoped or contained by the local network element, because this is the context in which the connection is remote.

The relevance of the remote access point and information on its use are described by subclassing RemoteServiceAccessPoint or by associating to it.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string AccessInfo

Access or addressing information or a combination of this information for a remote connection. This information can be a host name, network address, or similar information.

uint16 AccessContext

The AccessContext property identifies the role this RemoteServiceAccessPoint is playing in the hosting system.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Default Gateway

		3
		DNS Server

		4
		SNMP Trap Destination

		5
		MPLS Tunnel Destination

		6
		DHCP Server

		7
		SMTP Server

		8
		LDAP Server

		9
		Network Time Protocol (NTP) Server

		10
		Management Service

		11
		internet Storage Name Service (iSNS)

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherInfoFormatDescription

Describes the format when the property InfoFormat is set to 1 (Other).

uint16 InfoFormat

An enumerated integer that describes the format and interpretation of the AccessInfo property.

206’Parameterized URL’- a URL containing ${parameterName} strings. Those strings are intended to be replaced in their entirety by the value of the named parameter. The interpretation of such parameters is not defined by this subclass.

As an example use: If a parameter named ‘CompanyURL’ has a value of ‘www.DMTF.org’ and the value of AccessInfo was ‘http:${CompanyURL}’, then the resultant URL is intended to be ‘http:www.dmtf.org‘.

		ValueMap
		Values

		1
		Other

		2
		Host Name

		3
		IPv4 Address

		4
		IPv6 Address

		5
		IPX Address

		6
		DECnet Address

		7
		SNA Address

		8
		Autonomous System Number

		9
		MPLS Label

		10
		IPv4 Subnet Address

		11
		IPv6 Subnet Address

		12
		IPv4 Address Range

		13
		IPv6 Address Range

		100
		Dial String

		101
		Ethernet Address

		102
		Token Ring Address

		103
		ATM Address

		104
		Frame Relay Address

		200
		URL

		201
		FQDN

		202
		User FQDN

		203
		DER ASN1 DN

		204
		DER ASN1 GN

		205
		Key ID

		206
		Parameterized URL

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherAccessContext

When the AccessContext property contains a value of 1, “Other” then this is a free form string providing more information about the role of RemoteServiceAccessPoint in the hosting system.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string Status

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string ElementName

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPhysicalPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPhysicalPackage

Class reference

Subclass of CIM_PhysicalPackage

The PhysicalPackage class represents PhysicalElements that contain or host other components. Examples are a Rack enclosure or an adapter Card.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

string Model

The name by which the PhysicalElement is generally known.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

datetime ManufactureDate

real32 Width

string Version

boolean Removable

string PartNumber

uint16 RemovalConditions

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

string[] VendorCompatibilityStrings

uint16 DetailedStatus

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

real32 Depth

uint16 PrimaryStatus

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

uint16 OperatingStatus

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkEnabledLogicalElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkEnabledLogicalElementCapabilities

Class reference

Subclass of CIM_EnabledLogicalElementCapabilities

EnabledLogicalElementCapabilities describes the capabilities supported for changing the state of the assciated EnabledLogicalElement.

Key properties

InstanceID

Local properties

uint16[] RequestedStatesSupported

RequestedStatesSupported indicates the possible states that can be requested when using the method RequestStateChange on the EnabledLogicalElement.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

Local methods

None

Inherited properties

string ElementName

uint16 MaxElementNameLen

string Caption

string ElementNameMask

uint64 Generation

string InstanceID

uint16[] StateAwareness

boolean ElementNameEditSupported

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountConfigurationService

Class reference

Subclass of CIM_Service

This service has methods to create, delete and modify both persistent mounts (in /etc/fstab) and runtime mounts (mounted just now on running system).

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 CreateMount (CIM_ConcreteJob Job, LMI_MountedFileSystem Mount, CIM_FileSystem FileSystem, string MountPoint, string FileSystemSpec, string FileSystemType, LMI_MountedFileSystemSetting Goal, uint16 Mode)

Mounts the specified filesystem to a mountpoint.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		OUT LMI_MountedFileSystem Mount

		Reference to the created LMI_MountedFileSystem instance.

		IN CIM_FileSystem FileSystem

		Existing filesystem that should be mounted. If NULL, mount a remote filesystem, or mount a non-device filesystem (e.g. tmpfs). If not NULL, mount a local filesystem. When mounting a local filesystem, the FileSystemType parameter has to agree with the type of FileSystem.

		IN string MountPoint

		Directory where the mounted filesystem should be attached at.

		IN string FileSystemSpec

		Filesystem specification. Specifies the device that should be mounted. Remote filesystems can be specified in their usual form (e.g. ‘hostname:/share’ for NFS, or ‘//hostname/share’ for CIFS). Non-device filesystems can also be specified (e.g. ‘tmpfs’ or ‘sysfs’). When performing a bind mount, FileSystemSpec is the path to the source directory.

		IN string FileSystemType

		Filesystem type. If NULL, perform a binding mount. If mounting a local filesystem, this parameter has to be in agreement with the FileSystem.

		IN LMI_MountedFileSystemSetting Goal

		Desired mount settings. If NULL, defaults will be used. Default mount options are ‘rw, suid, dev, exec, auto, nouser, async’.

		IN uint16 Mode

		The mode in which the configuration is to be applied to the MountedFileSystem.

IsNext and IsCurrent are properties of LMI_MountedFileSystemElementSettingData, which will be created.

Meaning of IsNext and IsCurrent is:

IsCurrent = 1: The filesystem will be mounted.

IsNext = 1: A persistent entry will be created (in /etc/fstab).

Mode 1 - IsNext = 1, IsCurrent = 1.

Mode 2 - IsNext = 1, IsCurrent not affected.

Mode 32768 - IsNext not affected, IsCurrent = 1.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		
		DMTF Reserved

		32768
		Mode 32768

		32769
		Mode 32769

uint32 DeleteMount (CIM_ConcreteJob Job, LMI_MountedFileSystem Mount, uint16 Mode)

Unmounts an existing mount.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		IN LMI_MountedFileSystem Mount

		An existing mount.

		IN uint16 Mode

		The mode in which the configuration is to be applied to the MountedFileSystem.

IsNext and IsCurrent are properties of LMI_MountedFileSystemElementSettingData, which will be created.

Meaning of IsNext and IsCurrent is:

IsCurrent = 1: The filesystem will be mounted.

IsCurrent = 2: The filesystem will be unmounted.

IsNext = 1: A persistent entry will be created (in /etc/fstab).

IsNext = 2: The persistent entry will be removed.

Mode 4 - IsNext = 2, IsCurrent = 2.

Mode 5 - IsNext = 2, IsCurrent not affected.

Mode 32769 - IsNext not affected, IsCurrent = 2.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		
		DMTF Reserved

		32768
		Mode 32768

		32769
		Mode 32769

uint32 ModifyMount (CIM_ConcreteJob Job, LMI_MountedFileSystem Mount, LMI_MountedFileSystemSetting Goal, uint16 Mode)

Modifies (remounts) an existing mount.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		IN, OUT LMI_MountedFileSystem Mount

		Reference to the LMI_Mount instance that is being modified.

		IN LMI_MountedFileSystemSetting Goal

		Desired mount settings. If NULL, the mount options are not changed. If mount (or an fstab entry) should be performed (created), the appropriate respective MountedFileSystemSetting will be created.

		IN uint16 Mode

		The mode in which the configuration is to be applied to the MountedFileSystem.

IsNext and IsCurrent are properties of LMI_MountedFileSystemElementSettingData, which will be created.

Meaning of IsNext and IsCurrent is:

IsCurrent = 1: The filesystem will be mounted.

IsCurrent = 2: The filesystem will be unmounted.

IsNext = 1: A persistent entry will be created (in /etc/fstab).

IsNext = 2: The persistent entry will be removed.

Mode 1 - IsNext = 1, IsCurrent = 1.

Mode 2 - IsNext = 1, IsCurrent not affected.

Mode 4 - IsNext = 2, IsCurrent = 2.

Mode 5 - IsNext = 2, IsCurrent not affected.

Mode 32768 - IsNext not affected, IsCurrent = 1.

Mode 32769 - IsNext not affected, IsCurrent = 2.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		
		DMTF Reserved

		32768
		Mode 32768

		32769
		Mode 32769

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/service/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Service Scripts documentation

Contents:

		Service command line reference
		service

		Service Script python reference

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Account.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Account

Class reference

Subclass of CIM_EnabledLogicalElement

CIM_Account is the information held by a SecurityService to track identity and privileges managed by that service. Common examples of an Account are the entries in a UNIX /etc/passwd file. Several kinds of security services use various information from those entries - the /bin/login program uses the account name (‘root’) and hashed password to authenticate users, and the file service, for instance, uses the UserID field (‘0’) and GroupID field (‘0’) to record ownership and determine access control privileges on files in the file system. This class is defined so as to incorporate commonly-used LDAP attributes to permit implementations to easily derive this information from LDAP-accessible directories.

The semantics of Account overlap with that of the class, CIM_Identity. However, aspects of Account - such as its specific tie to a System - are valuable and have been widely implemented. For this reason, the Account and Identity classes are associated using a subclass of LogicalIdentity (AccountIdentity), instead of deprecating the Account class in the CIM Schema. When an Account has been authenticated, the corresponding Identity’s TrustEstablished Boolean would be set to TRUE. Then, the Identity class can be used as defined for authorization purposes.

Key properties

SystemName

Name

CreationClassName

SystemCreationClassName

Local properties

string[] OrganizationName

The name of the organization related to the account.

string UserID

UserID is the value used by the SecurityService to represent identity. For an authentication service, the UserID may be the name of the user, or for an authorization service the value which serves as a handle to a mapping of the identity.

uint16 MaximumSuccessiveLoginFailures

MaximumSuccessiveLoginFailures indicates the number of successive failed login attempts that shall result in the Account being disabled. A value of zero shall indicate that the Account will not be disabled due to successive failed login attempts.

datetime InactivityTimeout

InactivityTimeout specifies the interval after which if an account has been inactive, it shall be Disabled. The value may be expressed in interval format, as an absolute date-time, or be NULL.

An absolute date-time shall indicate when the password will be disabled due to inactivity.

An interval value shall indicate the time remaining before the password is disabled due to inactivity.

A value of NULL shall indicate that the Account will not be disabled due to inactivity.

string SystemName

The scoping System’s Name.

datetime LastLogin

LastLogin shall be an absolute date-time that specifies the last successful authentication that occurred for this Account.A value of 99990101000000.000000+000 shall indicate the Account has never been used. A value of NULL shall indicate the last successful login is unknown.

uint16 UserPasswordEncryptionAlgorithm

The encryption algorithm (if any) used by the client to produce the value in the UserPassword property when creating or modifying an instance of CIM_Account. The original password is encrypted using the algorithm specified in this property, and UserPassword contains the resulting encrypted value. In response to an operation request that would return the value of the UserPassword property to a client, an implementation shall instead return an array of length zero.

The value of UserPasswordEncryptionAlgorithm in an instance of CIM_Account shall be 0 (“None”) unless the SupportedUserPasswordEncryptionAlgorithms[] property in the CIM_AccountManagementCapabilities instance associated with the CIM_AccountManagementService instance associated with the CIM_Account instance contains a non-null entry other than 0 (“None”).

This property does not prevent the use of encryption at the transport, network, or data-link layer to protect communications between a management client and the server, nor is it meant to encourage communications without such encryption.

The supported values for this property are:

		0 (“None”): Indicates that the contents of UserPassword are not encrypted.

		1 (“Other”): Indicates that the contents of UserPassword are encrypted using an algorithm not specifically identified in the value map for this property, and that this algorithm is described in OtherUserPasswordEncryptionAlgorithm.

		2 (“HTTP Digest MD5(A1)”): The MD5 hash algorithm, applied to the string A1 defined in RFC2617 as the concatenation username-value ”:” realm-value ”:” passwd, where username-value is provided by the client as the value of the UserID property. passwd is the underlying user password. realm-value is the HTTP digest realm value, and is provided by the server. The semantics of the HTTP digest realm are specified in RFC 2617. The server may surface the realm-value in the UserPasswordEncryptionSalt property of CIM_AccountManagementCapabilities.

		ValueMap
		Values

		0
		None

		1
		Other

		2
		HTTP Digest MD5(A1)

		
		DMTF Reserved

string Name

The Name property defines the label by which the object is known. The value of this property may be set to be the same as that of the UserID property or, in the case of an LDAP-derived instance, the Name property value may be set to the distinguishedName of the LDAP-accessed object instance.

string[] ObjectClass

In the case of an LDAP-derived instance, the ObjectClass property value(s) may be set to the objectClass attribute values.

uint16[] ComplexPasswordRulesEnforced

ComplexPasswordRulesEnforced indicates the rules for constructing a complex password enforced by the Account.

Minimum Length a minimum length is enforced for passwords for the account.

Preclude User ID inclusion precluding the password from including the user ID is supported.

Maximum Repeating Characters a limit will be enforced on the number of times a character can occur consecutively.

Lower Case Alpha at least one lower case alpha character is required.

Upper Case Alpha at least one upper case alpha character is required.

Numeric Character at least one numeric character is required.

Special Character at least one special character is required.

		ValueMap
		Values

		2
		Minimum Length

		3
		Preclude User ID Inclusion

		4
		Maximum Repeating Characters

		5
		Lower Case Alpha

		6
		Upper Case Alpha

		7
		Numeric Character

		8
		Special Character

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string[] Host

Based on RFC1274, the host name of the system(s) for which the account applies. The host name may be a fully-qualified DNS name or it may be an unqualified host name.

string[] LocalityName

This property contains the name of a locality, such as a city, county or other geographic region.

string[] SeeAlso

In the case of an LDAP-derived instance, the SeeAlso property specifies distinguished name of other Directory objects which may be other aspects (in some sense) of the same real world object.

uint32 UserPasswordEncoding

UserPasswordEncoding specifies encoding used for the UserPassword property.

“kbd” denotes a string in hexadecimal format containing keyboard scan code input. An example of a UserPassword structured in this format would be “321539191E1F1F11181320”, which is the representation of “my password” in US English keyboard scan codes.

“

ascii” denotes clear text that complies with the ASCII character set. An example would be “my password”.

“pin” denotes that only numeric input in ASCII text is allowed for the UserPassword. An example would be “1234”.

“UTF-8” denotes that the UserPassword is a Unicode string that is encoded using UTF-8 character set.

“UTF-16” denotes that the UserPassword is a Unicode string that is encoded using UTF-16 character set. The byte order mark (BOM) shall be the first character of the string.

“UTF-16LE” denotes that the UserPassword is a Unicode string that is encoded using UTF-16 character set in little-endian byte order.

“UTF-16BE” denotes that the UserPassword is a Unicode string that is encoded using UTF-16 character set in big-endian byte order.

“UCS-2” denotes that the UserPassword is a Unicode string that is encoded using UCS-2 character set.

“UCS-2LE” denotes that the UserPassword is a Unicode string that is encoded using UCS-2 character set in little endian byte order.

“UCS-2BE” denotes that the UserPassword is a Unicode string that is encoded using UCS-2 character set in big endian byte order.

		ValueMap
		Values

		2
		ascii

		3
		kbd

		4
		pin

		5
		UTF-8

		6
		UTF-16

		7
		UTF-16LE

		8
		UTF-16BE

		9
		UCS-2

		10
		USC-2LE

		11
		UCS-2BE

		
		DMTF Reserved

		65536..4294967295
		Vendor Reserved

string[] UserCertificate

Based on inetOrgPerson and for directory compatibility, the UserCertificate property may be used to specify a public key certificate for the person.

string[] UserPassword

In the case of an LDAP-derived instance, the UserPassword property may contain an encrypted password used to access the person’s resources in a directory.

string OtherUserPasswordEncryptionAlgorithm

If the UserPasswordEncryptionAlgorithm property is set to 1 (“Other”) this property contains a free form string that provides more information about the encryption algorithm. If UserPasswordEncryptionAlgorithm is not set to 1 (“Other”) this property has no meaning.

datetime PasswordExpiration

PasswordExpiration indicates the maximum password age enforced for the Account. The value may be expressed as an absolute date-time as an interval, or may be NULL.

An absolute date-time shall indicate the date and time when the password will expire.

An interval value shall indicate the time remaining until the password expires.

A value of NULL shall indicate the password never expires.

string[] Descriptions

The Descriptions property values may contain human-readable descriptions of the object. In the case of an LDAP-derived instance, the description attribute may have multiple values that, therefore, cannot be placed in the inherited Description property.

uint16 PasswordHistoryDepth

PasswordHistoryDepth indicates the number of previous passwords that shall be maintained for the Account. The Account shall preclude the selection of a password if it occurs in the password history. A value of zero shall indicate that a password history is not maintained.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string[] OU

The name of an organizational unit related to the account.

string SystemCreationClassName

The scoping System’s CCN.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint16 PrimaryStatus

uint16 EnabledState

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

LMI_EnabledAccountCapabilities Capabilities

The supported Capabilities for changing the state of the Linux Account

LMI_Account ManagedElement

The managed Account

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_RemoteAccessAvailableToElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_RemoteAccessAvailableToElement

Class reference

Subclass of CIM_Dependency

Describes an element’s knowledge regarding accessing other (i.e., remote) Servers and Systems.

Key properties

Dependent

Antecedent

Local properties

CIM_EnabledLogicalElement Dependent

The EnabledLogicalElement which has knowledge of the remote server or system.

CIM_RemoteServiceAccessPoint Antecedent

The remote server or system.

uint16 OrderOfAccess

When an element is accessing remote services and systems, it MAY be necessary to order those accesses. This property defines that ordering - where lower numbers indicate a higher priority for access. A value of 0 (default) indicates that ordering does not apply. If multiple RemoteAccessPoint instances have the same value for OrderOfAccess, then these AccessPoints MAY be used in any sequence defined by the implementation.

boolean IsDefault

Indicates that this access information is defined as a default configuration for the system.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SettingData

Class reference

Subclass of CIM_ManagedElement

CIM_SettingData is used to represent configuration and and operational parameters for CIM_ManagedElement instances. There are a number of different uses of CIM_SettingData supported in the model today. Additional uses may be defined in the future.

Instances of CIM_SettingData may represent Aspects of a CIM_ManagedElement instance. This is modeled using the CIM_SettingsDefineState association. CIM_SettingData may be used to define capabilities when associated to an instance of CIM_Capabilities through the CIM_SettingsDefineCapabilities association.

Instances of CIM_SettingData may represent different types of configurations for a CIM_ManagedElement, including persistent configurations, in progress configuration changes, or requested configurations. The CIM_ElementSettingData association is used to model the relationship between a CIM_SettingData instance and the CIM_ManagedElement for which it is a configuration.

When an instance of CIM_SettingData represents a configuration, the current operational values for the parameters of the element are reflected by properties in the Element itself or by properties in its associations. These properties do not have to be the same values that are present in the SettingData object. For example, a modem might have a SettingData baud rate of 56Kb/sec but be operating at 19.2Kb/sec.

Note: The CIM_SettingData class is very similar to CIM_Setting, yet both classes are present in the model because many implementations have successfully used CIM_Setting. However, issues have arisen that could not be resolved without defining a new class. Therefore, until a new major release occurs, both classes will exist in the model. Refer to the Core White Paper for additional information. SettingData instances can be aggregated together into higher- level SettingData objects using ConcreteComponent associations.

Key properties

InstanceID

Local properties

string SoOrgID

If not Null, the CIM_SettingData instance is being used to represent an ITIL element: either a service option, a service level requirement, or a service level target. When not Null, the value of SoOrgID shall be a unique identifier for the organization that specifies the value of SoID.

string SoID

If not Null, the CIM_SettingData instance is being used to represent an ITIL element: either a service option, a service level requirement, or a service level target. The value SoID must be unique in the context of an Organization unique identifier specified in SoOrgID.

string ElementName

The user-friendly name for this instance of SettingData. In addition, the user-friendly name can be used as an index property for a search or query. (Note: The name does not have to be unique within a namespace.)

uint16 ChangeableType

Enumeration indicating the type of setting. 0 “Not Changeable - Persistent” indicates the instance of SettingData represents primordial settings and shall not be modifiable. 1 “Changeable - Transient” indicates the SettingData represents modifiable settings that are not persisted. Establishing persistent settings from transient settings may be supported. 2 “Changeable - Persistent” indicates the SettingData represents a persistent configuration that may be modified. 3 “Not Changeable - Transient” indicates the SettingData represents a snapshot of the settings of the associated ManagedElement and is not persistent.

		ValueMap
		Values

		0
		Not Changeable - Persistent

		1
		Changeable - Transient

		2
		Changeable - Persistent

		3
		Not Changeable - Transient

string[] ComponentSetting

The value of each CIM_ComponentSetting instance includes a CIM_SettingData instance that specifies further values for this CIM_SettingData instance. The values are interpreted according to the values of the Policy, ValueRole, and ValueRange properties included in each CIM_ComponentSetting instance.

Note: If SoID is not null, then the embedded ComponentSetting elements may be interpreted as ITIL Service Level Targets.

Note: For CIM v3, the type of ComponentSetting will be CIM_ComponentSetting. This is not represented as an EmbeddedInstance in CIM v2 to avoid a circular dependency that CIM v2 compilers cannot handle.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string ConfigurationName

An instance of CIM_SettingData may correspond to a well-known configuration that exists for an associated CIM_ManagedElement. If the ConfigurationName property is non-NULL, the instance of CIM_SettingData shall correspond to a well-known configuration for a Managed Element, the value of the ConfigurationName property shall be the name of the configuration, and the ChangeableType property shall have the value 0 or 2. A value of NULL for the ConfigurationName property shall mean that the instance of CIM_SettingData does not correspond to a well-known configuration for a Managed Element or that this information is unknown.

Local methods

None

Inherited properties

string Description

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstalledSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstalledSoftwareIdentity

Class reference

The InstalledSoftwareIdentity association identifies the System on which a SoftwareIdentity is installed. This class is a corollary to InstalledSoftwareElement, but deals with the asset aspects of software (as indicated by SoftwareIdentity), versus the deployment aspects (as indicated by SoftwareElement).

Key properties

InstalledSoftware

System

Local properties

CIM_SoftwareIdentity InstalledSoftware

The SoftwareIdentity that is installed.

CIM_System System

The system on which the software is installed.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SoftwareInstallationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SoftwareInstallationService

Class reference

Subclass of CIM_Service

A subclass of service which provides methods to install (or update) Software Identities in ManagedElements.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 InstallFromURI (CIM_ConcreteJob Job, string URI, CIM_ManagedElement Target, uint16[] InstallOptions, string[] InstallOptionsValues)

Start a job to install software from a specific URI in a ManagedElement.

Note that this method is provided to support existing, alternative download mechanisms (such as used for firmware download). The ‘normal’ mechanism will be to use the InstallFromSoftwareIdentity method.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to to perform the install. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		URI not accessible

		4108..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN string URI

		A URI for the software based on RFC 2079.

		IN CIM_ManagedElement Target

		The installation target.

		IN uint16[] InstallOptions

		Options to control the install process.

See the InstallOptions parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method for the description of these values.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN string[] InstallOptionsValues

		InstallOptionsValues is an array of strings providing additionalinformation to InstallOptions for the method to install the software. Each entry of this array is related to the entry in InstallOptions that is located at the same index providing additional information for InstallOptions.

For further information on the use of InstallOptionsValues parameter, see the description of the InstallOptionsValues parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method.

uint32 CheckSoftwareIdentity (CIM_SoftwareIdentity Source, CIM_ManagedElement Target, CIM_Collection Collection, uint16[] InstallCharacteristics)

This method allows a client application to determine whether a specific SoftwareIdentity can be installed (or updated) on a ManagedElement. It also allows other characteristics to be determined such as whether install will require a reboot. In addition a client can check whether the SoftwareIdentity can be added simulataneously to a specified SofwareIndentityCollection. A client MAY specify either or both of the Collection and Target parameters. The Collection parameter is only supported if SoftwareInstallationServiceCapabilities.CanAddToCollection is TRUE.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Reserved

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		No supported path to image

		4108
		Cannot add to Collection

		4109
		Asynchronous Job already in progress

		4110..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_SoftwareIdentity Source

		Reference to the SoftwareIdentity to be checked.

		IN CIM_ManagedElement Target

		Reference to the ManagedElement that the Software Identity is going to be installed in (or updated).

		IN CIM_Collection Collection

		Reference to the Collection to which the Software Identity will be added.

		OUT uint16[] InstallCharacteristics

		The parameter describes the characteristics of the installation/update that will take place if the Source Software Identity is installed:

Target automatic reset: The target element will automatically reset once the installation is complete.

System automatic reset: The containing system of the target ManagedElement (normally a logical device or the system itself) will automatically reset/reboot once the installation is complete.

Separate target reset required: EnabledLogicalElement.RequestStateChange MUST be used to reset the target element after the SoftwareIdentity is installed.

Separate system reset required: EnabledLogicalElement.RequestStateChange MUST be used to reset/reboot the containing system of the target ManagedElement after the SoftwareIdentity is installed.

Manual Reboot Required: The system MUST be manually rebooted by the user.

No reboot required : No reboot is required after installation.

User Intervention Recomended : It is recommended that a user confirm installation of this SoftwareIdentity. Inappropriate application MAY have serious consequences.

MAY be added to specified collection : The SoftwareIndentity MAY be added to specified Collection.

		ValueMap
		Values

		2
		Target automatic reset

		3
		System automatic reset

		4
		Separate target reset Required

		5
		Separate system reset Required

		6
		Manual Reboot Required

		7
		No Reboot Required

		8
		User Intervention recommended

		9
		MAY be added to specified Collection

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

uint32 InstallFromSoftwareIdentity (CIM_ConcreteJob Job, uint16[] InstallOptions, string[] InstallOptionsValues, CIM_SoftwareIdentity Source, CIM_ManagedElement Target, CIM_Collection Collection)

Start a job to install or update a SoftwareIdentity (Source) on a ManagedElement (Target).

In addition the method can be used to add the SoftwareIdentity simulataneously to a specified SofwareIndentityCollection. A client MAY specify either or both of the Collection and Target parameters. The Collection parameter is only supported if SoftwareInstallationService.CanAddToCollection is TRUE.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to perform the install. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		No supported path to image

		4108
		Cannot add to Collection

		4109..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint16[] InstallOptions

		Options to control the install process.

Defer target/system reset : do not automatically reset the target/system.

Force installation : Force the installation of the same or an older SoftwareIdentity. Install: Perform an installation of this software on the managed element.

Update: Perform an update of this software on the managed element.

Repair: Perform a repair of the installation of this software on the managed element by forcing all the files required for installing the software to be reinstalled.

Reboot: Reboot or reset the system immediately after the install or update of this software, if the install or the update requires a reboot or reset.

Password: Password will be specified as clear text without any encryption for performing the install or update.

Uninstall: Uninstall the software on the managed element.

Log: Create a log for the install or update of the software.

SilentMode: Perform the install or update without displaying any user interface.

AdministrativeMode: Perform the install or update of the software in the administrative mode. ScheduleInstallAt: Indicates the time at which theinstall or update of the software will occur.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN string[] InstallOptionsValues

		InstallOptionsValues is an array of strings providing additional information to InstallOptions for the method to install the software. Each entry of this array is related to the entry in InstallOptions that is located at the same index providing additional information for InstallOptions.

If the index in InstallOptions has the value “Password ” then a value at the corresponding index of InstallOptionValues shall not be NULL.

If the index in InstallOptions has the value “ScheduleInstallAt” then the value at the corresponding index of InstallOptionValues shall not be NULL and shall be in the datetime type format.

If the index in InstallOptions has the value “Log ” then a value at the corresponding index of InstallOptionValues may be NULL.

If the index in InstallOptions has the value “Defer target/system reset”, “Force installation”,”Install”, “Update”, “Repair” or “Reboot” then a value at the corresponding index of InstallOptionValues shall be NULL.

		IN CIM_SoftwareIdentity Source

		Reference to the source of the install.

		IN CIM_ManagedElement Target

		The installation target. If NULL then the SOftwareIdentity will be added to Collection only. The underlying implementation is expected to be able to obtain any necessary metadata from the Software Identity.

		IN CIM_Collection Collection

		Reference to the Collection to which the Software Identity SHALL be added. If NULL then the SOftware Identity will not be added to a Collection.

uint32 InstallFromByteStream (CIM_ConcreteJob Job, uint8[] Image, CIM_ManagedElement Target, uint16[] InstallOptions, string[] InstallOptionsValues)

Start a job to download a series of bytes containing a software image to a ManagedElement.

Note that this method is provided to support existing, alternative download mechanisms (such as used for firmware download). The ‘normal’ mechanism will be to use the InstallFromSoftwareIdentity method.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to to perform the install. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		No supported path to image

		4108..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint8[] Image

		A array of bytes containing the install image.

		IN CIM_ManagedElement Target

		The installation target.

		IN uint16[] InstallOptions

		Options to control the install process.

See the InstallOptions parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method for the description of these values.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN string[] InstallOptionsValues

		InstallOptionsValues is an array of strings providing additional information to InstallOptions for the method to install the software. Each entry of this array is related to the entry in InstallOptions that is located at the same index providing additional information for InstallOptions.

For further information on the use of InstallOptionsValues parameter, see the description of the InstallOptionsValues parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveSAPAvailableForElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveSAPAvailableForElement

Class reference

Subclass of CIM_SAPAvailableForElement

CIM_SAPAvailableForElement conveys the semantics of a Service Access Point that is available for a ManagedElement. When CIM_SAPAvailableForElement is not instantiated, then the SAP is assumed to be generally available. If instantiated, the SAP is available only for the associated ManagedElements. For example, a device might provide management access through a URL. This association allows the URL to be advertised for the device.

Key properties

ManagedElement

AvailableSAP

Local properties

LMI_DiskDriveATAProtocolEndpoint AvailableSAP

The Service Access Point that is available.

LMI_DiskDrive ManagedElement

The ManagedElement for which the SAP is available.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BondingMasterSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BondingMasterSettingData

Class reference

Subclass of LMI_IPAssignmentSettingData

Master SettingData for bonding.

See https://www.kernel.org/doc/Documentation/networking/bonding.txt for detailed description of the configuration options.

Key properties

InstanceID

Local properties

uint64 MIIMon

Specifies the MII link monitoring frequency in milliseconds. This determines how often the link state of each slave is inspected for link failures. A value of zero disables MII link monitoring. The default value is 0.

string InterfaceName

The name of the virtual in-kernel bonding network interface

uint64 DownDelay

Specifies the time, in milliseconds, to wait before disabling a slave after a link failure has been detected. This option is only valid for the miimon link monitor. The downdelay value should be a multiple of the miimon value; if not, it will be rounded down to the nearest multiple. The default value is 0.

uint64 UpDelay

Specifies the time, in milliseconds, to wait before enabling a slave after a link recovery has been detected. This option is only valid for the miimon link monitor. The updelay value should be a multiple of the miimon value; if not, it will be rounded down to the nearest multiple. The default value is 0.

uint16 Mode

Specifies one of the bonding policies.

BalanceRR - Round-robin policy: Transmit packets in sequential order from the first available slave through the last. This mode provides load balancing and fault tolerance. This is the default.

ActiveBackup - Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and only if, the active slave fails. The bond’s MAC address is externally visible on only one port (network adapter) to avoid confusing the switch.This mode provides fault tolerance.

BalanceXOR - XOR policy: Transmit based on the selected transmit hash policy. This mode provides load balancing and fault tolerance.

Broadcast - Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.

802.3AD - IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.

BalanceTLB - Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.

BalanceALB - Adaptive load balancing: includes BalanceTLB plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support.

		ValueMap
		Values

		0
		BalanceRR

		1
		ActiveBackup

		2
		BalanceXOR

		3
		Broadcast

		4
		802.3AD

		5
		BalanceTLB

		6
		BalanceALB

string[] ARPIPTarget

Specifies the IP addresses to use as ARP monitoring peers when arp_interval is > 0. The default value is no IP addresses.

uint64 ARPInterval

Specifies the ARP link monitoring frequency in milliseconds. A value of 0 disables ARP monitoring. The default value is 0.

Local methods

None

Inherited properties

string InstanceID

string ElementName

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

uint16 AddressPrefixOrigin

uint16 IPv6Type

uint16 AddressSuffixOrigin

string Description

string SoID

string Caption

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

uint16 IPv4Type

uint16 AddressOrigin

Inherited methods

LMI_AddStaticIPRoute

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogicalElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalElement

Class reference

Subclass of CIM_ManagedSystemElement

CIM_LogicalElement is a base class for all the components of a System that represent abstract system components, such as Files, Processes, or LogicalDevices.

Key properties

Local properties

None

Local methods

None

Inherited properties

string Status

uint16 DetailedStatus

uint16 HealthState

string Name

datetime InstallDate

string Caption

string InstanceID

string ElementName

string Description

uint16 CommunicationStatus

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 Generation

uint16 PrimaryStatus

string[] StatusDescriptions

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSystem

Class reference

Subclass of CIM_EnabledLogicalElement

A file or dataset store local to a System (such as a ComputerSystem or an ApplicationSystem) or remotely mounted from a file server.

Key properties

CSName

Name

CSCreationClassName

CreationClassName

Local properties

uint32 MaxFileNameLength

Integer indicating the maximum length of a file name within the FileSystem. 0 indicates that there is no limit on file name length.

string CSName

The scoping System’s Name. Note that this class was originally defined in the scope of a ComputerSystem, and was later allowed to be scoped by any System (for example, a computer or application system). Unfortunately, the property name, CSName, could not be changed (for example, to SystemName) without deprecating the class. This change was not deemed critical to the semantics and therefore did not merit deprecation. So, the property name remains.

uint32 ClusterSize

The minimum file allocation size (an integral number of blocks), imposed by the FileSystem. (The size of a block is specified in the BlockSize property for the FileSystem.) Minimum allocation size is the smallest amount of storage allocated to a LogicalFile by the FileSystem. This is not a mandatory minimum allocation for all FileSystems. Under stress conditions, some FileSystems may allocate storage in amounts smaller than the ClusterSize.

string EncryptionMethod

A free form string indicating the algorithm or tool used to encrypt the FileSystem. If it is not possible or not desired to describe the encryption scheme (perhaps for security reasons), recommend using the following words: “Unknown” to represent that it is not known whether the FileSystem is encrypted or not, “Encrypted” to represent that the File System is encrypted but either its encryption scheme is not known or not disclosed, and “Not Encrypted” to represent that the FileSystem is not encrypted.

boolean ReadOnly

Indicates that the FileSystem is designated as read only.

uint64 ResizeIncrement

The increment size of a resizable File in bytes. If the File is a fixed size, or the resize increment is not specified, the value of this property must be 0.

boolean CasePreserved

Indicates that the case of file names are preserved.

boolean CaseSensitive

Indicates that case sensitive file names are supported.

uint64 FileSystemSize

The FileSystemSize property stores the total size of the File System in bytes. If unknown, enter 0.

string OtherPersistenceType

A string describing the persistence characteristics when PersistenceType is “Other”.

string CompressionMethod

A free form string indicating the algorithm or tool used to compress the FileSystem. If it is not possible or not desired to describe the compression scheme (perhaps because it is not known), recommend using the following words: “Unknown” to represent that it is not known whether the FileSystem is compressed or not, “Compressed” to represent that the File System is compressed but either its compression scheme is not known or not disclosed, and “Not Compressed” to represent that the FileSystem is not compressed.

string Name

The inherited Name serves as key of a FileSystem instance within a ComputerSystem.

uint64 BlockSize

FileSystems can read/write data in blocks which are defined independently of the underlying StorageExtents. This property captures the FileSystem’s block size for data storage and retrieval.

uint64 NumberOfFiles

The number of files contained in the FileSystem.

string Root

Path name or other information defining the root of the FileSystem.

uint16 PersistenceType

An enumerated value representing the FileSystem’s perception of its own persistence characteristics. This property would typically be set at the time the FileSystem is instantiated and would not be changed by external actions. A value of “Persistent” indicates that the FileSystem is persistent, will be preserved through an orderly shutdown and should be protected. A value of “Temporary” indicates that the FileSystem is non-persistent, should not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem is controlled outside of the scope of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the OtherPersistenceType attribute, and is expected to be rarely, if ever, used. A value of “Unknown” indicates that the persistence of the FileSystem can not be determined.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

string FileSystemType

String describing the type of FileSystem and therefore, its conventions. For example, “NTFS” or “S5” may be listed as well as any additional information on the FileSystem’s implementation. Since various flavors of FileSystems (like S5) exist, this property is defined as a string.

string CSCreationClassName

The scoping System’s CreationClassName. Note that this class was originally defined in the scope of a ComputerSystem, and was later allowed to be scoped by any System (for example, a computer or application system). Unfortunately, the property name, CSCreationClassName, could not be changed (for example, to SystemCreationClass Name) without deprecating the class. This change was not deemed critical to the semantics and therefore did not merit deprecation. So, the property name remains.

uint16 IsFixedSize

Indicates whether the File size is fixed at creation time (value = 1) - the file size is fixed, (value = 2) - the file is not a fixed size. The default (value = 0) indicates that this information is not specified. If the File size is not fixed, the ResizeIncrement property should specify the growth increment, in bytes.

		ValueMap
		Values

		0
		Not Specified

		1
		Fixed Size

		2
		Not Fixed Size

uint64 AvailableSpace

AvailableSpace indicates the total amount of free space for the FileSystem, in bytes. If unknown, enter 0.

uint16[] CodeSet

Array defining the character sets or encoding supported by the FileSystem. For example, the values, “ASCII” (2) or “ISO2022” (4), may be specified.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		ASCII

		3
		Unicode

		4
		ISO2022

		5
		ISO8859

		6
		Extended UNIX Code

		7
		UTF-8

		8
		UCS-2

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16[] OperationalStatus

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDElementSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16 IsMinimum

CIM_SettingData SettingData

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

CIM_ManagedElement ManagedElement

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ProtocolEndpoint

Class reference

Subclass of CIM_ServiceAccessPoint

A communication point from which data can be sent or received. ProtocolEndpoints link system or computer interfaces to LogicalNetworks.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

datetime TimeOfLastStateChange

The date or time when the EnabledState of the element last changed. If the state of the element has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.

string Description

The Description property provides a textual description of the object.

string NameFormat

NameFormat contains the naming heuristic that is selected to ensure that the value of the Name property is unique. For example, you might choose to prepend the name of the port or interface with the Type of ProtocolEndpoint (for example, IPv4) of this instance followed by an underscore.

string Name

A string that identifies this ProtocolEndpoint with either a port or an interface on a device. To ensure uniqueness, the Name property should be prepended or appended with information from the Type or OtherTypeDescription properties. The method selected is described in the NameFormat property of this class.

uint16 ProtocolIFType

ProtocolIFType is an enumeration that is synchronized with the IANA ifType MIB. The ifType MIB is maintained at the URL, http://www.iana.org/assignments/ianaiftype-mib. Also, additional values defined by the DMTF are included. The property is used to categorize and classify instances of the ProtocolEndpoint class. Note that if the ProtocolIFType is set to 1 (Other), then the type information should be provided in the OtherTypeDescription string property.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Regular 1822

		3
		HDH 1822

		4
		DDN X.25

		5
		RFC877 X.25

		6
		Ethernet CSMA/CD

		7
		ISO 802.3 CSMA/CD

		8
		ISO 802.4 Token Bus

		9
		ISO 802.5 Token Ring

		10
		ISO 802.6 MAN

		11
		StarLAN

		12
		Proteon 10Mbit

		13
		Proteon 80Mbit

		14
		HyperChannel

		15
		FDDI

		16
		LAP-B

		17
		SDLC

		18
		DS1

		19
		E1

		20
		Basic ISDN

		21
		Primary ISDN

		22
		Proprietary Point-to-Point Serial

		23
		PPP

		24
		Software Loopback

		25
		EON

		26
		Ethernet 3Mbit

		27
		NSIP

		28
		SLIP

		29
		Ultra

		30
		DS3

		31
		SIP

		32
		Frame Relay

		33
		RS-232

		34
		Parallel

		35
		ARCNet

		36
		ARCNet Plus

		37
		ATM

		38
		MIO X.25

		39
		SONET

		40
		X.25 PLE

		41
		ISO 802.211c

		42
		LocalTalk

		43
		SMDS DXI

		44
		Frame Relay Service

		45
		V.35

		46
		HSSI

		47
		HIPPI

		48
		Modem

		49
		AAL5

		50
		SONET Path

		51
		SONET VT

		52
		SMDS ICIP

		53
		Proprietary Virtual/Internal

		54
		Proprietary Multiplexor

		55
		IEEE 802.12

		56
		Fibre Channel

		57
		HIPPI Interface

		58
		Frame Relay Interconnect

		59
		ATM Emulated LAN for 802.3

		60
		ATM Emulated LAN for 802.5

		61
		ATM Emulated Circuit

		62
		Fast Ethernet (100BaseT)

		63
		ISDN

		64
		V.11

		65
		V.36

		66
		G703 at 64K

		67
		G703 at 2Mb

		68
		QLLC

		69
		Fast Ethernet 100BaseFX

		70
		Channel

		71
		IEEE 802.11

		72
		IBM 260/370 OEMI Channel

		73
		ESCON

		74
		Data Link Switching

		75
		ISDN S/T Interface

		76
		ISDN U Interface

		77
		LAP-D

		78
		IP Switch

		79
		Remote Source Route Bridging

		80
		ATM Logical

		81
		DS0

		82
		DS0 Bundle

		83
		BSC

		84
		Async

		85
		Combat Net Radio

		86
		ISO 802.5r DTR

		87
		Ext Pos Loc Report System

		88
		AppleTalk Remote Access Protocol

		89
		Proprietary Connectionless

		90
		ITU X.29 Host PAD

		91
		ITU X.3 Terminal PAD

		92
		Frame Relay MPI

		93
		ITU X.213

		94
		ADSL

		95
		RADSL

		96
		SDSL

		97
		VDSL

		98
		ISO 802.5 CRFP

		99
		Myrinet

		100
		Voice Receive and Transmit

		101
		Voice Foreign Exchange Office

		102
		Voice Foreign Exchange Service

		103
		Voice Encapsulation

		104
		Voice over IP

		105
		ATM DXI

		106
		ATM FUNI

		107
		ATM IMA

		108
		PPP Multilink Bundle

		109
		IP over CDLC

		110
		IP over CLAW

		111
		Stack to Stack

		112
		Virtual IP Address

		113
		MPC

		114
		IP over ATM

		115
		ISO 802.5j Fibre Token Ring

		116
		TDLC

		117
		Gigabit Ethernet

		118
		HDLC

		119
		LAP-F

		120
		V.37

		121
		X.25 MLP

		122
		X.25 Hunt Group

		123
		Transp HDLC

		124
		Interleave Channel

		125
		FAST Channel

		126
		IP (for APPN HPR in IP Networks)

		127
		CATV MAC Layer

		128
		CATV Downstream

		129
		CATV Upstream

		130
		Avalon 12MPP Switch

		131
		Tunnel

		132
		Coffee

		133
		Circuit Emulation Service

		134
		ATM SubInterface

		135
		Layer 2 VLAN using 802.1Q

		136
		Layer 3 VLAN using IP

		137
		Layer 3 VLAN using IPX

		138
		Digital Power Line

		139
		Multimedia Mail over IP

		140
		DTM

		141
		DCN

		142
		IP Forwarding

		143
		MSDSL

		144
		IEEE 1394

		145
		IF-GSN/HIPPI-6400

		146
		DVB-RCC MAC Layer

		147
		DVB-RCC Downstream

		148
		DVB-RCC Upstream

		149
		ATM Virtual

		150
		MPLS Tunnel

		151
		SRP

		152
		Voice over ATM

		153
		Voice over Frame Relay

		154
		ISDL

		155
		Composite Link

		156
		SS7 Signaling Link

		157
		Proprietary P2P Wireless

		158
		Frame Forward

		159
		RFC1483 Multiprotocol over ATM

		160
		USB

		161
		IEEE 802.3ad Link Aggregate

		162
		BGP Policy Accounting

		163
		FRF .16 Multilink FR

		164
		H.323 Gatekeeper

		165
		H.323 Proxy

		166
		MPLS

		167
		Multi-Frequency Signaling Link

		168
		HDSL-2

		169
		S-HDSL

		170
		DS1 Facility Data Link

		171
		Packet over SONET/SDH

		172
		DVB-ASI Input

		173
		DVB-ASI Output

		174
		Power Line

		175
		Non Facility Associated Signaling

		176
		TR008

		177
		GR303 RDT

		178
		GR303 IDT

		179
		ISUP

		180
		Proprietary Wireless MAC Layer

		181
		Proprietary Wireless Downstream

		182
		Proprietary Wireless Upstream

		183
		HIPERLAN Type 2

		184
		Proprietary Broadband Wireless Access Point to Mulipoint

		185
		SONET Overhead Channel

		186
		Digital Wrapper Overhead Channel

		187
		ATM Adaptation Layer 2

		188
		Radio MAC

		189
		ATM Radio

		190
		Inter Machine Trunk

		191
		MVL DSL

		192
		Long Read DSL

		193
		Frame Relay DLCI Endpoint

		194
		ATM VCI Endpoint

		195
		Optical Channel

		196
		Optical Transport

		197
		Proprietary ATM

		198
		Voice over Cable

		199
		Infiniband

		200
		TE Link

		201
		Q.2931

		202
		Virtual Trunk Group

		203
		SIP Trunk Group

		204
		SIP Signaling

		205
		CATV Upstream Channel

		206
		Econet

		207
		FSAN 155Mb PON

		208
		FSAN 622Mb PON

		209
		Transparent Bridge

		210
		Line Group

		211
		Voice E&M Feature Group

		212
		Voice FGD EANA

		213
		Voice DID

		214
		MPEG Transport

		215
		6To4

		216
		GTP

		217
		Paradyne EtherLoop 1

		218
		Paradyne EtherLoop 2

		219
		Optical Channel Group

		220
		HomePNA

		221
		GFP

		222
		ciscoISLvlan

		223
		actelisMetaLOOP

		224
		Fcip

		225..4095
		IANA Reserved

		4096
		IPv4

		4097
		IPv6

		4098
		IPv4/v6

		4099
		IPX

		4100
		DECnet

		4101
		SNA

		4102
		CONP

		4103
		CLNP

		4104
		VINES

		4105
		XNS

		4106
		ISDN B Channel Endpoint

		4107
		ISDN D Channel Endpoint

		4108
		BGP

		4109
		OSPF

		4110
		UDP

		4111
		TCP

		4112
		802.11a

		4113
		802.11b

		4114
		802.11g

		4115
		802.11h

		4200
		NFS

		4201
		CIFS

		4202
		DAFS

		4203
		WebDAV

		4204
		HTTP

		4205
		FTP

		4300
		NDMP

		4400
		Telnet

		4401
		SSH

		4402
		SM CLP

		4403
		SMTP

		4404
		LDAP

		4405
		RDP

		4406
		HTTPS

		
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherTypeDescription

A string that describes the type of ProtocolEndpoint when the Type property of this class (or any of its subclasses) is set to 1 (Other). This property should be set to null when the Type property is any value other than 1.

boolean BroadcastResetSupported

A boolean indicating whether the instrumentation supports the BroadcastReset method.

uint16 ProtocolType

Note: This property is deprecated in lieu of the ProtocolIFType enumeration. This deprecation was done to have better alignment between the IF-MIB of the IETF and this CIM class.

Deprecated description: ProtocolType is an enumeration that provides information to categorize and classify different instances of this class. For most instances, information in this enumeration and the definition of the subclass overlap. However, there are several cases where a specific subclass of ProtocolEndpoint is not required (for example, there is no Fibre Channel subclass of ProtocolEndpoint). Therefore, this property is needed to define the type of Endpoint.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		IPv4

		3
		IPv6

		4
		IPX

		5
		AppleTalk

		6
		DECnet

		7
		SNA

		8
		CONP

		9
		CLNP

		10
		VINES

		11
		XNS

		12
		ATM

		13
		Frame Relay

		14
		Ethernet

		15
		TokenRing

		16
		FDDI

		17
		Infiniband

		18
		Fibre Channel

		19
		ISDN BRI Endpoint

		20
		ISDN B Channel Endpoint

		21
		ISDN D Channel Endpoint

		22
		IPv4/v6

		23
		BGP

		24
		OSPF

		25
		MPLS

		26
		UDP

		27
		TCP

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

Local methods

uint32 BroadcastReset ()

Send a broadcast reset. A broadcast reset is a request that peers perform a reset. Examples include a parallel SCSI Bus Reset and a Fibre Channel LIP.

		ValueMap
		Values

		0
		Success

		1
		Not_Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5..0x0FFF
		DMTF_Reserved

		0x1000..0x7777
		Method_Reserved

		0x8000..
		Vendor_Reserved

Parameters

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string Status

string ElementName

uint16 TransitioningToState

uint64 Generation

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

string Caption

uint16[] AvailableRequestedStates

string OtherEnabledState

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedPowerManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedPowerManagementService

Class reference

Subclass of CIM_ServiceAvailableToElement

The association between a Managed System Element and its power management service.

Key properties

UserOfService

ServiceProvided

Local properties

uint16 TransitioningToPowerState

TransitioningToPowerState indicates the target power state to which the system is transitioning.

A value of 19 “No Change” shall indicate that no transition is in progress. A value of 18 “Not Applicable” shall indicate the implementation does not support representing ongoing transitions.

A value other than 18 or 19 shall identify the power state to which the element is in the process of transitioning.

		ValueMap
		Values

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Off - Soft Graceful

		13
		Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		17
		Diagnostic Interrupt (INIT)

		18
		Not Applicable

		19
		No Change

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

uint16 PowerState

The current power state of the associated Managed System Element.

		ValueMap
		Values

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Off - Soft Graceful

		13
		Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		17
		Diagnostic Interrupt (INIT)

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

uint16[] AvailableRequestedPowerStates

AvailableRequestedPowerStates indicates the possible values for the PowerState parameter of the method RequestPowerStateChange, used to initiate a power state change.The values listed shall be a subset of the values contained in the RequestedPowerStatesSupported property of the CIM_PowerManagementCapabilities where the values selected are a function of the current power state of the system. This property shall be non-null if an implementation supports the advertisement of the set of possible values as a function of the current state. This property shall be null if an implementation does not support the advertisement of the set of possible values as a function of the current state.

The current values in the enumeration are:

2=On, corresponding to ACPI state G0 or S0 or D0.

3=Sleep - Light, corresponding to ACPI state G1, S1/S2, or D1.

4=Sleep - Deep, corresponding to ACPI state G1, S3, or D2.

5=Power Cycle (Off - Soft), corresponding to ACPI state G2, S5, or D3, but where the managed element is set to return to power state “On” at a pre-determined time.

6=Off - Hard, corresponding to ACPI state G3, S5, or D3.

7=Hibernate (Off - Soft), corresponding to ACPI state S4, where the state of the managed element is preserved and will be recovered upon powering on.

8=Off - Soft, corresponding to ACPI state G2, S5, or D3. 9= Power Cycle (Off-Hard), corresponds to the managed element reaching the ACPI state G3 followed by ACPI state S0.

10=Master Bus Reset, corresponds to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system master bus reset. 11=Diagnostic Interrupt (NMI), corresponding to the system reaching ACPI state S5 followed by ACPI state S0. This is used to represent system non-maskable interrupt. 12=Off - Soft Graceful, equivalent to Off Soft but preceded by a request to the managed element to perform an orderly shutdown.

13=Off - Hard Graceful, equivalent to Off Hard but preceded by a request to the managed element to perform an orderly shutdown.

14=Master Bus Rest Graceful, equivalent to Master Bus Reset but preceded by a request to the managed element to perform an orderly shutdown.

15=Power Cycle (Off - Soft Graceful), equivalent to Power Cycle (Off - Soft) but preceded by a request to the managed element to perform an orderly shutdown.

16=Power Cycle (Off - Hard Graceful), equivalent to Power Cycle (Off - Hard) but preceded by a request to the managed element to perform an orderly shutdown.

..=DMTF Reserved.

0x7FFF..0xFFFF = Vendor Specific.

		ValueMap
		Values

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Off - Soft Graceful

		13
		Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

datetime PowerOnTime

The time when the element will be powered on again, used when the RequestedPowerState has the value 2, “On”, 5, “Power Cycle (Off - Soft)” or 6, “Power Cycle (Off - Hard)”.

string OtherPowerState

A string describing the additional power management state of the element, used when the PowerState is set to the value 1, “Other”.

uint16 RequestedPowerState

The desired or the last requested power state of the associated Managed System Element, irrespective of the mechanism through which the request was made. If the requested power state is unknown, then the property shall have the value of 0 (“Unknown”). If the property has no meaning or is not supported, then the property shall have value 12(“Not Applicable”).

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		On

		3
		Sleep - Light

		4
		Sleep -_Deep

		5
		Power Cycle (Off - Soft)

		6
		Off - Hard

		7
		Hibernate (Off - Soft)

		8
		Off - Soft

		9
		Power Cycle (Off-Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Not Applicable

		13
		Off - Soft Graceful

		14
		Off - Hard Graceful

		15
		Master Bus Reset Graceful

		16
		Power Cycle (Off - Soft Graceful)

		17
		Power Cycle (Off - Hard Graceful)

		18
		Diagnostic Interrupt (INIT)

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

string OtherRequestedPowerState

A string describing the additional power management state of the element, used when the RequestedPowerState is set to the value 1, “Other”.

CIM_PowerManagementService ServiceProvided

The Service that is available.

Local methods

None

Inherited properties

CIM_ManagedElement UserOfService

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPNetworkConnectionCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPNetworkConnectionCapabilities

Class reference

Subclass of CIM_EnabledLogicalElementCapabilities

EnabledLogicalElementCapabilities describes the capabilities supported for changing the state of the assciated EnabledLogicalElement.

Key properties

InstanceID

Local properties

string ElementName

Human readable device name

boolean ElementNameEditSupported

Boolean indicating whether the ElementName can be modified.

Local methods

uint16 LMI_CreateIPSetting (string Caption, uint16 Type, uint16 IPv4Type, uint16 IPv6Type, CIM_IPAssignmentSettingData SettingData)

Creates a LMI_IPAssignmentSettingData instance or instance of its subclasses.

Caller can modify the setting via ModifyInstance instrinsic method. Created IPAssignmentSettingData will be associated with instance of LMI_IPNetworkConnection that this instance is associated with.

When both IPv4Type and IPv6Type is not 0 - Disabled, LMI_IPAssignmentSettingData instance with AddressOrigin = 11 (cumulative configuration) will be created and both LMI_IPAssignmentSettingData subclasses will be associated to it.

For types 4 - Bonding and 5 - Bridging the associated IPNetworkConnection will be enslaved by created SettingData(meaning that LMI_CreateSlaveSetting will be automatically called).

		ValueMap
		Values

		0
		No Error

		1
		Unknown Error

		2
		Timeout

		3
		Wrong Parameter

		4
		Memory Allocation Failure

		5
		Backend Error

		6
		Not Implemented

Parameters

		IN string Caption

		Name of the configuration

		IN uint16 Type

		Base type of the settings. Use this option to specify the type of setting. Currently supported are:

		Ethernet - create ethernet connection. This is default value.- Bonding - create master connection for bonding- Bridging - create master connection for bridging

		ValueMap
		Values

		1
		Ethernet

		4
		Bonding

		5
		Bridging

		IN uint16 IPv4Type

		Type of the setting for IPv4, default is 0 - Disabled.

		ValueMap
		Values

		0
		Disabled

		3
		Static

		4
		DHCP

		IN uint16 IPv6Type

		Type of the setting for IPv6, default is 0 - Disabled.

		ValueMap
		Values

		0
		Disabled

		3
		Static

		7
		DHCPv6

		9
		Stateless

		OUT CIM_IPAssignmentSettingData SettingData

		Created setting data

uint16 LMI_CreateSlaveSetting (CIM_IPAssignmentSettingData MasterSettingData, CIM_IPAssignmentSettingData SettingData)

Add associated IPNetworkConnection to the given MasterSettingData. The MasterSettingData must have type 4 - Bonding or 5 - Bridging.

Parameters

		IN CIM_IPAssignmentSettingData MasterSettingData

		SettingData to add IPNetworkConnection to.

		OUT CIM_IPAssignmentSettingData SettingData

		Created setting data

Inherited properties

uint16 MaxElementNameLen

string Caption

uint16[] RequestedStatesSupported

string ElementNameMask

uint64 Generation

string InstanceID

uint16[] StateAwareness

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

install.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

Installation

From source code

Please refer to README of individual providers, either in git
or in released tarballs.

Fedora

In Fedora Linux, one just needs to install OpenLMI packages:

$ yum install openlmi-networking openlmi-storage <any other providers>

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDComponent

Class reference

Subclass of CIM_ManagedElement

Base class for SSSD’s components.

Key properties

Name

Local properties

string Name

Name of the SSSD component.

boolean IsEnabled

True if this process is enabled at SSSD startup and false otherwise.

uint16 DebugLevel

Debug level used within this component.

uint16 Type

Type of the SSSD component.

		ValueMap
		Values

		0
		Monitor

		1
		Responder

		2
		Backend

Local methods

uint32 SetDebugLevelPermanently (uint16 debug_level)

Permanently change debug level of this component.

		ValueMap
		Values

		0
		Success

		1
		Failed

		2
		Operation not supported

		3
		I/O error

Parameters

IN uint16 debug_level

uint32 Enable ()

Enable this component. SSSD has to be restarted in order this change to take any effect.

		ValueMap
		Values

		0
		Success

		1
		Failed

		2
		Operation not supported

		3
		I/O error

Parameters

		None

		

uint32 Disable ()

Disable this component. SSSD has to be restarted in order this change to take any effect.

		ValueMap
		Values

		0
		Success

		1
		Failed

		2
		Operation not supported

		3
		I/O error

Parameters

		None

		

uint32 SetDebugLevelTemporarily (uint16 debug_level)

Change debug level of this component but switch it back to the original value when SSSD is restarted.

		ValueMap
		Values

		0
		Success

		1
		Failed

		2
		Operation not supported

		3
		I/O error

Parameters

IN uint16 debug_level

Inherited properties

string ElementName

string InstanceID

uint64 Generation

string Caption

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FanSensor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FanSensor

Class reference

Subclass of CIM_NumericSensor

A Numeric Sensor is capable of returning numeric readings and optionally supports thresholds settings.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string[] StatusDescriptions

Strings describing the various OperationalStatus array values. For example, if “Stopping” is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.

sint32 CurrentReading

The current value indicated by the Sensor.

sint32 UnitModifier

The unit multiplier for the values returned by this Sensor. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). For example, if BaseUnits is Volts and the Unit Modifier is -6, then the units of the values returned are MicroVolts. However, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier.

sint32 MinReadable

MinReadable indicates the smallest value of the measured property that can be read by the NumericSensor.

string SystemName

The System Name of the scoping system.

uint16 BaseUnits

The base unit of the values returned by this Sensor. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). For example, if BaseUnits is Volts and the UnitModifier is -6, then the units of the values returned are MicroVolts. However, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Degrees C

		3
		Degrees F

		4
		Degrees K

		5
		Volts

		6
		Amps

		7
		Watts

		8
		Joules

		9
		Coulombs

		10
		VA

		11
		Nits

		12
		Lumens

		13
		Lux

		14
		Candelas

		15
		kPa

		16
		PSI

		17
		Newtons

		18
		CFM

		19
		RPM

		20
		Hertz

		21
		Seconds

		22
		Minutes

		23
		Hours

		24
		Days

		25
		Weeks

		26
		Mils

		27
		Inches

		28
		Feet

		29
		Cubic Inches

		30
		Cubic Feet

		31
		Meters

		32
		Cubic Centimeters

		33
		Cubic Meters

		34
		Liters

		35
		Fluid Ounces

		36
		Radians

		37
		Steradians

		38
		Revolutions

		39
		Cycles

		40
		Gravities

		41
		Ounces

		42
		Pounds

		43
		Foot-Pounds

		44
		Ounce-Inches

		45
		Gauss

		46
		Gilberts

		47
		Henries

		48
		Farads

		49
		Ohms

		50
		Siemens

		51
		Moles

		52
		Becquerels

		53
		PPM (parts/million)

		54
		Decibels

		55
		DbA

		56
		DbC

		57
		Grays

		58
		Sieverts

		59
		Color Temperature Degrees K

		60
		Bits

		61
		Bytes

		62
		Words (data)

		63
		DoubleWords

		64
		QuadWords

		65
		Percentage

		66
		Pascals

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string[] IdentifyingDescriptions

An array of free-form strings providing explanations and details behind the entries in the OtherIdentifyingInfo array. Note that each entry of this array is related to the entry in OtherIdentifyingInfo that is located at the same index.

string[] PossibleStates

PossibleStates enumerates the string outputs of the Sensor. For example, a “Switch” Sensor may output the states “On”, or “Off”. Another implementation of the Switch may output the states “Open”, and “Close”. Another example is a NumericSensor supporting thresholds. This Sensor can report the states like “Normal”, “Upper Fatal”, “Lower Non-Critical”, etc. A NumericSensor that does not publish readings and thresholds, but stores this data internally, can still report its states.

sint32 NormalMax

NormalMax provides guidance for the user as to the normal maximum range for the NumericSensor.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 RateUnits

Specifies if the units returned by this Sensor are rate units. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). This is true unless this property (RateUnits) has a value different than “None”. For example, if BaseUnits is Volts and the UnitModifier is -6, then the units of the values returned are MicroVolts. But, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier. Any implementation of CurrentReading should be qualified with either a Counter or a Gauge qualifier, depending on the characteristics of the sensor being modeled.

		ValueMap
		Values

		0
		None

		1
		Per MicroSecond

		2
		Per MilliSecond

		3
		Per Second

		4
		Per Minute

		5
		Per Hour

		6
		Per Day

		7
		Per Week

		8
		Per Month

		9
		Per Year

string[] OtherIdentifyingInfo

OtherIdentifyingInfo captures data, in addition to DeviceID information, that could be used to identify a LogicalDevice. For example, you could use this property to hold the operating system’s user-friendly name for the Device.

string Name

Name of fan provided by system.

sint32 NormalMin

NormalMin provides guidance for the user as to the normal minimum range for the NumericSensor.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

Uniquely identifies fan. It is a composition of SysPath and Name glued with slash (‘/’).

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

boolean IsLinear

Indicates that the Sensor is linear over its dynamic range.

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions.

OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“None” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Servicing” describes an element being configured, maintained, cleaned, or otherwise administered.

“Starting” describes an element being initialized.

“Stopping” describes an element being brought to an orderly stop.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Migrating” element is being moved between host elements.

“Immigrating” element is being moved to new host element.

“Emigrating” element is being moved away from host element.

“Shutting Down” describes an element being brought to an abrupt stop.

“In Test” element is performing test functions.

“Transitioning” describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable.

“In Service” describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Servicing

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		8
		Completed

		9
		Migrating

		10
		Emigrating

		11
		Immigrating

		12
		Snapshotting

		13
		Shutting Down

		14
		In Test

		15
		Transitioning

		16
		In Service

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16[] SupportedThresholds

uint16 ValueFormulation

uint16[] EnabledThresholds

boolean PowerManagementSupported

uint16[] PowerManagementCapabilities

uint16 SensorType

uint16 CommunicationStatus

datetime TimeOfLastStateChange

uint16[] SettableThresholds

sint32 LowerThresholdNonCritical

uint32 Hysteresis

sint32 Tolerance

string CurrentState

sint32 LowerThresholdCritical

string Status

uint16 TransitioningToState

uint64 Generation

boolean ErrorCleared

string InstanceID

uint32 LastErrorCode

sint32 LowerThresholdFatal

string OtherSensorTypeDescription

string AccuracyUnits

sint32 Accuracy

uint16 LocationIndicator

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16[] AvailableRequestedStates

uint16 EnabledState

uint16[] AdditionalAvailability

sint32 UpperThresholdNonCritical

sint32 UpperThresholdFatal

uint16 StatusInfo

uint32 ProgrammaticAccuracy

uint64 PowerOnHours

uint32 Resolution

string SensorContext

uint64 PollingInterval

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 RequestedState

string OtherEnabledState

sint32 MaxReadable

sint32 NominalReading

sint32 UpperThresholdCritical

uint16 Availability

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

GetNonLinearFactors

EnableDevice

OnlineDevice

RestoreDefaultThresholds

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MemberOfCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MemberOfCollection

Class reference

CIM_MemberOfCollection is an aggregation used to establish membership of ManagedElements in a Collection.

Key properties

Member

Collection

Local properties

CIM_ManagedElement Member

The aggregated member of the Collection.

CIM_Collection Collection

The Collection that aggregates members.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/journald/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Journald Scripts documentation

Contents:

		Journald command line reference
		journald

		Journald Script python reference
		Journald Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ChassisComputerSystemPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ChassisComputerSystemPackage

Class reference

Subclass of CIM_ComputerSystemPackage

Similar to the way that LogicalDevices are ‘Realized’ by PhysicalElements, ComputerSystem may be realized in one or more PhysicalPackages. The ComputerSystemPackage association explicitly defines this relationship.

Key properties

Dependent

Antecedent

Local properties

CIM_ComputerSystem Dependent

The UnitaryComputerSystem.

LMI_Chassis Antecedent

The PhysicalPackage(s) that realize a Unitary ComputerSystem.

Local methods

None

Inherited properties

string PlatformGUID

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Battery.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Battery

Class reference

Subclass of CIM_Battery

Capabilities and management of the Battery. This class applies to both batteries in Laptop Systems and other internal or external batteries, such as an uninterruptible power supply (UPS).

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint32 DesignCapacity

The design capacity of the battery in mWatt-hours. If this property is not supported, enter 0.

string SystemName

The System Name of the scoping system.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

uint64 DesignVoltage

The design voltage of the battery in mVolts. If this attribute is not supported, enter 0.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

uint16 Chemistry

An enumeration that describes the chemistry of the Battery.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Lead Acid

		4
		Nickel Cadmium

		5
		Nickel Metal Hydride

		6
		Lithium-ion

		7
		Zinc air

		8
		Lithium Polymer

		
		DMTF Reserved

		32768..65535
		Vendor Specified

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16 BatteryStatus

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 PrimaryStatus

string OutputPowerUnits

string OtherChemistryDescription

uint32 MaxRechargeTime

datetime TimeOfLastStateChange

uint8 RemainingCapacityMaxError

uint16 PermanentErrorInfo

uint16 Availability

string Status

uint32 TimeToFullCharge

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

boolean PowerManagementSupported

uint16 LocationIndicator

uint32 MaxRechargeCount

uint32 RemainingCapacity

uint16 EnabledState

uint16 ChargingStatus

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint32 TimeOnBattery

uint16 EnabledDefault

uint16 EstimatedChargeRemaining

uint16 OperatingStatus

uint16[] AdditionalAvailability

uint32 RatedMaxOutputPower

uint16 CommunicationStatus

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint8 HealthPercent

uint64 PowerOnHours

uint32 ExpectedLife

uint32 RechargeCount

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string SmartBatteryVersion

string ErrorDescription

boolean IsACOutput

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint32 EstimatedRunTime

datetime InstallDate

uint32 FullChargeCapacity

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Collection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Collection

Class reference

Subclass of CIM_ManagedElement

Collection is an abstract class that provides a common superclass for data elements that represent collections of ManagedElements and its subclasses.

Key properties

Local properties

None

Local methods

None

Inherited properties

string InstanceID

string Caption

string ElementName

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/locale/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

Welcome to openlmi-scripts-locale’s documentation!

Contents:

		Locale command line reference
		locale

		Locale Script python reference

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BindsToLANEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BindsToLANEndpoint

Class reference

Subclass of CIM_BindsTo

This association makes explicit the dependency of a SAP or ProtocolEndpoint on an underlying LANEndpoint, on the same system.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The AccessPoint or ProtocolEndpoint dependent on the LANEndpoint.

CIM_LANEndpoint Antecedent

The underlying LANEndpoint, which is depended upon.

uint16 FrameType

This describes the framing method for the upper layer SAP or Endpoint that is bound to the LANEndpoint. Note: “Raw802.3” is only known to be used with the IPX protocol.

		ValueMap
		Values

		0
		Unknown

		1
		Ethernet

		2
		802.2

		3
		SNAP

		4
		Raw802.3

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NetworkPortStatistics.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NetworkPortStatistics

Class reference

Subclass of CIM_StatisticalData

The NetworkPortStatistics class describes the statistics for the NetworkPort.

Key properties

InstanceID

Local properties

uint64 BytesReceived

The total number of bytes that are received, including framing characters.

uint64 PacketsReceived

The total number of packets that are received.

uint64 BytesTransmitted

The total number of bytes that are transmitted, including framing characters.

uint64 PacketsTransmitted

The total number of packets that are transmitted.

Local methods

None

Inherited properties

string ElementName

datetime StatisticTime

string Description

datetime StartStatisticTime

string InstanceID

uint64 Generation

string Caption

datetime SampleInterval

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalElement

Class reference

Subclass of CIM_ManagedSystemElement

Subclasses of CIM_PhysicalElement define any component of a System that has a distinct physical identity. Instances of this class can be defined as an object that can be seen or touched. All Processes, Files, and LogicalDevices are considered not to be Physical Elements. For example, it is not possible to touch the functionality of a ‘modem.’ You can touch only the card or package that implements the modem. The same card could also implement a LAN adapter. PhysicalElements are tangible ManagedSystemElements that have a physical manifestation of some sort.

Note that the properties of PhysicalElement describe a hardware entity. Possible replacement (FRU) information is defined by following the ElementFRU association to one or more instances of the ReplacementFRU class. This definition allows a client to determine what hardware can be replaced (FRUed) and what ‘spare’ parts might be required by a customer or engineer doing the replacement. If it can be instrumented or manually determined that an element actually replaced (FRUed) another, then this can be described in the model using the ElementHasBeenFRUed association.

Key properties

Tag

CreationClassName

Local properties

string SKU

The stock-keeping unit number for this PhysicalElement.

string UserTracking

User-assigned and writeable asset-tracking identifier for the PhysicalElement.

string VendorEquipmentType

A vendor-specific hardware type for the PhysicalElement. It describes the specific equipment type for the element, as defined by the vendor or manufacturer.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

datetime ManufactureDate

The date that this PhysicalElement was manufactured.

string Version

A string that indicates the version of the PhysicalElement.

string PartNumber

The part number assigned by the organization that is responsible for producing or manufacturing the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

boolean CanBeFRUed

Boolean that indicates whether this PhysicalElement can be FRUed (TRUE) or not (FALSE).

string Description

A textual description of the PhysicalElement.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string OtherIdentifyingInfo

OtherIdentifyingInfo captures data in addition to Tag information. This information could be used to identify a Physical Element. One example is bar code data associated with an Element that also has an asset tag. Note that if only bar code data is available and is unique or able to be used as an Element key, this property would be null and the bar code data would be used as the class key, in the Tag property.

boolean PoweredOn

Boolean that indicates whether the PhysicalElement is powered on (TRUE) or is currently off (FALSE).

string Model

The name by which the PhysicalElement is generally known.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

uint16[] OperationalStatus

uint16 DetailedStatus

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

uint64 Generation

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogicalDisk.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalDisk

Class reference

Subclass of CIM_StorageExtent

A LogicalDisk is a presentation of a contiguous range of logical blocks that is identifiable by applications such as filesystems via the Name field. (DeviceID (key) may use the same name or some other unique text such as a UUID.) For example in a Windows environment, the Name field may contain a drive letter. In a Unix environment, it may contain the access path (for example, ‘/dev/...’); and in a NetWare environment, may contain the volume name. LogicalDisks are typically built on a DiskPartition or other LogicalDisks (for instance, those exposed by a software volume manager). However, it can be based on other StorageExtents, like CIM_Memory, in the case of a RAM disk.

LogicalDisks SHOULD set the ‘Exported’ value in ExtentStatus[] if they are intended for application use.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16[] ClientSettableUsage

Indicates which values from the “Usage” value map can be manipulated by a client using the method”StorageConfigurationService.RequestUsageChange”.

uint16 Usage

Indicates the intended usage or any restrictions that may have been imposed on the usage of this component. All ValueMap/Values entries are defined in CIM_StorageExtent. To promote interoperability across subclasses, all new entries for this class shall be defined there.

		ValueMap
		Values

		1
		Other

		2
		Unrestricted

		3
		Reserved for ComputerSystem (the block server)

		4
		Reserved by Replication Services

		5
		Reserved by Migration Services

		6
		Local Replica Source

		7
		Remote Replica Source

		8
		Local Replica Target

		9
		Remote Replica Target

		10
		Local Replica Source or Target

		11
		Remote Replica Source or Target

		12
		Delta Replica Target

		13
		Element Component

		14
		Reserved to be Unrestricted Pool Contributor

		15
		Composite Volume Member

		16
		Composite LogicalDisk Member

		17
		Reserved for Sparing

		18
		In use as Unrestricted Pool Contributor

		19
		Reserved to be Delta Replica Pool Contributor

		20
		Reserved to be Local Replication Pool Contributor

		21
		Reserved to be Remote Replication Pool Contributor

		22
		In use as Delta Replica Pool Contributor

		23
		In use as Local Replication Pool Contributor

		24
		In use as Remote Replication Pool Contributor

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 NumExtentsMigrating

The number of Extents in the process of migrating for this logical disk when the logical disk relocation is on going.

uint16 NameFormat

LogicalDisk names shall use OS Device Name format.

		ValueMap
		Values

		1
		Other

		12
		OS Device Name

string OtherUsageDescription

Populated when “Usage” has the value of “Other”.

boolean ThinlyProvisioned

True if the logical disk is thinly provisioned.

uint16 NameNamespace

LogicalDisk names shall use OS Device Namespace.

		ValueMap
		Values

		1
		Other

		8
		OS Device Namespace

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

boolean PowerManagementSupported

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

uint16 CompressionRate

boolean NoSinglePointOfFailure

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 PrimaryStatus

boolean ErrorCleared

string InstanceID

uint16[] OperationalStatus

uint16 CompressionState

uint64 ExtentStripeLength

uint16 OperatingStatus

uint16 LocationIndicator

string Purpose

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Slot.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Slot

Class reference

Subclass of CIM_PhysicalConnector

The Slot class represents Connectors into which Packages are inserted. For example, a PhysicalPackage that is a DiskDrive may be inserted into an SCA ‘Slot’. As another example, a Card (subclass of PhysicalPackage) may be inserted into a 16-, 32-, or 64-bit expansion ‘Slot’ on a HostingBoard. PCI or PCMCIA Type III Slots are examples of the latter.

Key properties

Tag

CreationClassName

Local properties

boolean Powered

A boolean indicating whether the Slot is currently powered (TRUE) or not (FALSE).

string PurposeDescription

A free-form string describing that this Slot is physically unique and may hold special types of hardware. This property only has meaning when the corresponding boolean property, SpecialPurpose, is set to TRUE.

boolean SpecialPurpose

Boolean indicating that this Slot is physically unique and may hold special types of hardware, e.g. a graphics processor slot. If set to TRUE, then the property, Special PurposeDescription (a string), should specify the nature of the uniqueness or purpose of the Slot.

real32 HeightAllowed

Maximum height of an adapter Card that can be inserted into the Slot, in inches.

uint16 MaxDataWidth

Maximum bus width of adapter Cards that can be inserted into this Slot, in bits. If the value is ‘unknown’, enter 0. If the value is other than 8, 16, 32, 64 or 128, enter 1.

boolean OpenSwitch

A boolean indicating whether the switch state of the Slot is currently open (TRUE) or closed (FALSE). This switch state determines whether the contents of the Slot can be hot-plugged.

uint16[] ConnectorType

Deprecated!
An array of integers defining the type of PhysicalConnector. An array is specified to allow the description of ‘combinations’ of Connector information. For example, one array entry could specify RS-232 (value=25), another DB-25 (value=23) and a third entry define the Connector as “Male” (value=2).

This single property is being deprecated in lieu of using separate properties to describe the various aspects of the connector. The separation allows for a more generic means of describing the connectors. Obsolete connectors were intentionally removed from the new list.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Male

		3
		Female

		4
		Shielded

		5
		Unshielded

		6
		SCSI (A) High-Density (50 pins)

		7
		SCSI (A) Low-Density (50 pins)

		8
		SCSI (P) High-Density (68 pins)

		9
		SCSI SCA-I (80 pins)

		10
		SCSI SCA-II (80 pins)

		11
		Fibre Channel (DB-9, Copper)

		12
		Fibre Channel (Optical Fibre)

		13
		Fibre Channel SCA-II (40 pins)

		14
		Fibre Channel SCA-II (20 pins)

		15
		Fibre Channel BNC

		16
		ATA 3-1/2 Inch (40 pins)

		17
		ATA 2-1/2 Inch (44 pins)

		18
		ATA-2

		19
		ATA-3

		20
		ATA/66

		21
		DB-9

		22
		DB-15

		23
		DB-25

		24
		DB-36

		25
		RS-232C

		26
		RS-422

		27
		RS-423

		28
		RS-485

		29
		RS-449

		30
		V.35

		31
		X.21

		32
		IEEE-488

		33
		AUI

		34
		UPT Category 3

		35
		UPT Category 4

		36
		UPT Category 5

		37
		BNC

		38
		RJ11

		39
		RJ45

		40
		Fiber MIC

		41
		Apple AUI

		42
		Apple GeoPort

		43
		PCI

		44
		ISA

		45
		EISA

		46
		VESA

		47
		PCMCIA

		48
		PCMCIA Type I

		49
		PCMCIA Type II

		50
		PCMCIA Type III

		51
		ZV Port

		52
		CardBus

		53
		USB

		54
		IEEE 1394

		55
		HIPPI

		56
		HSSDC (6 pins)

		57
		GBIC

		58
		DIN

		59
		Mini-DIN

		60
		Micro-DIN

		61
		PS/2

		62
		Infrared

		63
		HP-HIL

		64
		Access.bus

		65
		NuBus

		66
		Centronics

		67
		Mini-Centronics

		68
		Mini-Centronics Type-14

		69
		Mini-Centronics Type-20

		70
		Mini-Centronics Type-26

		71
		Bus Mouse

		72
		ADB

		73
		AGP

		74
		VME Bus

		75
		VME64

		76
		Proprietary

		77
		Proprietary Processor Card Slot

		78
		Proprietary Memory Card Slot

		79
		Proprietary I/O Riser Slot

		80
		PCI-66MHZ

		81
		AGP2X

		82
		AGP4X

		83
		PC-98

		84
		PC-98-Hireso

		85
		PC-H98

		86
		PC-98Note

		87
		PC-98Full

		88
		SSA SCSI

		89
		Circular

		90
		On Board IDE Connector

		91
		On Board Floppy Connector

		92
		9 Pin Dual Inline

		93
		25 Pin Dual Inline

		94
		50 Pin Dual Inline

		95
		68 Pin Dual Inline

		96
		On Board Sound Connector

		97
		Mini-jack

		98
		PCI-X

		99
		Sbus IEEE 1396-1993 32 bit

		100
		Sbus IEEE 1396-1993 64 bit

		101
		MCA

		102
		GIO

		103
		XIO

		104
		HIO

		105
		NGIO

		106
		PMC

		107
		MTRJ

		108
		VF-45

		109
		Future I/O

		110
		SC

		111
		SG

		112
		Electrical

		113
		Optical

		114
		Ribbon

		115
		GLM

		116
		1x9

		117
		Mini SG

		118
		LC

		119
		HSSC

		120
		VHDCI Shielded (68 pins)

		121
		InfiniBand

		122
		AGP8X

string[] VendorCompatibilityStrings

An array of strings that identify the components that are compatible and can be inserted in a slot. This allows vendors to provide clues to the system administrators by providing sufficient information to request the appropriate hardware that can populate the slot. In order to ensure uniqueness within the NameSpace, each value defined by the vendor for use in the VendorCompatibilityStrings property SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements.

boolean SupportsHotPlug

Boolean indicating whether the Slot supports hot-plug of adapter Cards.

uint16[] VppMixedVoltageSupport

An array of enumerated integers indicating the Vpp voltage supported by this Slot.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		3.3V

		3
		5V

		4
		12V

boolean PoweredOn

Boolean that indicates whether the PhysicalElement is powered on (TRUE) or is currently off (FALSE).

uint32 ThermalRating

Maximum thermal dissipation of the Slot in milliwatts.

uint16[] VccMixedVoltageSupport

An array of enumerated integers indicating the Vcc voltage supported by this Slot.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		3.3V

		3
		5V

real32 LengthAllowed

Maximum length of an adapter Card that can be inserted into the Slot, in inches.

uint16 MaxLinkWidth

Maximum link width of a switching bus type, such as Infiniband and PCI Express. The width is expressed in number of communication lines, or lanes, between port and devices. This property dictates the maximum link width, in lanes, of adapter Cards that can be inserted into this Slot. If the value is ‘unknown’, enter 0.

		ValueMap
		Values

		0
		Unknown

		2
		x1

		3
		x2

		4
		x4

		5
		x8

		6
		x12

		7
		x16

		8
		x32

		9..
		DMTF Reserved

uint16 Number

The Number property indicates the physical slot number, which can be used as an index into a system slot table, whether or not that slot is physically occupied.

Local methods

None

Inherited properties

string[] OtherElectricalCharacteristics

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string OtherIdentifyingInfo

datetime ManufactureDate

uint16 CommunicationStatus

string Version

uint16 ConnectorGender

string PartNumber

string Status

string ConnectorDescription

boolean CanBeFRUed

uint16 ConnectorLayout

string Description

uint16[] ConnectorElectricalCharacteristics

uint16[] OperationalStatus

string Manufacturer

uint16 DetailedStatus

string SerialNumber

string Name

string ElementName

string Caption

string OtherTypeDescription

string Model

uint16 PrimaryStatus

uint32 NumPhysicalPins

uint64 Generation

string Tag

uint16 OperatingStatus

string CreationClassName

datetime InstallDate

string ConnectorPinout

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVAllocatedFromStoragePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVAllocatedFromStoragePool

Class reference

Subclass of CIM_AllocatedFromStoragePool

AllocatedFromStoragePool is an association describing how LogicalElements are allocated from underlying StoragePools. These elements typically would be subclasses of StorageExtents or StoragePools.

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_LogicalElement Dependent

CIM_StoragePool Antecedent

uint16 SpaceLimitWarningThreshold

uint64 SpaceLimit

uint64 SpaceConsumed

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OwningNetworkJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OwningNetworkJobElement

Class reference

Subclass of LMI_OwningJobElement

OwningJobElement represents an association between a Job and the ManagedElement responsible for the creation of the Job. This association may not be possible, given that the execution of jobs can move between systems and that the lifecycle of the creating entity may not persist for the total duration of the job. However, this can be very useful information when available. This association defines a more specific ‘owner’ than is provided by the CIM_Job.Owner string.

Key properties

OwningElement

OwnedElement

OwningElement

OwnedElement

Local properties

CIM_ManagedElement OwningElement

The ManagedElement responsible for the creation of the Job.

LMI_NetworkJob OwnedElement

The Job created by the ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EthernetPortStatistics.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EthernetPortStatistics

Class reference

Subclass of CIM_NetworkPortStatistics

The EthernetPortStatistics class describes the statistics for the EthernetPort.

Key properties

InstanceID

Local properties

uint32 SQETestErrors

The number of times that the SQE TEST ERROR message is generated by the PLS sublayer for a particular interface. The SQE TEST ERROR message is defined in section 7.2.2.2.4 of ANSI/IEEE 802.3-1985 and its generation is described in section 7.2.4.6 of the same document.

uint32 MultipleCollisionFrames

The number of successfully transmitted frames on a particular interface for which transmission is inhibited by more than one collision. A frame that is counted by an instance of this object is not counted by the corresponding instance of the SingleCollisionFrames property.

uint32 CarrierSenseErrors

The number of times that the carrier sense condition was lost or never asserted when attempting to transmit a frame on a particular interface. The count represented by an instance of this object can be incremented only once per transmission attempt, even if the carrier sense condition fluctuates during a transmission attempt.

uint32 LateCollisions

The number of times that a collision is detected on a particular interface later than 512 bit-times into the transmission of a packet. Five hundred and twelve bit- times corresponds to 51.2 microseconds on a 10 Mbit/s system. A (late) collision included in a count represented by an instance of this object is also considered as a (generic) collision for purposes of other collision-related statistics.

uint32 ExcessiveCollisions

The number of frames for which transmission on a particular interface fails due to excessive collisions.

uint32 DeferredTransmissions

The number of frames for which the first transmission attempt on a particular interface is delayed because the medium is busy. The count represented by an instance of this object does not include frames involved in collisions.

uint32 SingleCollisionFrames

The number of successfully transmitted frames on a particular interface for which transmission is inhibited by exactly one collision. A frame that is counted by an instance of this object is not counted by the corresponding instance of the MultipleCollisionFrames property.

uint64 PacketsReceived

The total number of packets that are received.

uint64 PacketsTransmitted

The total number of packets that are transmitted.

uint32 InternalMACReceiveErrors

The number of frames for which reception on a particular interface fails due to an internal MAC sublayer receive error. A frame is counted by an instance of this object only if it is not counted by the corresponding instance of either the FrameTooLongs property, the AlignmentErrors property, or the FCSErrors property. The precise meaning of the count that is represented by an instance of this object is implementation-specific. For example, an instance of this object can represent a count of receive errors on a particular interface that are not otherwise counted.

uint32 InternalMACTransmitErrors

The number of frames for which transmission on a particular interface fails due to an internal MAC sublayer transmit error. A frame is counted by an instance of this object only if it is not counted by the corresponding instance of either the LateCollisions property, the Excessive Collisions property, or the CarrierSenseErrors property. The precise meaning of the count that is represented by an instance of this object is implementation-specific. In particular, an instance of this object can represent a count of transmission errors on a particular interface that are not otherwise counted.

uint32 FrameTooLongs

The number of frames received on a particular interface that exceed the maximum permitted frame size. The count represented by an instance of this object is incremented when the FrameTooLong status is returned by the MAC layer to the LLC (or other MAC user). Received frames for which multiple error conditions obtained are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

uint32 FCSErrors

The number of frames that are received on a particular interface that are an integral number of octets in length, but do not pass the FCS check. The count represented by an instance of this object is incremented when the frame check error status is returned by the MAC layer to the LLC (or other MAC user). Received frames for which multiple error conditions obtained are, according to the conventions of the error status presented to the LLC.

uint32 AlignmentErrors

The number of frames that are received on a particular interface that are not an integral number of octets in length and do not pass the FCS check. The count represented by an instance of this object is incremented when the alignment error status is returned by the MAC layer to the LLC (or other MAC user). Received frames for which multiple error conditions obtained are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

uint32 SymbolErrors

The number of times that there was an invalid data symbol when a valid carrier was present. The count can be incremented only once per carrier event, even if multiple symbol errors occur during the carrier event.

Local methods

None

Inherited properties

datetime StartStatisticTime

string InstanceID

string ElementName

string Description

uint64 BytesReceived

string Caption

datetime StatisticTime

uint64 Generation

datetime SampleInterval

uint64 BytesTransmitted

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ResidesOnExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ResidesOnExtent

Class reference

Subclass of CIM_ResidesOnExtent

An association between a LogicalElement and the StorageExtent where it is located. Typically, a FileSystem ResidesOn a LogicalDisk. However, it is possible for a logical file or other internal data store to reside directly on a StorageExtent or appropriate subclass.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_LogicalElement Dependent

CIM_StorageExtent Antecedent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PartitionBasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PartitionBasedOn

Class reference

Subclass of CIM_BasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents. For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be defined independently and realized in a PhysicalElement or can be ‘based on’ Volatile or NonVolatileStorageExtents.

Key properties

Dependent

Antecedent

Local properties

uint64 StartingAddress

StartingAddress indicates where in lower level storage, the higher level Extent begins.

uint64 EndingAddress

EndingAddress indicates where in lower level storage, the higher level Extent ends. This property is useful when mapping non-contiguous Extents into a higher level grouping.

uint16 OrderIndex

If there is an order to the BasedOn associations that describe how a higher level StorageExtent is assembled, the OrderIndex property indicates this. When an order exists, the instances of BasedOn with the same Dependent value (i.e., the same higher level Extent) should place unique values in the OrderIndex property. The lowest value implies the first member of the collection of lower level Extents, and increasing values imply successive members of the collection. If there is no ordered relationship, a value of zero should be specified. An example of the use of this property is to define a RAID-0 striped array of 3 disks. The resultant RAID array is a StorageExtent that is dependent on (BasedOn) the StorageExtents that describe each of the 3 disks. The OrderIndex of each BasedOn association from the disk Extents to the RAID array could be specified as 1, 2 and 3 to indicate the order in which the disk Extents are used to access the RAID data.

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_StorageExtent Antecedent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVBasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVBasedOn

Class reference

Subclass of CIM_BasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents. For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be defined independently and realized in a PhysicalElement or can be ‘based on’ Volatile or NonVolatileStorageExtents.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_StorageExtent Antecedent

uint64 StartingAddress

uint64 EndingAddress

uint16 OrderIndex

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SystemDevice

Class reference

Subclass of CIM_SystemComponent

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_System GroupComponent

The parent system in the Association.

CIM_LogicalDevice PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MessageLog.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MessageLog

Class reference

Subclass of CIM_Log

MessageLog represents any type of event, error or informational register or chronicle. The object describes the existence of the log and its characteristics. Several methods are defined for retrieving, writing and deleting log entries, and maintaining the log. This type of log uses iterators to access the log records, whereas its peer class, RecordLog, uses more abstracted access mechanisms.

Key properties

Name

CreationClassName

Local properties

string RecordHeaderFormat

If the SizeOfRecordHeader property is non-zero, this property describes the structure and format of the record headers. It is a free-form string. If the SizeOfRecordHeader property is 0, then the information in this property is undefined.

uint16[] Capabilities

An array of integers indicating the Log capabilities. Information such as “Write Record Supported” (value= 2) or “Variable Length Records Supported” (8) is specified in this property.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Write Record Supported

		3
		Delete Record Supported

		4
		Can Move Backward in Log

		5
		Freeze Log Supported

		6
		Clear Log Supported

		7
		Supports Addressing by Ordinal Record Number

		8
		Variable Length Records Supported

		9
		Variable Formats for Records

		10
		Can Flag Records for Overwrite

datetime TimeOfLastChange

When a change is made to the Log, the date/time of that modification is captured. This property could be used to event against any update to the MessageLog.

uint8 PercentageNearFull

If the OverwritePolicy is based on clearing records when the Log is near full (value=3), this property defines the record capacity (in percentage) that is considered to be ‘near full’.

string OtherPolicyDescription

When the OverwritePolicy specifies a value of 1 (“Other”), the Log’s behavior can be explained using this property. If OverwritePolicy is not 1, then this property’s contents are undefined.

uint64 MaxRecordSize

Maximum size, in bytes, to which an individual Log entry (record) can grow - if the Capabilities array includes a value of 7 (“Variable Length Records Supported”). If the Capabilities array does not include a 7, then the Log only supports fixed length entries. The size of these entries is described by this property.

uint64 SizeOfHeader

The size of the Log header, in bytes, if one is present. If there is no Log header, then this property should be set to 0. Headers may include general information about the Log such as the current number of records, time of last update, or a pointer to the location of the first Log entry. Note that this property is NOT the size of the header for an individual Log entry. The latter is described by the property, SizeOfRecordHeader.

string HeaderFormat

If the SizeOfHeader property is non-zero, this property describes the structure and format of the Log header. It is a free-form string. If the SizeOfHeader property is 0, then the information in this property is undefined.

uint16 CharacterSet

An enumeration describing the character set used to record data in the individual Log entries. For example, the Log records may contain ASCII data (value=2), or be raw octet strings (value=10).

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		ASCII

		3
		Unicode

		4
		ISO2022

		5
		ISO8859

		6
		Extended UNIX Code

		7
		UTF-8

		8
		UCS-2

		9
		Bitmapped Data

		10
		OctetString

		11
		Defined by Individual Records

datetime TimeWhenOutdated

If the OverwritePolicy is based on ‘outdated’ records (values 4 or 5), this property defines when a Log entry is considered to be outdated - either by time interval or at a specific date and time.

string Name

The inherited Name serves as part of the key (a unique identifier) for the MessageLog instance.

uint64 SizeOfRecordHeader

The size of the header for the Log’s individual entries, in bytes, if record headers are defined. If there are no record headers, then this property should be set to 0. Record headers may include information such as the type of the Log entry, the date/time that the entry was last updated, or a pointer to the start of optional data. Note that this property defines the header size for individual records in the Log, while the SizeOfHeader property describes the Log’s overall header, typically located at the start of the MessageLog.

boolean IsFrozen

Boolean indicating that the Log is currently frozen and modifications are not allowed.

uint16 OverwritePolicy

An enumeration describing the behavior of the Log, when it becomes full or near full. For example, the Log may wrap (value=2) or may simply stop recording entries (value =7).

Some of the property’s possible values need further explanation:

3=”Clear When Near Full” indicates that all of the Log’s entries will be deleted when a specified record capacity is reached. The capacity is specified in percentage, using the property, PercentageNearFull. ‘Near Full’ may be less than 100% if the Log takes time to clear, and a position should always be available for new records.

4=”Overwrite Outdated When Needed” describes that Log entries (timestamped later than the date/time specified in the property, TimeWhenOutdated) can be overwritten.

5=”Remove Outdated Records” specifies that records (timestamped later than the date/time specified in the property, TimeWhenOutdated) are logically and/or physically removed from the Log.

6=”Overwrite Specific Records” indicates that specially flagged records may be overwritten. This property only makes sense when the Capabilities array includes a value of 10, “Can Flag Records for Overwrite”.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Wraps When Full

		3
		Clear When Near Full

		4
		Overwrite Outdated When Needed

		5
		Remove Outdated Records

		6
		Overwrite Specific Records

		7
		Never Overwrite

uint64 RecordLastChanged

When a change is made to the Log, the record number that was modified is captured.

uint16 LastChange

An enumeration describing the last change to the MessageLog.

		ValueMap
		Values

		0
		Unknown

		1
		Add

		2
		Delete

		3
		Modify

		4
		Log Cleared

string[] CapabilitiesDescriptions

An array of free-form strings providing more detailed explanations for any of the Log features indicated in the Capabilities array. Note, each entry of this array is related to the entry in the Capabilities array that is located at the same index.

uint64 MaxLogSize

The maximum size, in bytes, to which the Log can grow. If there is no maximum, then MaxLogSize should be set to 0.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

uint32 DeleteRecord (string IterationIdentifier, boolean PositionToNext, uint64 RecordNumber, uint8[] RecordData)

Requests that the record indicated by the IterationIdentifier be deleted from the MessageLog. After deletion, the Iteration Identifier may be advanced to the next record by setting the PositionToNext input parameter to TRUE. If set to FALSE, then the IterationIdentifier will be positioned at the previous record. Two output parameters are defined for the method - RecordData which holds the contents of the deleted Log entry (as an array of bytes that can be recast to an appropriate format or discarded), and RecordNumber which returns the current record number addressed via the IterationIdentifier. The RecordNumber parameter is only defined/valid when the Capabilities array indicates that ordinal record number addressing is supported (a value of 7).

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from DeleteRecord should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. If the request is not supported, check the Capabilities array that a value of 3 (“Delete Record Supported”) is specified.

Note: In a subclass, the set of possible return codes could be described using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean PositionToNext

		Boolean that when set to TRUE requests the IterationIdentifier to be advanced to the next record, after the current entry is deleted. If set to FALSE, IterationIdentifier is set to the previous record.

		OUT uint64 RecordNumber

		The record number.

		OUT uint8[] RecordData

		The record data.

uint32 GetRecord (string IterationIdentifier, boolean PositionToNext, uint64 RecordNumber, uint8[] RecordData)

Requests that the record indicated by the IterationIdentifier be retrieved from the MessageLog. After retrieval, the IterationIdentifier may be advanced to the next record by setting the PositionToNext input parameter to TRUE. Two output parameters are defined for the method - RecordData which holds the contents of the Log entry (as an array of bytes that can be recast to an appropriate format), and RecordNumber which returns the current record number addressed via the Iteration Identifier. The RecordNumber parameter is only defined/valid when the Capabilities array indicates that ordinal record number addressing is supported (a value of 7).

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from GetRecord should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean PositionToNext

		Boolean indicating that the Iteration Identifier should be advanced to the next record, after retrieving the current Log entry.

		OUT uint64 RecordNumber

		The record number.

		OUT uint8[] RecordData

		The record data.

uint32 CancelIteration (string IterationIdentifier)

Requests that an iteration of the Log, identified by the IterationIdentifier input parameter, be stopped. The return value from CancelIteration should be 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN string IterationIdentifier

		An identifier for the iterator.

uint32 FreezeLog (boolean Freeze)

Requests that the MessageLog be placed in a frozen state (“Freeze” input parameter = TRUE) or ‘unfrozen’ (= FALSE). If frozen, modifications to the Log will not be allowed. If successful, the Log’s IsFrozen boolean property will be updated to reflect the desired state.

The method’s return code should be 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. If the request is not supported, check the Capabilities array that a value of 5 (“Freeze Log Supported”) is specified.

Note: In a subclass, the set of possible return codes could be described using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN boolean Freeze

		If TRUE then freeze the log, if FALSE ‘unfreeze’ the log.

uint32 PositionAtRecord (string IterationIdentifier, boolean MoveAbsolute, sint64 RecordNumber)

Requests that the Log’s iteration identifier be advanced or retreated a specific number of records, or set to the entry at a specified numeric location. These two different behaviors are accomplished using the input parameters of the method. Advancing or retreating is achieved by setting the MoveAbsolute boolean to FALSE, and then specifying the number of entries to advance or retreat as positive or negative values in the RecordNumber parameter. Moving to a specific record number is accomplished by setting the MoveAbsolute input parameter to TRUE, and then placing the record number into the RecordNumber parameter. This can only be done if the Capabilities array includes a value of 7, “Supports Addressing by Ordinal Record Number”.

After the method completes and if ordinal record numbers are supported (the Capabilities array includes a 7), the current record number is returned in the RecordNumber output parameter. Otherwise, the value of the parameter is undefined.

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from PositionAtRecord should be 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. If the request is not supported, check the Capabilities array regarding support for ordinal record number addressing and backward movement in the Log (values 7 and 4, respectively).

Note: In a subclass, the set of possible return codes could be described using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean MoveAbsolute

		Advancing or retreating the IterationIdentifier is achieved by setting the MoveAbsolute boolean to FALSE, and specifying the number of entries to advance or retreat as positive or negative values in the RecordNumber parameter. Moving to a specific record number is accomplished by setting the MoveAbsolute parameter to TRUE, and placing the record number into the RecordNumber parameter.

		IN, OUT sint64 RecordNumber

		The relative or absolute record number.

uint32 FlagRecordForOverwrite (string IterationIdentifier, boolean PositionToNext, uint64 RecordNumber)

Requests that the record indicated by the IterationIdentifier be flagged as overwriteable. This method is only supported when the Capabilities array includes a value of 10, “Can Flag Records for Overwrite”. After updating the entry, the IterationIdentifier may be advanced to the next record by setting the PositionToNext input parameter to TRUE. One output parameter is defined for the method RecordNumber. It returns the current record number addressed via the Iteration Identifier. This parameter is only defined/valid when the Capabilities array indicates that ordinal record number addressing is supported (a value of 7).

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from FlagRecordForOverwrite should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean PositionToNext

		Boolean indicating that the Iteration Identifier should be advanced to the next record, after updating the current Log entry.

		OUT uint64 RecordNumber

		The record number.

uint32 PositionToFirstRecord (string IterationIdentifier)

Requests that an iteration of the MessageLog be established and that the iterator be set to the first entry in the Log. An identifier for the iterator is returned as an output parameter of the method.

Regarding iteration, you have 2 choices: 1) Embed iteration data in the method call, and allow implementations to track/ store this data manually; or, 2) Iterate using a separate object (for example, class ActiveIterator) as an iteration agent. The first approach is used here for interoperability. The second requires an instance of the Iterator object for EACH iteration in progress. 2’s functionality could be implemented underneath 1.

The return value from PositionToFirstRecord should be 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		OUT string IterationIdentifier

		An identifier for the iterator.

uint32 WriteRecord (string IterationIdentifier, boolean PositionToNext, uint8[] RecordData, uint64 RecordNumber)

Requests that a record be inserted at the Log position indicated by the IterationIdentifier. The entry’s data is provided in the RecordData input parameter. After insertion, the IterationIdentifier may be advanced to the next record by setting the PositionToNext input parameter to TRUE. The output parameter, RecordNumber, returns the current record number addressed via the IterationIdentifier. This parameter is only defined/valid when the Capabilities array indicates that ordinal record number addressing is supported (a value of 7).

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from WriteRecord should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. If the request is not supported, check the Capabilities array that a value of 2 (“Write Record Supported”) is specified.

Note: In a subclass, the set of possible return codes could be described using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean PositionToNext

		Boolean indicating that the Iteration Identifier should be advanced to the next record, after writing the Log entry.

		IN uint8[] RecordData

		The record data.

		OUT uint64 RecordNumber

		The record number.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

uint64 MaxNumberOfRecords

uint16 LogState

string Status

string ElementName

string Description

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16[] OperationalStatus

uint64 CurrentNumberOfRecords

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

uint16 TransitioningToState

string OtherEnabledState

uint16 OperatingStatus

Inherited methods

RequestStateChange

ClearLog

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Identity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Identity

Class reference

Subclass of CIM_ManagedElement

An instance of an Identity represents a ManagedElement that acts as a security principal within the scope in which it is defined and authenticated. (Note that the Identity’s scope is specified using the association, CIM_IdentityContext.) ManagedElements with Identities can be OrganizationalEntities, Services, Systems, etc. The ManagedElement ‘behind’ an Identity is described using the AssignedIdentity association.

Within a given security context, an Identity may be imparted a level of trust, usually based on its credentials. A trust level is defined using the CIM_SecuritySensitivity class, and associated with Identity using CIM_ElementSecuritySensitivity. Whether an Identity is currently authenticated is evaluated by checking the CurrentlyAuthenticated boolean property. This property is set and cleared by the security infrastructure, and should only be readable within the management infrastructure. The conditions which must be met/authenticated in order for an Identity’s CurrentlyAuthenticated Boolean to be TRUE are defined using a subclass of PolicyCondition - AuthenticationCondition. The inheritance tree for AuthenticationCondition is defined in the CIM Policy Model.

Subclasses of Identity may include specific information related to a given AuthenticationService or authority (such as a security token or computer hardware port/communication details) that more specifically determine the authenticity of the Identity. An instance of Identity may be persisted even though it is not CurrentlyAuthenticated, in order to maintain static relationships to Roles, associations to accounting information, and policy data defining authentication requirements. Note however, when an Identity is not authenticated (CurrentlyAuthenticated = FALSE), then Privileges or rights SHOULD NOT be authorized. The lifetime, validity, and propagation of the Identity is dependent on a security infrastructure’s policies.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority. (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

boolean CurrentlyAuthenticated

Boolean indicating whether this Identity has been authenticated, and is currently known within the scope of an AuthenticationService or authority. By default, authenticity SHOULD NOT be assumed. This property is set and cleared by the security infrastructure, and should only be readable within the management infrastructure. Note that its value, alone, may not be sufficient to determine authentication/ authorization, in that properties of an Identity subclass (such as a security token or computer hardware port/ communication details) may be required by the security infrastructure.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ATAProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ATAProtocolEndpoint

Class reference

Subclass of CIM_ProtocolEndpoint

An ATAProtocolEndpoint represents the protocol (command) aspects of a logical ATA port, independent of the connection/transport. ATAProtocolEndpoint is either directly or indirectly associated to one or more instances of LogicalPort depending on the underlying transport.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string Name

The ATA identifier for the target or initiator device, in the format appropriate for the ConnectionType. If a ConnectionType specific subclass is defined, the subclass may override Name to define the format. For other ConnectionTypes, the format (and content) should match that of PermanentAddress of the corresponding port if the port is is subclassed from NetworkPort.

uint16 ConnectionType

The supported connection type for this endpoint. The connection type may be needed before the port(s) are associated and also is used in some ATA commands.

		ValueMap
		Values

		1
		Other

		2
		ATA

		3
		SATA

string OtherConnectionType

The connection type, if ConnectionType is “Other”.

uint16 Role

This property indicates which role this ProtocolEndpoint implements.

		ValueMap
		Values

		0
		Unknown

		2
		Initiator

		3
		Target

		4
		Both Initiator and Target

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string NameFormat

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string CreationClassName

string OtherTypeDescription

uint16[] AvailableRequestedStates

string Caption

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SwitchPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SwitchPort

Class reference

Subclass of CIM_SwitchPort

Switch Port from which frames are received and out which they are transmitted. This endpoint is associated with its networking interface (such as Ethernet) via the EndpointIdentity relationship.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 PortNumber

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OwningGroup.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OwningGroup

Class reference

Subclass of CIM_OwningCollectionElement

OwningCollectionElement represents an association between a Collection and the ManagedElement responsible for the control or ownership of the Collection.

Key properties

OwningElement

OwnedElement

Local properties

CIM_ComputerSystem OwningElement

The hosting System

LMI_Group OwnedElement

The managed Group on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPNetworkConnection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPNetworkConnection

Class reference

Subclass of CIM_IPNetworkConnection

LMI_IPNetworkConnection represents the IP network connection in the system, Eg. “Local Area Connection”,”eth0”

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string ElementName

Human readable device name

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element. It can also provide the transitional states when an element is transitioning from one state to another.

OperatingStatus consists of one of the following values: Unknown, Not Available, Starting, Stopping, Stopped, Aborted, Dormant, In Service

		Unknown indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

		Not Available indicates that the device is recognized, but not managed by implementation

		Starting describes an element being initialized.

		Stopping describes an element being brought to an orderly stop.

		Stopped describes an element can be activate, but is currently idle

		Aborted indicates that the element is unable to complete requested action (usually activate the connection).

		Dormant indicates that the element is not available to use. Reasons might include the wireless switched off, missing firmware, no ethernet carrier, missing supplicant or modem manager, etc.

		In Service describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		16
		In Service

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string Status

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

string ID

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/realmd/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

Welcome to OpenLMI Realmd scripts’s documentation!

Contents:

		Realmd command line reference
		realmd

		Realmd Script python reference
		Realmd Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_JournalLogRecordInstanceCreationIndication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_JournalLogRecordInstanceCreationIndication

Class reference

Subclass of CIM_InstCreation

CIM_InstCreation notifies when a new instance is created.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPRouteSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPRouteSettingData

Class reference

Subclass of LMI_IPAssignmentSettingData

This class and its sub-classes represents Internet Protocol (IP) related settings. When used as an accumulation of settings (AddressOrigin set to 11 “cumulative configuration”), this SettingData instance is the aggregation point identifying an IP configuration. Multiple IP configurations could exist for a target. Each configuration is represented with an instance of IPAssignmentSettingData. The details of the IP configuration are defined by instances of sub-classes of this class (i.e. StaticIPAssignmentSettingData, DHCPSettingData, DNSSettingData). These instances are associated with the IPAssignmentSettingData instance using the OrderedComponent or ConcreteComponent associations. For example, a static IP configuration would be represented by an instance of IPAssignmentSettingData and an instance of StaticIPAssignmentSettingData associated via an instance of ConcreteComponent. A static IP configuration including DNS would be modeled using an instance of IPAssignmentSettingData, DNSSettingData, and StaticIPAssignmentSettingData. The DNSSettingData and StaticIPAssignmentSettingData instance would be associated with the IPAssignmentSettingData using instances of ConcreteComponent.

Key properties

InstanceID

Local properties

string NextHop

Address of the next-hop router

string DestinationAddress

The address which serves as the destination to be reached.

uint16 AddressType

An enumeration that describes the format of the address properties.

		ValueMap
		Values

		0
		Unknown

		1
		IPv4

		2
		IPv6

string DestinationMask

The mask for the IPv4 destination address.

uint16 RouteMetric

RouteMetric provides a numeric indication as to the preference of this route, compared to other routes that reach the same destination.

uint8 PrefixLength

The prefix length for the IPv6 destination address.

Local methods

None

Inherited properties

string InstanceID

string OtherAddressPrefixOriginDescription

uint16 ProtocolIFType

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

string ElementName

uint16 AddressPrefixOrigin

uint16 IPv6Type

uint16 AddressSuffixOrigin

string Description

string SoID

string Caption

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

uint16 IPv4Type

uint16 AddressOrigin

Inherited methods

LMI_AddStaticIPRoute

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStatisticsService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStatisticsService

Class reference

Subclass of CIM_BlockStatisticsService

A subclass of StatisticsService that provides services for filtering and retrieving statistics from a StatisticsManifestCollection that contains instances of BlockStatisticalData.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

boolean Started

Started is a Boolean that indicates whether the Service has been started (TRUE), or stopped (FALSE).

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string StartMode

Note: The use of this element is deprecated in lieu of the EnabledDefault property that is inherited from EnabledLogicalElement. The EnabledLogicalElement addresses the same semantics. The change to a uint16 data type was discussed when CIM V2.0 was defined. However, existing V1.0 implementations used the string property. To remain compatible with those implementations, StartMode was grandfathered into the schema. Use of the deprecated qualifier allows the maintenance of the existing property but also permits an improved, clarified definition using EnabledDefault.

Deprecated description: StartMode is a string value that indicates whether the Service is automatically started by a System, an Operating System, and so on, or is started only upon request.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

Local methods

uint32 GetStatisticsCollection (CIM_ConcreteJob Job, uint16[] ElementTypes, CIM_BlockStatisticsManifestCollection ManifestCollection, uint16 StatisticsFormat, string[] Statistics)

Retrieves statistics in a well-defined bulk format. The collection of statistics returned is determined by the list of element types passed in to the method and the manifests for those types contained in the supplied BlockStatisticsManifestCollection. If both the Elements and BlockStatisticsManifestCollection parameters are supplied, then the types of elements returned is an intersection of the element types listed in the Elements parameter and the types for which BlockStatisticsManifest instances exist in the supplied BlockStatisticsManifestCollection. The statistics are returned through a well-defined array of strings, whose format is specified by the StatisticsFormat parameter, that can be parsed to retrieve the desired statistics as well as limited information about the elements that those metrics describe.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		Method Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Element Not Supported

		4098
		Statistics Format Not Supported

		4099..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint16[] ElementTypes

		Element types for which statistics should be returned. If not supplied (i.e. parameter is null) this parameter is not considered when filtering the instances of StatisticalData that will populate the Statistics output parameter. If the array is not null, but is empty, then no statistics will be returned by this method. A client SHOULD NOT specify this parameter if it is not meaningful (i.e. the service only provides statistics for a single type of element).

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

		IN CIM_BlockStatisticsManifestCollection ManifestCollection

		The BlockStatisticsManifestCollection that contains the manifests that list the metrics to be returned for each element type. If not supplied (i.e. parameter is null), then all available statistics will be returned unfiltered. Only elements that match the element type properties (if meaningful) of the BlockStatisticsManifest instances contained within the BlockStatisticsManifestCollection will have data returned by this method. If the supplied BlockStatisticsManifestCollection does not contain any BlockStatisticsManifest instances, then no statistics will be returned by this method.

		IN uint16 StatisticsFormat

		Specifies the format of the Statistics output parameter.

		CSV = Comma Separated Values.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		CSV

		
		DMTF Reserved

		0x8000..
		Vendor Specific

		OUT string[] Statistics

		The statistics for all the elements as determined by the Elements, ManifestCollection parameters, and StatisticsFormat parameters.

Inherited properties

uint16 RequestedState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 DetailedStatus

string Name

datetime InstallDate

string LoSOrgID

string PrimaryOwnerContact

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

RemoveManifests

ChangeAffectedElementsAssignedSequence

AddOrModifyManifest

StopService

StartService

CreateManifestCollection

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DataFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DataFile

Class reference

Subclass of CIM_DataFile

DataFile is a type of LogicalFile that is a named collection of data or executable code.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileIdentity

Class reference

Subclass of CIM_LogicalIdentity

CIM_FileIdentity indicates that a UnixFile describes Unix- specific aspects of the various subclasses of LogicalFile. The association exists since it forces UnixFile to be weak to (scoped by) the LogicalFile. This is not true in the association’s superclass, LogicalIdentity.

Key properties

SameElement

SystemElement

Local properties

CIM_UnixFile SameElement

SameElement represents the additional aspects of the Unix/Linux Logical file.

CIM_LogicalFile SystemElement

The Logical File.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareVerificationJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareVerificationJob

Class reference

Subclass of LMI_SoftwareJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

string MethodName

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

string JobStatus

datetime ElapsedTime

string Caption

boolean DeleteOnCompletion

datetime TimeSubmitted

uint16 JobState

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/system/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI System scripts’s documentation

Contents:

		System command line reference
		system

		System Script python reference
		System Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_IPProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_IPProtocolEndpoint

Class reference

Subclass of CIM_ProtocolEndpoint

A ProtocolEndpoint that is dedicated to running IP.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint16 AddressType

Deprecated!
An enumeration that describes the format of the Address property. It is deprecated since it is not needed, as the class contains both IPv4 and v6 addresses).

		ValueMap
		Values

		0
		Unknown

		1
		IPv4

		2
		IPv6

string OtherAddressPrefixOriginDescription

Description of the AddressPrefixOrigin when the AddressPrefixOrigin property has a value of “other”

string IPv6Address

The IPv6 address that this ProtocolEndpoint represents.

string Address

The IP address that this ProtocolEndpoint represents, formatted according to the appropriate convention as defined in the AddressType property of this class (e.g., 171.79.6.40). This single property is deprecated to replace it by specific IPv4 and v6 addresses.

string SubnetMask

The mask for the IPv4 address of this ProtocolEndpoint, if one is defined.

uint16 IPv6AddressType

IPv6AddressType indentified the type of address found in the IPv6Address property. The values of this property shall be interpreted according to RFC4291, Section 2.4

		ValueMap
		Values

		2
		Unspecified

		3
		Loopback

		4
		Multicast

		5
		Link Local Unicast

		6
		Global Unicast

		7
		Embedded IPv4 Address

		8
		Site Local Unicast

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherAddressSuffixOriginDescription

Description of the AddressSuffixOrigin when the AddressSuffixOrigin property has a value of “other”.

uint16 ProtocolIFType

ProtocolIFType’s enumeration is limited to IP-related and reserved values for this subclass of ProtocolEndpoint.

		ValueMap
		Values

		1
		Other

		225..4095
		IANA Reserved

		4096
		IPv4

		4097
		IPv6

		4098
		IPv4/v6

		4301..32767
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 IPv6SubnetPrefixLength

IPv6SubnetPrefixLength is used to identify the prefix length of the IPv6Address property that is used to specify a subnet

uint16 AddressPrefixOrigin

An enumeration of subnet prefix origin for the IP Address. Refer IpAddressPrefixOriginTC from RFC 4293.

A value of 1 “other” indicate none of the other values is applicable.

A value of 2 “manual” indicate that the prefix is manually assigned.

A value of 3 “wellknown” indicate that prefix is a well known prefix.

A value of 4 “dhcp” indicate that prefix is from dhcp.

A value of 5 “routeradv” indicate that prefix is from router advertisement.

		ValueMap
		Values

		1
		other

		2
		manual

		3
		wellknown

		4
		dhcp

		5
		routeradv

		
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 AddressSuffixOrigin

An enumeration of suffix origin for the IP Address. Refer IpAddressOriginTC from RFC 4293.

A value of 1 “other” indicate none of the other values is applicable.

A value of 2 “manual” indicate that the suffix is manually assigned.

A value of 3 “wellknown” indicate that suffix is a well known suffix.

A value of 4 “dhcp” indicate that suffix is from dhcp.

A value of 5 “linklayer” indicate that suffix is from IPv6 stateless auto-configuration.

A value of 6 “random” indicate that suffix is chosen randomly.

		ValueMap
		Values

		1
		other

		2
		manual

		3
		wellknown

		4
		dhcp

		5
		linklayer

		6
		random

		
		DMTF Reserved

		32768..
		Vendor Reserved

string IPv4Address

The IPv4 address that this ProtocolEndpoint represents.

uint16 IPVersionSupport

This property explicitly defines support for different versions of the IP protocol, for this Endpoint. It is deprecated since the ProtocolIFType also provides this functionality by describing an endpoint as IPv4 only (value=4096), IPv6 only (value=4097), or IPv4/v6 (value=4098).

		ValueMap
		Values

		0
		Unknown

		1
		IPv4 Only

		2
		IPv6 Only

		3
		Both IPv4 and IPv6

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint.A value of 3 “Static” shall indicate the values were assigned manually. A value of 4 “DHCP” shall indicate the values were assigned utilizing the Dynamic Host Configuration Protocol. See RFC 2131 and related.

A value of 5 “BOOTP” shall indicate the values were assigned utilizing BOOTP. See RFC 951 and related.

A value of 6 “IPv4 Link Local” shall indicate the values were assigned using the IPv4 Link Local protocol. See RFC 3927.

A value of 7 “DHCPv6” shall indicate the values were assigned using DHCPv6. See RFC 3315.

A value of 8 “IPv6 AutoConfig” shall indicate the values were assinged using the IPv6 AutoConfig Protocol. See RFC 4862.

A value of 9 “Stateless” shall indicate Stateless values were assigned.

A value of 10 “Link Local” shall indicate Link Local values were assigned.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		Static

		4
		DHCP

		5
		BOOTP

		6
		IPv4 Link Local

		7
		DHCPv6

		8
		IPv6AutoConfig

		9
		Stateless

		10
		Link Local

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint8 PrefixLength

The prefix length for the IPv6 address of this Protocol Endpoint, if one is defined.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 EnabledState

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

string OtherTypeDescription

uint16[] AvailableRequestedStates

string Description

string Caption

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkRemoteAccessAvailableToElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkRemoteAccessAvailableToElement

Class reference

Subclass of CIM_RemoteAccessAvailableToElement

Describes an element’s knowledge regarding accessing other (i.e., remote) Servers and Systems.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The ServiceAccessPoint which has knowledge of the remote server or system.

LMI_NetworkRemoteServiceAccessPoint Antecedent

The remote server or system.

Local methods

None

Inherited properties

uint16 OrderOfAccess

boolean IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSoftwareIdentityResource.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSoftwareIdentityResource

Class reference

Subclass of CIM_HostedAccessPoint

CIM_HostedAccessPoint is an association between a Service AccessPoint and the System on which it is provided. The cardinality of this association is one-to-many and is weak with respect to the System. Each System can host many ServiceAccessPoints. Heuristic: If the implementation of the ServiceAccessPoint is modeled, it must be implemented by a Device or SoftwareFeature that is part of the System that is hosting the ServiceAccessPoint.

Key properties

Dependent

Antecedent

Local properties

LMI_SoftwareIdentityResource Dependent

The SAPs that are hosted on this System.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountedFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountedFileSystem

Class reference

Subclass of CIM_ManagedElement

Class for representing mounted filesystems. Can be thought of as either an entry in /etc/mtab, or in /etc/fstab, according to its associated LMI_MountedFileSystemSetting.

Key properties

MountPointPath

FileSystemSpec

Local properties

string MountPointPath

Path to a directory where the device is mounted.

string FileSystemType

Filesystem type.

string FileSystemSpec

Filesystem specification. Corresponds to the device field in /etc/fstab.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

string InstanceID

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_UserDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_UserDevice

Class reference

Subclass of CIM_LogicalDevice

UserDevices are LogicalDevices that allow a ComputerSystem’s users to input, view or hear data. It is a superclass from which other classes, such as Keyboard or DesktopMonitor, descend.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean IsLocked

An indication of whether the Device is locked, preventing user input or output.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogicalFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalFile

Class reference

Subclass of CIM_LogicalElement

A LogicalFile is a named collection of data or executable code, or represents a LogicalDevice or Directory. It is located within the context of a FileSystem, on a Storage Extent.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

boolean Executable

Indicates the file is executable.

string CSName

The scoping ComputerSystem’s Name.

boolean Readable

Boolean indicating that the File can be read.

string EncryptionMethod

A free form string indicating the algorithm or tool used to encrypt the LogicalFile. If it is not possible or not desired to describe the encryption scheme (perhaps for security reasons), recommend using the following words: “Unknown” to represent that it is not known whether the LogicalFile is encrypted or not, “Encrypted” to represent that the File is encrypted but either its encryption scheme is not known or not disclosed, and “Not Encrypted” to represent that the LogicalFile is not encrypted.

datetime LastAccessed

Time that the File was last accessed.

string FSCreationClassName

The scoping FileSystem’s CreationClassName.

uint64 InUseCount

Integer indicating the number of ‘file opens’ that are currently active against the File.

datetime LastModified

Time that the File was last modified.

string CompressionMethod

A free form string indicating the algorithm or tool used to compress the LogicalFile. If it is not possible or not desired to describe the compression scheme (perhaps because it is not known), recommend using the following words: “Unknown” to represent that it is not known whether the LogicalFile is compressed or not, “Compressed” to represent that the File is compressed but either its compression scheme is not known or not disclosed, and “Not Compressed” to represent that the LogicalFile is not compressed.

boolean Writeable

Boolean indicating that the File can be written.

string Name

The inherited Name serves as part of the key of a LogicalFile instance within a FileSystem. A unique identifier (such as a full path name) is required as a Name value. Since Files are weak to their FileSystem (and not to a Directory which would provide a more granular naming algorithm), care must be taken to make LogicalFile’s Name unique for a given Creation ClassName and FileSystem. A full path name is one way to do this.

string FSName

The scoping FileSystem’s Name.

string CSCreationClassName

The scoping ComputerSystem’s CreationClassName.

uint64 FileSize

Size of the File in bytes.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

datetime CreationDate

File’s creation date.

Local methods

None

Inherited properties

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

uint16 HealthState

string Status

uint16 CommunicationStatus

string ElementName

string Description

datetime InstallDate

string Caption

uint16 PrimaryStatus

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EndpointIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EndpointIdentity

Class reference

Subclass of CIM_LogicalIdentity

CIM_EndpointIdentity indicates that two ProtocolEndpoints represent different aspects of the same underlying address or protocol-specific ID. This association refines the CIM_LogicalIdentity superclass by restricting it to the Endpoint level and defining its use in well understood scenarios. One of these scenarios is to represent that an Endpoint has both ‘LAN’ and protocol-specific aspects. For example, an Endpoint could be both a LANEndpoint as well as a DHCPEndpoint.

Key properties

SameElement

SystemElement

Local properties

CIM_ProtocolEndpoint SameElement

SameElement represents an alternate aspect of the Endpoint.

CIM_ProtocolEndpoint SystemElement

SystemElement represents one aspect of the Endpoint.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NextHopIPRoute.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NextHopIPRoute

Class reference

Subclass of CIM_NextHopIPRoute

NextHopIPRoute specifies routing in an IP network.

Key properties

InstanceID

Local properties

string DestinationAddress

The address which serves as the destination to be reached.

uint16 AddressType

An enumeration that describes the format of the address properties.

		ValueMap
		Values

		0
		Unknown

		1
		IPv4

		2
		IPv6

string DestinationMask

The mask for the IPv4 destination address.

uint16 RouteMetric

RouteMetric provides a numeric indication as to the preference of this route, compared to other routes that reach the same destination.

string NextHop

Address of the next-hop router

uint8 PrefixLength

The prefix length for the IPv6 destination address.

Local methods

None

Inherited properties

string Description

boolean IsStatic

string OtherDerivation

uint16 AdminDistance

string InstanceID

uint16 RouteDerivation

uint16 TypeOfRoute

uint64 Generation

string ElementName

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AffectedSELinuxJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AffectedSELinuxJobElement

Class reference

Subclass of LMI_AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

Local properties

CIM_ManagedElement AffectedElement

The ManagedElement affected by the execution of the Job.

LMI_SELinuxJob AffectingElement

The Job that is affecting the ManagedElement.

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

uint16[] ElementEffects

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ResidesOnExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ResidesOnExtent

Class reference

Subclass of CIM_Dependency

An association between a LogicalElement and the StorageExtent where it is located. Typically, a FileSystem ResidesOn a LogicalDisk. However, it is possible for a logical file or other internal data store to reside directly on a StorageExtent or appropriate subclass.

Key properties

Dependent

Antecedent

Local properties

CIM_LogicalElement Dependent

The LogicalElement that is located on the StorageExtent.

CIM_StorageExtent Antecedent

The StorageExtent.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AffectedSoftwareJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AffectedSoftwareJobElement

Class reference

Subclass of LMI_AffectedJobElement

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

Local properties

string[] OtherElementEffectsDescriptions

Provides details for the ‘effect’ at the corresponding array position in ElementEffects. This information is required whenever ElementEffects contains the value 1 (“Other”).

uint16[] ElementEffects

An enumeration describing the ‘effect’ on the ManagedElement. This array corresponds to the OtherElementEffectsDescriptions array, where the latter provides details related to the high-level ‘effects’ enumerated by this property. Additional detail is required if the ElementEffects array contains the value 1, “Other”.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Exclusive Use

		3
		Performance Impact

		4
		Element Integrity

		5
		Create

LMI_SoftwareJob AffectingElement

The Job that is affecting the ManagedElement.

Local methods

None

Inherited properties

CIM_ManagedElement AffectedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileIdentity

Class reference

Subclass of CIM_FileIdentity

CIM_FileIdentity indicates that a UnixFile describes Unix- specific aspects of the various subclasses of LogicalFile. The association exists since it forces UnixFile to be weak to (scoped by) the LogicalFile. This is not true in the association’s superclass, LogicalIdentity.

Key properties

SameElement

SystemElement

Local properties

None

Local methods

None

Inherited properties

CIM_UnixFile SameElement

CIM_LogicalFile SystemElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

LMI_ProcessorCapabilities Capabilities

The Capabilities object associated with the element.

LMI_Processor ManagedElement

The managed element.

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalFrame.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalFrame

Class reference

Subclass of CIM_PhysicalPackage

PhysicalFrame is a superclass of Rack, Chassis and other frame enclosures, as they are defined in extension classes. Properties like visible or audible alarm, and data related to security breaches are in this superclass.

Key properties

Tag

CreationClassName

Local properties

uint16 SecurityBreach

SecurityBreach is an enumerated, integer-valued property indicating whether a physical breach of the Frame was attempted but unsuccessful (value=4) or attempted and successful (5). Also, the values, “Unknown”, “Other” or “No Breach”, can be specified.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		No Breach

		4
		Breach Attempted

		5
		Breach Successful

boolean AudibleAlarm

Boolean indicating whether the Frame is equipped with an audible alarm.

boolean LockPresent

Boolean indicating whether the Frame is protected with a lock.

string BreachDescription

BreachDescription is a free-form string providing more information if the SecurityBreach property indicates that a breach or some other security-related event occurred.

string[] ServiceDescriptions

An array of free-form strings providing more detailed explanations for any of the entries in the Service Philosophy array. Note, each entry of this array is related to the entry in ServicePhilosophy that is located at the same index.

boolean VisibleAlarm

Boolean indicating that the equipment includes a visible alarm.

uint16[] ServicePhilosophy

ServicePhilosophy is an enumerated, integer-valued array that indicates whether the Frame is serviced from the top (value=2), front (3), back (4) or side (5), whether it has sliding trays (6) or removable sides (7), and/or whether the Frame is moveable (8), for example, having rollers.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Service From Top

		3
		Service From Front

		4
		Service From Back

		5
		Service From Side

		6
		Sliding Trays

		7
		Removable Sides

		8
		Moveable

boolean IsLocked

Boolean indicating that the Frame is currently locked.

string CableManagementStrategy

CableManagementStrategy is a free-form string that contains information on how the various cables are connected and bundled for the Frame. With many networking, storage-related and power cables, cable management can be a complex and challenging endeavor. This string property contains information to aid in assembly and service of the Frame.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

real32 Width

boolean Removable

string PartNumber

uint16 RemovalConditions

string Status

string ElementName

boolean CanBeFRUed

string Description

boolean Replaceable

string Tag

string[] VendorCompatibilityStrings

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string Caption

real32 Depth

uint16 PackageType

string Model

uint16[] OperationalStatus

uint16 PrimaryStatus

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

string Version

uint16 OperatingStatus

string CreationClassName

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountOnSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountOnSystem

Class reference

Subclass of CIM_AccountOnSystem

A system (e.g., ApplicationSystem, ComputerSystem, AdminDomain) aggregates Accounts and scopes the uniqueness of the Account names (i.e., userids).

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The hosting System.

LMI_Account PartComponent

The managed Account on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_IPAssignmentSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_IPAssignmentSettingData

Class reference

Subclass of CIM_SettingData

This class and its sub-classes represents Internet Protocol (IP) related settings. When used as an accumulation of settings (AddressOrigin set to 11 “cumulative configuration”), this SettingData instance is the aggregation point identifying an IP configuration. Multiple IP configurations could exist for a target. Each configuration is represented with an instance of IPAssignmentSettingData. The details of the IP configuration are defined by instances of sub-classes of this class (i.e. StaticIPAssignmentSettingData, DHCPSettingData, DNSSettingData). These instances are associated with the IPAssignmentSettingData instance using the OrderedComponent or ConcreteComponent associations. For example, a static IP configuration would be represented by an instance of IPAssignmentSettingData and an instance of StaticIPAssignmentSettingData associated via an instance of ConcreteComponent. A static IP configuration including DNS would be modeled using an instance of IPAssignmentSettingData, DNSSettingData, and StaticIPAssignmentSettingData. The DNSSettingData and StaticIPAssignmentSettingData instance would be associated with the IPAssignmentSettingData using instances of ConcreteComponent.

Key properties

InstanceID

Local properties

string OtherAddressSuffixOriginDescription

Description of the AddressSuffixOrigin when the AddressSuffixOrigin property has a value of “other”.

string OtherAddressPrefixOriginDescription

Description of the AddressPrefixOrigin when the AddressPrefixOrigin property has a value of “other”.

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		0
		Unknown

		
		DMTF Reserved

		4096
		IPv4

		4097
		IPv6

		32768..
		Vendor Reserved

uint16 AddressPrefixOrigin

An enumeration of subnet prefix origin for the IP Address assigned by this setting instance. Refer IpAddressPrefixOriginTC from RFC 4293.

A value of 1 “other” indicate none of the other values is applicable.

A value of 2 “manual” indicate that the prefix is manually assigned.

A value of 3 “wellknown” indicate that prefix is a well known prefix.

A value of 4 “dhcp” indicate that prefix is from dhcp.

A value of 5 “routeradv” indicate that prefix is from router advertisement.

		ValueMap
		Values

		1
		other

		2
		manual

		3
		wellknown

		4
		dhcp

		5
		routeradv

		
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 AddressSuffixOrigin

An enumeration of suffix origin for the IP Address assigned by this setting instance. Refer IpAddressOriginTC from RFC 4293.

A value of 1 “other” indicate none of the other values is applicable.

A value of 2 “manual” indicate that the suffix is manually assigned.

A value of 3 “wellknown” indicate that suffix is a well known suffix.

A value of 4 “dhcp” indicate that suffix is from dhcp.

A value of 5 “linklayer” indicate that suffix is from IPv6 stateless auto-configuration.

A value of 6 “random” indicate that suffix is chosen randomly.

		ValueMap
		Values

		1
		other

		2
		manual

		3
		wellknown

		4
		dhcp

		5
		linklayer

		6
		random

		
		DMTF Reserved

		32768..
		Vendor Reserved

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask for IPv4 or Prefix Length for IPv6, and Gateway shall be assigned to the IPProtocolEndpoint.

A value of 3 “Static” shall indicate the values will be assigned manually.

A value of 4 “DHCP” shall indicate the values will be assigned utilizing the Dynamic Host Configuration Protocol. See RFC 2131 and related.

A value of 5 “BOOTP” shall indicate the values will be assigned utilizing BOOTP. See RFC 951 and related.

A value of 6 “IPv4 Link Local” shall indicate the values will be assigned using the IPv4 Link Local protocol. See RFC 3927.

A value of 7 “DHCPv6” shall indicate the values will be assigned using DHCPv6. See RFC 3315.

A value of 8 “IPv6 AutoConfig ” shall indicate the values will be assigned using the IPv6 AutoConfig. See RFC 4862.

A value of 9 “Stateless” shall indicate Stateless will be assigned.

A value of 10 “Link Local” shall indicate Link Local values will be assigned.

A value of 11 “cumulative configuration” shall indicate an accumulation of settings is used. This instance of CIM_IPAssignmentSettingData should be associated with other instances of CIM_IPAssignmentSettingData or its subclasses to represent the detailed IP settings.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		Static

		4
		DHCP

		5
		BOOTP

		6
		IPv4 Link Local

		7
		DHCPv6

		8
		IPv6AutoConfig

		9
		Stateless

		10
		Link Local

		11
		cumulative configuration

		
		DMTF Reserved

		32768..
		Vendor Reserved

Local methods

None

Inherited properties

string SoOrgID

string SoID

string ElementName

uint16 ChangeableType

string InstanceID

string[] ComponentSetting

string Caption

string ConfigurationName

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LAGPort8023ad.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LAGPort8023ad

Class reference

Subclass of CIM_LAGPort8023ad

LAGPort8023ad contains the configuration information for a port (LANEndpoint) which is a member of a link aggregation. This port aspect is associated to LANEndpoint using the LinkAggregationConcreteIdentity relationship. A port may be attached to an instance of LinkAggregator8023ad. This is described using the LinkAggregationBindsTo association. The latter is described in the IEEE 802.3ad document, Subclause 30.7.2.1.13, and maps the information in MIB.IEEE|IEEE8023-LAG-MIB.dot3adAggPortAttachedAggID.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string ActorSystemID

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 ActorPort

uint16 EnabledDefault

uint16 DetailedStatus

uint16 ActorPortPriority

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16[] ActorAdminState

uint16 EnabledState

uint16 ActorSystemPriority

string Caption

boolean RepresentsAggregate

string OtherTypeDescription

uint32 SelectedAggID

uint16[] AvailableRequestedStates

uint16 PrimaryStatus

boolean BroadcastResetSupported

uint16 ProtocolType

uint16 ActorOperKey

uint16[] ActorOperState

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemElementSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16 IsMinimum

CIM_SettingData SettingData

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

CIM_ManagedElement ManagedElement

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Identity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Identity

Class reference

Subclass of CIM_Identity

An instance of an Identity represents a ManagedElement that acts as a security principal within the scope in which it is defined and authenticated. (Note that the Identity’s scope is specified using the association, CIM_IdentityContext.) ManagedElements with Identities can be OrganizationalEntities, Services, Systems, etc. The ManagedElement ‘behind’ an Identity is described using the AssignedIdentity association.

Within a given security context, an Identity may be imparted a level of trust, usually based on its credentials. A trust level is defined using the CIM_SecuritySensitivity class, and associated with Identity using CIM_ElementSecuritySensitivity. Whether an Identity is currently authenticated is evaluated by checking the CurrentlyAuthenticated boolean property. This property is set and cleared by the security infrastructure, and should only be readable within the management infrastructure. The conditions which must be met/authenticated in order for an Identity’s CurrentlyAuthenticated Boolean to be TRUE are defined using a subclass of PolicyCondition - AuthenticationCondition. The inheritance tree for AuthenticationCondition is defined in the CIM Policy Model.

Subclasses of Identity may include specific information related to a given AuthenticationService or authority (such as a security token or computer hardware port/communication details) that more specifically determine the authenticity of the Identity. An instance of Identity may be persisted even though it is not CurrentlyAuthenticated, in order to maintain static relationships to Roles, associations to accounting information, and policy data defining authentication requirements. Note however, when an Identity is not authenticated (CurrentlyAuthenticated = FALSE), then Privileges or rights SHOULD NOT be authorized. The lifetime, validity, and propagation of the Identity is dependent on a security infrastructure’s policies.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

string InstanceID

uint64 Generation

boolean CurrentlyAuthenticated

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountInstanceCreationIndication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountInstanceCreationIndication

Class reference

Subclass of CIM_InstCreation

Account Instance Creation Indication

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_RouteUsesEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_RouteUsesEndpoint

Class reference

Subclass of CIM_Dependency

RouteUsesEndpoint depicts the relationship between a next hop route and the local Endpoint that is used to transmit the traffic to the ‘next hop’.

Key properties

Dependent

Antecedent

Local properties

CIM_NextHopRoute Dependent

The route using the endpoint.

CIM_ProtocolEndpoint Antecedent

The endpoint used to reach the route’s destination.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StatisticsCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StatisticsCapabilities

Class reference

Subclass of CIM_Capabilities

An instance of this class defines the specific support for the metered elements and methods for retrieving that statistical data from a StatisticsService.

Key properties

InstanceID

Local properties

uint16[] SynchronousMethodsSupported

The synchronous mechanisms supported for retrieving statistics and defining and modifying filters for statistics retrieval.

		ValueMap
		Values

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] ElementTypesSupported

The list of element types for which statistical data is available. This property may not be meaningful if the StatisticsService these capabilities describe does not support StatisticalData instances for different types of elements.

uint16[] AsynchronousMethodsSupported

The asychronous mechanisms supported for retrieving statistics.

		ValueMap
		Values

		
		DMTF Reserved

		0x8000..
		Vendor Specific

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BatteryPhysicalPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BatteryPhysicalPackage

Class reference

Subclass of CIM_PhysicalPackage

The PhysicalPackage class represents PhysicalElements that contain or host other components. Examples are a Rack enclosure or an adapter Card.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

datetime ManufactureDate

The date that this PhysicalElement was manufactured.

string Version

A string that indicates the version of the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

real32 Width

boolean Removable

string PartNumber

uint16 RemovalConditions

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

string[] VendorCompatibilityStrings

uint16 DetailedStatus

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

real32 Depth

string Model

uint16 PrimaryStatus

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

uint16 OperatingStatus

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SoftwareIdentity

Class reference

Subclass of CIM_LogicalElement

SoftwareIdentity provides descriptive information about a software component for asset tracking and/or installation dependency management. When the IsEntity property has the value TRUE, the instance of SoftwareIdentity represents an individually identifiable entity similar to Physical Element. SoftwareIdentity does NOT indicate whether the software is installed, executing, etc. This extra information may be provided through specialized associations to Software Identity. For instance, both InstalledSoftwareIdentity and ElementSoftwareIdentity may be used to indicate that the software identified by this class is installed. SoftwareIdentity is used when managing the software components of a ManagedElement that is the management focus. Since software may be acquired, SoftwareIdentity can be associated with a Product using the ProductSoftwareComponent relationship. The Application Model manages the deployment and installation of software via the classes, SoftwareFeatures and SoftwareElements. SoftwareFeature and SoftwareElement are used when the software component is the management focus. The deployment/installation concepts are related to the asset/identity one. In fact, a SoftwareIdentity may correspond to a Product, or to one or more SoftwareFeatures or SoftwareElements - depending on the granularity of these classes and the deployment model. The correspondence of Software Identity to Product, SoftwareFeature or SoftwareElement is indicated using the ConcreteIdentity association. Note that there may not be sufficient detail or instrumentation to instantiate ConcreteIdentity. And, if the association is instantiated, some duplication of information may result. For example, the Vendor described in the instances of Product and SoftwareIdentity MAY be the same. However, this is not necessarily true, and it is why vendor and similar information are duplicated in this class.

Note that ConcreteIdentity can also be used to describe the relationship of the software to any LogicalFiles that result from installing it. As above, there may not be sufficient detail or instrumentation to instantiate this association.

Key properties

InstanceID

Local properties

uint16[] TargetOSTypes

The TargetOSTypes property specifies the target operating systems supported by the software. When the target operating system of the software is not listed in the enumeration values, TargetOperatingSystems[] property should be used to specify the target operating system.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		MACOS

		3
		ATTUNIX

		4
		DGUX

		5
		DECNT

		6
		Tru64 UNIX

		7
		OpenVMS

		8
		HPUX

		9
		AIX

		10
		MVS

		11
		OS400

		12
		OS/2

		13
		JavaVM

		14
		MSDOS

		15
		WIN3x

		16
		WIN95

		17
		WIN98

		18
		WINNT

		19
		WINCE

		20
		NCR3000

		21
		NetWare

		22
		OSF

		23
		DC/OS

		24
		Reliant UNIX

		25
		SCO UnixWare

		26
		SCO OpenServer

		27
		Sequent

		28
		IRIX

		29
		Solaris

		30
		SunOS

		31
		U6000

		32
		ASERIES

		33
		HP NonStop OS

		34
		HP NonStop OSS

		35
		BS2000

		36
		LINUX

		37
		Lynx

		38
		XENIX

		39
		VM

		40
		Interactive UNIX

		41
		BSDUNIX

		42
		FreeBSD

		43
		NetBSD

		44
		GNU Hurd

		45
		OS9

		46
		MACH Kernel

		47
		Inferno

		48
		QNX

		49
		EPOC

		50
		IxWorks

		51
		VxWorks

		52
		MiNT

		53
		BeOS

		54
		HP MPE

		55
		NextStep

		56
		PalmPilot

		57
		Rhapsody

		58
		Windows 2000

		59
		Dedicated

		60
		OS/390

		61
		VSE

		62
		TPF

		63
		Windows (R) Me

		64
		Caldera Open UNIX

		65
		OpenBSD

		66
		Not Applicable

		67
		Windows XP

		68
		z/OS

		69
		Microsoft Windows Server 2003

		70
		Microsoft Windows Server 2003 64-Bit

		71
		Windows XP 64-Bit

		72
		Windows XP Embedded

		73
		Windows Vista

		74
		Windows Vista 64-Bit

		75
		Windows Embedded for Point of Service

		76
		Microsoft Windows Server 2008

		77
		Microsoft Windows Server 2008 64-Bit

		78
		FreeBSD 64-Bit

		79
		RedHat Enterprise Linux

		80
		RedHat Enterprise Linux 64-Bit

		81
		Solaris 64-Bit

		82
		SUSE

		83
		SUSE 64-Bit

		84
		SLES

		85
		SLES 64-Bit

		86
		Novell OES

		87
		Novell Linux Desktop

		88
		Sun Java Desktop System

		89
		Mandriva

		90
		Mandriva 64-Bit

		91
		TurboLinux

		92
		TurboLinux 64-Bit

		93
		Ubuntu

		94
		Ubuntu 64-Bit

		95
		Debian

		96
		Debian 64-Bit

		97
		Linux 2.4.x

		98
		Linux 2.4.x 64-Bit

		99
		Linux 2.6.x

		100
		Linux 2.6.x 64-Bit

		101
		Linux 64-Bit

		102
		Other 64-Bit

		103
		Microsoft Windows Server 2008 R2

		104
		VMware ESXi

		105
		Microsoft Windows 7

		106
		CentOS 32-bit

		107
		CentOS 64-bit

		108
		Oracle Linux 32-bit

		109
		Oracle Linux 64-bit

		110
		eComStation 32-bitx

		111
		Microsoft Windows Server 2011

		113
		Microsoft Windows Server 2012

		114
		Microsoft Windows 8

		115
		Microsoft Windows 8 64-bit

		116
		Microsoft Windows Server 2012 R2

uint16 ExtendedResourceType

The binary format type of the installation package of the software. This property can be used to locate a SoftwareInstallationService capable of installing this software.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		Linux RPM

		4
		HP-UX Depot

		5
		Windows MSI

		6
		Solaris Package

		7
		Macintosh Disk Image

		8
		Debian linux Package

		9
		VMware vSphere Installation Bundle

		10
		VMware Software Bulletin

		11
		HP Smart Component

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

string SerialNumber

A manufacturer-allocated number used to identify the software.

string[] Languages

The language editions supported by the software. The language codes defined in ISO 639 should be used.

uint16 MinExtendedResourceTypeMajorVersion

This property represents the major number component of the minimum version of the installer, represented by the ExtendedResourceType property, that is required to install this software.

string[] TargetTypes

An array of strings that describes the compatible installer(s). The purpose of the array elements is to establish compatibility between a SoftwareIdentity and a SoftwareInstallationService that can install the SoftwareIdentity by comparing the values of the array elements of this property to the values of SoftwareInstallationServiceCapabilities.SupportedTargetTypes[] property’s array elements.

string[] TargetOperatingSystems

Specifies the target operating systems of the software. This property should be used when a target operating system is not listed in the TargetOSTypes array values.

uint64 LargeBuildNumber

The build number of the software if IsLargeBuildNumber is TRUE. TheLargeBuildNumber property should be used for all future implementations.

uint16 MinorVersion

The minor number component of the software’s version information - for example, ‘1’ from version 12.1(3)T. This property is defined as a numeric value to allow the determination of ‘newer’ vs. ‘older’ releases. A ‘newer’ minor release is indicated by a larger numeric value.

boolean IsEntity

The IsEntity property is used to indicate whether the SoftwareIdentity corresponds to a discrete copy of the software component or is being used to convey descriptive and identifying information about software that is not present in the management domain.A value of TRUE shall indicate that the SoftwareIdentity instance corresponds to a discrete copy of the software component. A value of FALSE shall indicate that the SoftwareIdentity instance does not correspond to a discrete copy of the Software.

boolean IsLargeBuildNumber

The IsLargeBuildNumber property is used to indicate if the BuildNumber of LargeBuildNumber property contains the value of the software build. A value of TRUE shall indicate that the build number is represented by the LargeBuildNumber property. A value of FALSE shall indicate that the build number is represented by the BuildNumber property.

uint16 MinExtendedResourceTypeMinorVersion

This property represents the minor number component of the minimum version of the installer, represented by theExtendedResourceType property, that is required to install this software.

datetime ReleaseDate

The date the software was released.

string[] ClassificationDescriptions

An array of free-form strings providing more detailed explanations for any of the entries in the Classifications array. Note that each entry is related to one in the Classifications array located at the same index.

string[] IdentityInfoType

An indexed array of fixed-form strings that provide the description of the type of information that is stored in the corresponding component of the IdentityInfoValue array. The elements of this property array describe the type of the value in the corresponding elements of the IndetityInfoValue array. When the IdentityInfoValue property is implemented, the IdentityInfoType property MUST be implemented. To insure uniqueness the IdentityInfoType property SHOULD be formatted using the following algorithm: < OrgID > : < LocalID > Where < OrgID > and < LocalID > are separated by a colon (:), and where < OrgID > MUST include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the IdentityInfoType or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the < Schema Name > _ < Class Name > structure of Schema class names.) In addition, to ensure uniqueness, < OrgID > MUST NOT contain a colon (:). When using this algorithm, the first colon to appear in IdentityInfoType MUST appear between < OrgID > and < LocalID > . < LocalID > is chosen by the business entity and SHOULD NOT be reused to identify different underlying software elements.

string Manufacturer

Manufacturer of this software.

uint16[] Classifications

An array of enumerated integers that classify this software. For example, the software MAY be instrumentation (value=5) or firmware and diagnostic software (10 and 7). The use of value 6, Firmware/BIOS, is being deprecated. Instead, either the value 10 (Firmware) and/or 11 (BIOS/FCode) SHOULD be used. The value 13, Software Bundle, identifies a software package consisting of multiple discrete software instances that can be installed individually or together.

Each contained software instance is represented by an instance of SoftwareIdentity that is associated to this instance of SoftwareIdentityinstance via a Component association.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Driver

		3
		Configuration Software

		4
		Application Software

		5
		Instrumentation

		6
		Firmware/BIOS

		7
		Diagnostic Software

		8
		Operating System

		9
		Middleware

		10
		Firmware

		11
		BIOS/FCode

		12
		Support/Service Pack

		13
		Software Bundle

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string[] IdentityInfoValue

IdentityInfoValue captures additional information that MAY be used by an organization to describe or identify a software instance within the context of the organization. For example, large organizations may have several ways to address or identify a particular instance of software depending on where it is stored; a catalog, a web site, or for whom it is intended; development, customer service, etc. The indexed array property IdentityInfoValue contains 0 or more strings that contain a specific identity info string value. IdentityInfoValue is mapped and indexed to IdentityInfoType. When the IdentityInfoValue property is implemented, the IdentityInfoType property MUST be implemented and shall be formatted using the algorithm provided in the IdentityInfoType property Description.

string OtherExtendedResourceTypeDescription

A string describing the binary format type of the installation package of the software when the ExtendedResourceType property has a value of 1 (Other).

uint16 MinExtendedResourceTypeBuildNumber

This property represents the Build number component of the minimum version of the installer, represented by theExtendedResourceType property, that is required to install this software.

uint16 MajorVersion

The major number component of the software’s version information - for example, ‘12’ from version 12.1(3)T. This property is defined as a numeric value to allow the determination of ‘newer’ vs. ‘older’ releases. A ‘newer’ major release is indicated by a larger numeric value.

uint16 MinExtendedResourceTypeRevisionNumber

This property represents the Revision number component of the minimum version of the installer, represented by theExtendedResourceType property, that is required to install this software.

uint16 BuildNumber

The build number of the software.

string VersionString

A string representing the complete software version information - for example, ‘12.1(3)T’. This string and the numeric major/minor/revision/build properties are complementary. Since vastly different representations and semantics exist for versions, it is not assumed that one representation is sufficient to permit a client to perform computations (i.e., the values are numeric) and a user to recognize the software’s version (i.e., the values are understandable and readable). Hence, both numeric and string representations of version are provided.

uint16 RevisionNumber

The revision or maintenance release component of the software’s version information - for example, ‘3’ from version 12.1(3)T. This property is defined as a numeric value to allow the determination of ‘newer’ vs. ‘older’ releases. A ‘newer’ revision is indicated by a larger numeric value.

Local methods

None

Inherited properties

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string ElementName

string Status

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string Description

uint16 CommunicationStatus

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageInstModification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageInstModification

Class reference

Subclass of CIM_InstModification

CIM_InstModification notifies when an instance is modified.

Key properties

Local properties

None

Local methods

None

Inherited properties

string[] ChangedPropertyNames

string OtherSeverity

string PreviousInstance

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Fan.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Fan

Class reference

Subclass of CIM_CoolingDevice

Capabilities and management of a Fan CoolingDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean VariableSpeed

Indication of whether the fan supports variable speeds.

uint16 DesiredControlMode

DesiredControlMode is an integer enumeration indicating the last requested or desired control mode for the fan. The actual control mode is represented by ControlMode. The property is provided to compare the last requested and the current control mode. Refer to the ControlMode property Description for explanations of the values in the DesiredControlMode enumeration.

		ValueMap
		Values

		0
		Unknown

		2
		Automatic

		3
		Manual

		4..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16[] ControlModesSupported

ControlModesSupported indicates the supported control modes of the Fan: automatic or manual. In Automatic mode the Fan is controlled automatically in management function below the CIM. In Manual mode, the fan speed may be controlled by the CIM user by the SetSpeed method. Changing from Automatic to Manual, would not generally cause the speed to change. Changing from Manual to Automatic may cause the fan speed to change depending on the Thermal conditions of the system and the thermal management function.

		ValueMap
		Values

		0
		Unknown

		2
		Automatic

		3
		Manual

		4..32767
		DMTF Reserved

		32768..65535
		Vendor Specified

uint64 DesiredSpeed

DesiredSpeed is the currently requested fan speed, defined in revolutions per minute, when a variable speed fan is supported (VariableSpeed Boolean = TRUE). The current speed is determined using a sensor (CIM_Tachometer) that is associated with the Fan using the CIM_AssociatedSensor relationship.

uint16 ControlMode

ControlMode indicates the mode in which management of the Fan is operating. When in Manual mode, the SetSpeed method can be used to control the fan speed.

		ValueMap
		Values

		0
		Unknown

		2
		Automatic

		3
		Manual

		4..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

Local methods

uint32 SetSpeed (uint64 DesiredSpeed)

Method that requests that the Fan speed be set to the value specified in the input parameter of the method. The return value should be:

0 if the request was successfully executed

1 if the request is not supported

2 if the request is not valid for the current mode

3 if the requested speed is not currently valid

Some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

		ValueMap
		Values

		0
		Completed with No Errors

		1
		Not Supported

		2
		Invalid ControlMode for Setting Speed

		3
		Invalid Speed

		4..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

Parameters

		IN uint64 DesiredSpeed

		The desired speed for the fan.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 Availability

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string SystemCreationClassName

string CreationClassName

boolean ActiveCooling

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PhysicalBatteryContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PhysicalBatteryContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_BatteryPhysicalPackage PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ComputerSystemPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ComputerSystemPackage

Class reference

Subclass of CIM_SystemPackaging

Similar to the way that LogicalDevices are ‘Realized’ by PhysicalElements, ComputerSystem may be realized in one or more PhysicalPackages. The ComputerSystemPackage association explicitly defines this relationship.

Key properties

Dependent

Antecedent

Local properties

CIM_ComputerSystem Dependent

The UnitaryComputerSystem.

CIM_PhysicalPackage Antecedent

The PhysicalPackage(s) that realize a Unitary ComputerSystem.

string PlatformGUID

A Gloabally Unique Identifier for the System’s Package.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedSensor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedSensor

Class reference

Subclass of CIM_Dependency

The CIM_AssociatedCooling relationship indicates what ManagedSystemElement(s) the fan or cooling device is providingcooling for.

Key properties

Dependent

Antecedent

Local properties

CIM_ManagedSystemElement Dependent

The ManagedSystemElement for which information is measured by the Sensor.

CIM_Sensor Antecedent

The Sensor.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Capabilities

ManagedElement

Local properties

LMI_PowerManagementCapabilities Capabilities

The Capabilities object associated with the element.

LMI_PowerManagementService ManagedElement

The managed element.

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageElementStatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageElementStatisticalData

Class reference

Subclass of CIM_ElementStatisticalData

CIM_ElementStatisticalData is an association that relates a ManagedElement to its StatisticalData. Note that the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the ElementStatisticalData association for the referenced instance of CIM_StatisticalData. ElementStatisticalData describes the existence requirements and context for the CIM_StatisticalData, relative to a specific ManagedElement.

Key properties

Stats

ManagedElement

Stats

ManagedElement

Stats

ManagedElement

Local properties

LMI_BlockStorageStatisticalData Stats

The statistic information/object.

CIM_StorageExtent ManagedElement

The ManagedElement for which statistical or metric data is defined.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstIndication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstIndication

Class reference

Subclass of CIM_Indication

CIM_InstIndication is an abstract superclass describing changes to instances. Subclasses represent specific types of change notifications, such as instance creation, deletion and modification.

Key properties

Local properties

string SourceInstanceHost

The host name or IP address of the SourceInstance.

string SourceInstance

A copy of the instance that changed to generate the Indication. SourceInstance contains the current values of the properties selected by the Indication Filter’s Query. In the case of CIM_InstDeletion, the property values are copied before the instance is deleted.

string SourceInstanceModelPath

The Model Path of the SourceInstance. The following format MUST be used to encode the Model Path:

<NamespacePath>:<ClassName>.<Prop1>=”<Value1>”,

<Prop2>=”<Value2>”, ...

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string[] CorrelatedIndications

uint16 PerceivedSeverity

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SettingsDefineAccountCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SettingsDefineAccountCapabilities

Class reference

Subclass of CIM_SettingsDefineCapabilities

This association indicates that the non-null, non-key set of properties of the component SettingData instance specifies some capabilities of the associated Capabilities instance. The interpretation of the set of properties in the associated SettingData is governed by the properties: PropertyPolicy and ValueRole.

For a particular Capabilities instance, the complete set of Component SettingData instances, together with properties of the Capabilities instance itself, defines the overall range of supported capabilities.

PropertyPolicy determines whether the properties of the set are interpreted independently or as a whole (i.e. correlated.)

ValueRole further qualifies the members of the set.

This association eliminates the need to define and maintain corresponding property definitions and values in both a Capabilities subclass and a SettingData subclass.

Typically these setting instances will be published along with the associated Capabilities instance and will not be modifiable by the client.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_EnabledAccountCapabilities GroupComponent

The Account Capabilities

LMI_AccountSettingData PartComponent

The default enforced setting for new Accounts

Local methods

None

Inherited properties

uint16 ValueRange

uint16 ValueRole

uint16 PropertyPolicy

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Indication.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Indication

Class reference

CIM_Indication is the abstract root class for all notifications about changes in schema, objects and their data, and about events detected by providers and instrumentation. Subclasses represent specific types of notifications.

To receive an Indication, a consumer (or subscriber) must create an instance of CIM_IndicationFilter describing the criteria of the notification, an instance of CIM_ListenerDestination describing the delivery of the notification, and an instance of CIM_IndicationSubscription associating the Filter and Handler.

Key properties

Local properties

string IndicationFilterName

An identifier for the indication filter that selects this indication and causes it to be sent. This property is to be filled out by the indication sending service. The value shall be correlatable with the Name property of the instance of CIM_IndicationFilter describing the criteria of the indication. The value of the IndicationFilterName should be formatted using the following algorithm: < OrgID > : < LocalID >, where < OrgID > and < LocalID > are separated by a colon (:) and < OrgID > shall include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the value or that is a registered ID assigned to the business entity by a recognized global authority. In addition, to ensure uniqueness, < OrgID > shall not contain a colon (:).When using this algorithm, the first colon to appear in the value shall appear between < OrgID > and < LocalID >. < LocalID > is chosen by the business entity and shall be used uniquely.

string OtherSeverity

Holds the value of the user defined severity value when ‘PerceivedSeverity’ is 1 (“Other”).

sint64 SequenceNumber

The sequence number portion of a sequence identifier for the indication. The sequence context portion of the sequence identifier is provided by the SequenceContext property. The combination of both property values represents the sequence identifier for the indication.

The sequence identifier for the indication enables a CIM listener to identify duplicate indications when the CIM service attempts the delivery retry of indications, to reorder indications that arrive out-of-order, and to detect lost indications.

If a CIM service does not support sequence identifiers for indications, this property shall be NULL.

If a CIM service supports sequence identifiers for indications, this property shall be maintained by the CIM service for each registered listener destination, and its value shall uniquely identify the indication within the sequence context provided by SequenceContext. It shall start at 0 whenever the sequence context string changes. Otherwise, it shall be increased by 1 for every new indication to that listener destination, and it shall wrap to 0 when the value range is exceeded.

When retrying the delivery of an indication, this property shall have the same value as in the original delivery.

string IndicationIdentifier

An identifier for the Indication. This property is similar to a key value in that it can be used for identification, when correlating Indications (see the CorrelatedIndications array). Its value SHOULD be unique as long as correlations are reported, but MAY be reused or left NULL if no future Indications will reference it in their CorrelatedIndications array.To ensure uniqueness, the value of IndicationIdentifier should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the IndicationIdentifier or that is a recognized ID that is assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in IndicationIdentifier must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements.

If the above “preferred” algorithm is not used, the defining entity should assure that the resulting IndicationIdentifier is not re-used across any IndicationIdentifiers that are produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the “preferred” algorithm should be used with the <OrgID> set to CIM.

datetime IndicationTime

The time and date of creation of the Indication. The property may be set to NULL if the entity creating the Indication is not capable of determining this information. Note that IndicationTime may be the same for two Indications that are generated in rapid succession.

string SequenceContext

The sequence context portion of a sequence identifier for the indication. The sequence number portion of the sequence identifier is provided by the SequenceNumber property. The combination of both property values represents the sequence identifier for the indication.

The sequence identifier for the indication enables a CIM listener to identify duplicate indications when the CIM service attempts the delivery retry of indications, to reorder indications that arrive out-of-order, and to detect lost indications.

If a CIM service does not support sequence identifiers for indications, this property shall be NULL.

If a CIM service supports sequence identifiers for indications, this property shall be maintained by the CIM service for each registered listener destination, and its value shall uniquely identify the CIM service and the indication service within the CIM service such that restarts of the CIM service and deregistration of listener destinations to the CIM service cause the value to change, without reusing earlier values for a sufficiently long time.

When retrying the delivery of an indication, this property shall have the same value as in the original delivery.

To guarantee this uniqueness, the property value should be constructed using the following format (defined in ABNF): sequence-context = indication-service-name “#” cim-service-start-id “#” listener-destination-creation-time

Where: indication-service-name is the value of the Name property of the CIM_IndicationService instance responsible for delivering the indication. cim-service-start-id is an identifier that uniquely identifies the CIM service start, for example via a timestamp of the start time, or via a counter that increases for each start or restart. listener-destination-creation-time is a timestamp of the creation time of the CIM_ListenerDestination instance representing the listener destination.

Since this format is only a recommendation, CIM clients shall treat the value as an opaque identifier for the sequence context and shall not rely on this format.

uint16 PerceivedSeverity

An enumerated value that describes the severity of the Indication from the notifier’s point of view:

1 - Other, by CIM convention, is used to indicate that the Severity’s value can be found in the OtherSeverity property.

3 - Degraded/Warning should be used when its appropriate to let the user decide if action is needed.

4 - Minor should be used to indicate action is needed, but the situation is not serious at this time.

5 - Major should be used to indicate action is needed NOW.

6 - Critical should be used to indicate action is needed NOW and the scope is broad (perhaps an imminent outage to a critical resource will result).

7 - Fatal/NonRecoverable should be used to indicate an error occurred, but it’s too late to take remedial action.

2 and 0 - Information and Unknown (respectively) follow common usage. Literally, the Indication is purely informational or its severity is simply unknown.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Information

		3
		Degraded/Warning

		4
		Minor

		5
		Major

		6
		Critical

		7
		Fatal/NonRecoverable

		
		DMTF Reserved

string[] CorrelatedIndications

A list of IndicationIdentifiers whose notifications are correlated with (related to) this one.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ExtentEncryptionConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ExtentEncryptionConfigurationService

Class reference

Subclass of CIM_Service

Service which configures LUKS formats on block devices.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 CloseEncryptionFormat (CIM_ConcreteJob Job, LMI_EncryptionFormat Format)

Closes a LUKS device. Appropriate device mapper device with clear-text data is destroyed and appropriate LMI_LUKSStorageExtent is removed.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		IN LMI_EncryptionFormat Format

		LUKS format to close.

uint32 DeletePassphrase (LMI_EncryptionFormat Format, string Passphrase)

Remove a passphrase from LUKS format.

Parameters

		IN LMI_EncryptionFormat Format

		The format to remove the passphrase from.

		IN string Passphrase

		The passphrase to remove.

uint32 AddPassphrase (LMI_EncryptionFormat Format, string Passphrase, string NewPassphrase)

Add new passphrase to LUKS format. LUKS supports up to 8 independent passphrases, adding any additional one will result in error. Application cannot specify which key slot will be used by which passphrase.

Parameters

		IN LMI_EncryptionFormat Format

		The format to add the passphrase to.

		IN string Passphrase

		Any of the existing passphrase to unlock the format.

		IN string NewPassphrase

		New passphrase to add.

uint32 CreateEncryptionFormat (CIM_StorageExtent InExtent, LMI_EncryptionFormatSetting Goal, string Passphrase, CIM_ConcreteJob Job, LMI_EncryptionFormat Format)

Formats a device to become a LUKS device. All previous data on the device is destroyed.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_StorageExtent InExtent

		The block device to format.

		IN LMI_EncryptionFormatSetting Goal

		Parameteres of the LUKS format. This parameter is unused currently and must be NULL.

		IN string Passphrase

		Passphrase to use to encrypt the device. This is not the encryption key!

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		OUT LMI_EncryptionFormat Format

		Created format.

uint32 OpenEncryptionFormat (LMI_EncryptionFormat Format, string ElementName, string Passphrase, CIM_ConcreteJob Job, CIM_StorageExtent Extent)

Opens a LUKS device. This means new block device with clear-text data is created. This new device is represented by LMI_LUKSStorageDevice and is returned as ‘Extent’ output parameter.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN LMI_EncryptionFormat Format

		Format to open.

		IN string ElementName

		Desired ElementName of the newly created LMI_LUKSStorageDevice. This name is also used as device mapper name, i.e. device with path /dev/mapper/<ElementName> will be created.

		IN string Passphrase

		Passphrase to unencrypt the device.

		OUT CIM_ConcreteJob Job

		Reference to the created job.

		OUT CIM_StorageExtent Extent

		Created CIM_StorageExtent which represents the clear-text block device.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StatisticsCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StatisticsCollection

Class reference

Subclass of CIM_SystemSpecificCollection

A subclass of SystemSpecificCollection which collects together statistics for a system. This class forms an ‘anchor point’ from which all the statistics kept for the system can be found (via the MemberOfCollection associations).

Key properties

InstanceID

Local properties

datetime TimeLastSampled

The time that the statistics collection was last sampled. Note that this property MAY be used to trigger an indication for ‘push’ delivery of statistics samples.

datetime SampleInterval

This property provides the minimum sampling interval for the associated statistics so that client applications can determine the minimum interval that the StatisticsCollection should be sampled. If the statistics are sampled at different cycles, this property MUST be set to a zero time interval.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDBackendDomain.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDBackendDomain

Class reference

All top level domains associated with given backend.

Key properties

Domain

Backend

Local properties

LMI_SSSDDomain Domain

LMI_SSSDBackend Backend

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssignedAccountIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssignedAccountIdentity

Class reference

Subclass of CIM_AssignedIdentity

This relationship associates an Identity to a specific ManagedElement, whose trust and account information is represented.

Key properties

IdentityInfo

ManagedElement

Local properties

LMI_Identity IdentityInfo

The managed Identity

LMI_Account ManagedElement

The managed Account on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemorySystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemorySystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_Memory PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StorageSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StorageSetting

Class reference

Subclass of CIM_SettingData

StorageSetting is roughly equivalent to a Service Level Agreement (SLA) It defines the characteristics, qualities of service and goals when used in a CreateOrModifyElement FromStoragePool or CreateOrModifyStoragePool method in the StorageConfigurationService. It specifies a series of properties with Maximum and Minimum values that define the (inclusive) bounds that the object should maintain. Note that the setting is associated to a StorageVolume or LogicalDisk, using ElementSetting.

The use of these properties differs depending on whether the StorageSetting instance is being used as a goal for a configuration operation or being used as a Service Level Agreement for a created Volume. In addition the properties fall into two categories: The QOS properties(PackageRedundancy, Data Redundancy, & NoSinglePointOfFailure) and the Detailed RAID properties(ExtentStripeLength, ParityLayout, and UserDataStripeDepth). In a Setting used as a goal, the QOS properties are required as a set; The Detailed RAID properties(if supported as indicated by the scoping StorageCapabilities instance) may be used optionally in any combination. The implementation MUST supply it’s own best practice in the case where one or more supported RAID properties are not supplied. In this situation the use of StorageSettingWithHints can be useful to provide direction to the implementation.

In a Setting used as a service agreement for a Volume, the QOS properties reflect the Service Level Agreement, with goal, min, & max. The actual current service level is exposed by corresponding values in StorageExtent.

The Detailed RAID properties, by contrast, reflect specific values that reflect the RAID construction of the Volume. Only the primary values are meaningful; Min and Max are set to match.

Certain StorageSetting instances may be classed as “Fixed”, by using the “ChangeableType” property, indicating the setting is preset. Such settings are used when the possible setting variations are low enough to be instantiated in their entirety. The StorageCapabilities “CreateSetting” method MAY NOT be used to return settings that are not changeable.

Other StorageSetting instances are created using the “CreateSetting” method. If the capabilities specifies ranges, then the setting can be used by a client to narrow the range to particular values within the range. In other words, the capabilities MAY be broad, but the related setting MUST be as capable or less capable, that is more narrowly defined, before it is used to create or modify resources.

These created StorageSetting instances MUST have their “ChangeableType” property = 1, “Changeable - Transient”.

GeneratedSettings MAY not remain after the restart or reset of the implementation. They may be deleted by implementation at any time. A reasonable minimal time to retain the generated transient settings is five minutes, although there is no minimal retention time.

Key properties

InstanceID

Local properties

uint64 InterconnectSpeed

The speed of disk interconnection wanted. Value of 0 means don’t care. Values are in bits/second

uint16 InterconnectType

Enumeration indicating the type of disk interconnection wanted.

		ValueMap
		Values

		0
		don’t care

		1
		other

		2
		SAS

		3
		SATA

		4
		SAS/SATA

		5
		FC

		6
		SOP

uint8 DeltaReservationGoal

DeltaReservationGoal is a number between 1 (1%) and a 100 (100%) which specifies the desired amount of space that should be reserved in a replica for caching changes. For a complete copy this would be 100%. The bounds (max and min) for the reservation are defined using the properties, DeltaReservationMax and DeltaReservationMin.

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The desired redundancy is specified using DataRedundancyGoal, while the maximum is defined by DataRedundancyMax.

uint16 UseReplicationBuffer

“Not Applicable” indicates that this property is not applicable to the associated storage element. Other values indicate whether or not remote mirror pair created with SynchronizationType “Async” is allowed to use a write buffer for asynchronous buffering. These other values are defined as:

		“Not Managed”: use or not of the buffer is up to the implementation.

		“Use Buffer”: use of a buffer for logging is required.

		“Do Not Use Buffer”: a buffer for logging shall not be used.

		ValueMap
		Values

		0
		Not Applicable

		1
		Not Managed

		2
		Use Buffer

		3
		Do Not Use Buffer

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 LowSpaceWarningThreshold

LowSpaceWarningThreshold simplifies the creation of a pool specific Indication based on RemainingManagedSpace <=

(TotalManagedSpace*LowSpaceWarningThreshold)/100. One example client for an Indication based on this property is a delta copy implementation where the pool enables continuous, variable space consumption for the delta storage. Another example client for an Indication based on this property is a provisioning manager implementing a policy for adding storage to a pool when it becomes low.

uint16 DiskType

Enumeration indicating the type of DiskDrives which may be available.

		ValueMap
		Values

		0
		Do Not Care

		1
		Other

		2
		Hard Disk Drive

		3
		Solid State Drive

		4
		Hybrid

boolean NoSinglePointOfFailure

Indicates the desired value for No Single Point of Failure. Possible values are false = single point of failure, and true = no single point of failure.

uint16 PortType

Enumeration indicating the type of disk interfaces which may be available.

		ValueMap
		Values

		0
		Do Not Care

		1
		other

		2
		SAS

		3
		SATA

		4
		SAS/SATA

		5
		FC

uint16 ParityLayout

ParityLayout specifies whether a parity-based storage organization is using rotated or non-rotated parity. When used in a goal setting instance, ParityLayout is the desired value. It MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property indicates the specific value that the Volume was created with.

		ValueMap
		Values

		1
		Non-rotated Parity

		2
		Rotated Parity

uint16 DataOrganization

Type of data organization used.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		Fixed Block

		3
		Variable Block

		4
		Count Key Data

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The desired redundancy is specified using PackageRedundancyGoal, while the minimum is defined by PackageRedundancyMin.

uint64 UserDataStripeDepthMin

UserDataStripeDepth describes the number of bytes forming a strip in common striping-based storage organizations. The strip is defined as the size of the portion of a stripe that lies on one extent. Thus, ExtentStripeLength * UserDataStripeDepth will yield the size of one stripe of user data. When used in a goal setting instance, UserDataStripeDepthMin is the minimum acceptable value. The desired Stripe Depth is specified using UserDataStripeDepth, while the maximum is defined by UserDataStripeDepthMax. UserDataStripeDepthMin MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of UserDataStripeDepth.

string EmulatedDevice

Specifies the specific device (e.g., 3380 or 3390) that is emulated by the volume.

uint16 CompressionRate

Indicates the desired compression for a storage element. The possible values are “None”, “High”, “Medium”, “Low” or “Implementation Decides”. If CompressedElement is set to “false”, then this property should be set to 1 (None).

		ValueMap
		Values

		1
		None

		2
		High

		3
		Medium

		4
		Low

		5
		Implementation Decides

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint16 ThinProvisionedPoolType

The type of thin provisioned pool used when StorageSetting is used as a goal for creating a thin provisioned pool. In other contexts, this property is undefined. The possibles values match the appropriate values in StorageConfigrationCapabilities.SupportedStorageElementTypes.

		ValueMap
		Values

		7
		ThinlyProvisionedAllocatedStoragePool

		8
		ThinlyProvisionedQuotaStoragePool

		9
		ThinlyProvisionedLimitlessStoragePool

		
		DMTF Reserved

		0x800..0xFFFF
		Vendor Specific

uint16 FormFactorType

Enumeration indicating the type of form factors which may be available.

		ValueMap
		Values

		0
		Do Not Care

		1
		Other

		2
		Not Reported

		3
		5.25 inch

		4
		3.5 inch

		5
		2.5 inch

		6
		1.8 inch

uint16 PackageRedundancyGoal

PackageRedundancyGoal describes the desired number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds (max and min) for redundancy are defined using the properties, PackageRedundancyMax and PackageRedundancyMin.

uint16 SpaceLimitWarningThreshold

If the associated storage element may dynamically consume an increasing amount of space and a space limit is enforced on the element, then a non-zero warning threshold percentage indicates when a warning indication should be generated based on the total amount of space consumed being >= (SpaceLimit*SpaceLimitWarningThreshold)/100.

uint32 RPM

The rotational speed of disk media wanted. a value of 0xffffffff means don’t care. Values are in revolutions per minute. SSD devices shall report 0.

boolean PersistentReplica

True indicates the associated replicas persist during power off or system reset. False indicates replicas lost during these events.

uint16 InitialSynchronization

Not Applicable indicates that this property is not applicable to the associated storage element. Other values indicate whether or not a source element should be fully copied to a target element at the time the replication is initiated. The provider does not have to comply with the client request. These other values are defined as:

		“Not Managed”: to start or not at initiation is up to the implementation.

		“Start”: start replication on initiation.

		“Do Not Start”: do not start replication on initiation.

		ValueMap
		Values

		0
		Not Applicable

		1
		Not Managed

		2
		Start

		3
		Do Not Start

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 Encryption

This property reflects support of the encryption feature implemented by some disk drives.

		ValueMap
		Values

		0
		Do Not Care

		1
		Not Supported

		2
		Supported

uint16 StorageExtentInitialUsage

The Usage value to be used when creating a new element that is derived from a StorageExtent.

“Reserved to be Unrestricted Pool Contributor”: Indicates the element is available and it is intended to be used as an Unrestricted Pool Contributor. Once such element is in use, the elements Usage value will change to “In use as Unrestricted Pool Contributor”.

		ValueMap
		Values

		1
		Other

		2
		Unrestricted

		3
		Reserved for ComputerSystem (the block server)

		4
		Reserved by Replication Services

		5
		Reserved by Migration Services

		6
		Local Replica Source

		7
		Remote Replica Source

		8
		Local Replica Target

		9
		Remote Replica Target

		10
		Local Replica Source or Target

		11
		Remote Replica Source or Target

		12
		Delta Replica Target

		13
		Element Component

		14
		Reserved to be Unrestricted Pool Contributor

		15
		Composite Volume Member

		16
		Composite LogicalDisk Member

		17
		Reserved for Sparing

		18
		In use as Unrestricted Pool Contributor

		19
		Reserved to be Delta Replica Pool Contributor

		20
		Reserved to be Local Replication Pool Contributor

		21
		Reserved to be Remote Replication Pool Contributor

		22
		In use as Delta Replica Pool Contributor

		23
		In use as Local Replication Pool Contributor

		24
		In use as Remote Replication Pool Contributor

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 ExtentStripeLengthMin

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLengthMin is the minimum acceptable value. The desired Stripe Length is specified using ExtentStripeLength, while the maximum is defined by ExtentStripeLengthMax. ExtentStripeLengthMin MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of ExtentStripeLength.

uint64 ThinProvisionedInitialReserve

The initial reserve being requested by the client when StorageConfigurationCapabilities is used as a parameter for creating volumes or logical disks.

uint16 DataRedundancyGoal

DataRedundancyGoal describes the desired number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds (max and min) for redundancy are defined using the properties, DataRedundancyMax and DataRedundancyMin.

uint16 ExtentStripeLength

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLength is the optimal desired value. The bounds (max and min) for Stripe Length are defined using the properties ExtentStripeLengthMax and ExtentStripeLengthMin. ExtentStripeLength MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. ExtentStripeLength can be used in conjunction with CreateOrModifyElementFromELements to explicitly configure storage. An example would be RAID 0+1 with mirroring two stripe sets, each set being three wide. In this case CreateOrModifyElementFromElements would be passed a goal setting with DataRedundancy = 2 and ExtentStripeLength = 3. The size of the InElements array would be 6 and would contain the StorageExtents to be used to construct the StorageElement as a RAID 0+1. ExtentStripeLengthMin and ExtentStripeLengthMax are meaningless and wouldbe set to NULL. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property indicates the specific value that the Volume was created with, and ExtentStripeLengthMin and ExtentStripeLengthMax will be set to the same specific value.

string SubsystemID

This property is the Subsystem ID if the array or virtualizer supports Subsystem IDs. If they are supported they would be required on volume creation.

boolean IncrementalDeltas

True indicates delta replicas associated with the source element associated with this settingdata are incrementally dependent. Only the oldest replica in the set may be deleted or resynced.

uint16 StoragePoolInitialUsage

The Usage value to be used when creating a new StoragePool.

		ValueMap
		Values

		1
		Other

		2
		Unrestricted

		3
		Reserved for ComputerSystem (the block server)

		4
		Reserved as a Delta Replica Container

		5
		Reserved for Migration Services

		6
		Reserved for Local Replication Services

		7
		Reserved for Remote Replication Services

		8
		Reserved for Sparing

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 ReplicationPriority

Not Applicable indicates that this property is not applicable to the associated storage element. Other values indicate the relative priority of background Replication I/O operations relative to host I/O operations. These other values are:

		“Low”: Replication engine I/O lower priority than host I/O.

		“Same”: Replication engine I/O has the same priority as host I/O.

		“High”: Replication engine I/O has higher priority than host I/O.

		ValueMap
		Values

		0
		Not Applicable

		1
		Not Managed

		2
		Low

		3
		Same

		4
		High

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 ChangeableType

Enumeration indicating the type of setting. “Fixed - Not Changeable” settings are primordial. These setting are defined at the implementor of the class. “Changeable - Transient” is the type of setting produced by the “CreateSetting” method. A client can subsequently request that the implementation persist the generated and potentially modified setting indefinately. Only a “Changeable - Transient” setting SHALL be converted to a “Changeable = Persistent” setting; the setting SHALL NOT be changed back.

		ValueMap
		Values

		0
		Fixed - Not Changeable

		1
		Changeable - Transient

		2
		Changeable - Persistent

uint8 DeltaReservationMin

DeltaReservationMin is a number between 1 (1%) and a 100 (100%) which specifies the minimum amount of space that should be reserved in a replica for caching changes. For a complete copy this would be 100%. The desired reservation is specified using DeltaReservationGoal, while the maximum is defined by DeltaReservationMax.

string CUImage

This property is the Node Element Descriptor of the Control Unit Image (this property is required for CKD StorageVolume). It is not required for LogicalDisks.

uint64 UserDataStripeDepthMax

UserDataStripeDepth describes the number of bytes forming a strip in common striping-based storage organizations. The strip is defined as the size of the portion of a stripe that lies on one extent. Thus, ExtentStripeLength * UserDataStripeDepth will yield the size of one stripe of user data. When used in a goal setting instance, UserDataStripeDepthMax is the maximum acceptable value. The desired Stripe Depth is specified using UserDataStripeDepthGoal, while the minimum is defined by UserDataStripeDepthMin. UserDataStripeDepthMax MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingwWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of UserDataStripeDepth.

uint64 SpaceLimit

SpaceLimit is the consumption limit for the allocated storage element from all associated StoragePools. If asserted, then the assumption is that the storage element can grow, (for instance an element representing the storage for a delta replica).

If SpaceLimit is greater than zero, the space consumed by the storage element shall not exceed the value of SpaceLimit.

If SpaceLimit = 0 (the default) then no limits are asserted on the amount of space consumed.

uint16 ExtentStripeLengthMax

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLengthMax is the maximum acceptable value. The desired Stripe Length is specified using ExtentStripeLength, while the minimum is defined by ExtentStripeLengthMin. ExtentStripeLengthMax MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of ExtentStripeLength.

boolean CompressedElement

The CompressedElement property indicates whether or not compression of the element is being requested. When set to true, compression is being requested. When set to false, compression is not being requested.

uint8 DeltaReservationMax

DeltaReservationMax is a number between 1 (1%) and a 100 (100%) which specifies the maximum amount of space that should be reserved in a replica for caching changes. For a complete copy this would be 100%. The desired reservation is specified using DeltaReservationGoal, while the minimum is defined by DeltaReservationMin.

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The desired redundancy is specified using DataRedundancyGoal, while the minimum is defined by DataRedundancyMin.

uint64 UserDataStripeDepth

UserDataStripeDepth describes the number of bytes forming a strip in common striping-based storage organizations. The strip is defined as the size of the portion of a stripe that lies on one extent. Thus, ExtentStripeLength * UserDataStripeDepth will yield the size of one stripe of user data. When used in a goal setting instance, UserDataStripeDepth is the optimal desired value. The bounds (max and min) for Stripe Depth are defined using the properties UserDataStripeDepthMax and UserDataStripeDepthMin. UserDataStripeDepth MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property indicates the specific value that the Volume was created with, and UserDataStripeDepthMin and UserDataStripeDepthMax will be set to the same specific value.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The desired redundancy is specified using PackageRedundancyGoal, while the maximum is defined by PackageRedundancyMax.

Local methods

None

Inherited properties

string InstanceID

string Description

string ConfigurationName

string SoOrgID

string ElementName

string Caption

string SoID

uint64 Generation

string[] ComponentSetting

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageSetting

Class reference

Subclass of CIM_StorageSetting

Abstract StorageSetting class. This class just defines persistence types of all LMI StorageSetting classes. All subclasses of LMI_StorageSetting can be persistently stored by modifying ChangeableType property.

Transient setting can be deleted during CIMOM restart or after configurable time.

In addition, all LMI_StorageSetting subclasses have Clone() method to easily create copy the same setting.

Key properties

InstanceID

Local properties

uint16 DataRedundancyMin

DataRedundancyMin describes the minimum number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The desired redundancy is specified using DataRedundancyGoal, while the maximum is defined by DataRedundancyMax.

boolean NoSinglePointOfFailure

Indicates the desired value for No Single Point of Failure. Possible values are false = single point of failure, and true = no single point of failure.

uint16 ParityLayout

ParityLayout specifies whether a parity-based storage organization is using rotated or non-rotated parity. When used in a goal setting instance, ParityLayout is the desired value. It MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property indicates the specific value that the Volume was created with.

		ValueMap
		Values

		1
		Non-rotated Parity

		2
		Rotated Parity

uint16 PackageRedundancyMax

PackageRedundancyMax describes the maximum number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The desired redundancy is specified using PackageRedundancyGoal, while the minimum is defined by PackageRedundancyMin.

uint16 ExtentStripeLength

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLength is the optimal desired value. The bounds (max and min) for Stripe Length are defined using the properties ExtentStripeLengthMax and ExtentStripeLengthMin. ExtentStripeLength MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. ExtentStripeLength can be used in conjunction with CreateOrModifyElementFromELements to explicitly configure storage. An example would be RAID 0+1 with mirroring two stripe sets, each set being three wide. In this case CreateOrModifyElementFromElements would be passed a goal setting with DataRedundancy = 2 and ExtentStripeLength = 3. The size of the InElements array would be 6 and would contain the StorageExtents to be used to construct the StorageElement as a RAID 0+1. ExtentStripeLengthMin and ExtentStripeLengthMax are meaningless and wouldbe set to NULL. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property indicates the specific value that the Volume was created with, and ExtentStripeLengthMin and ExtentStripeLengthMax will be set to the same specific value.

uint16 ExtentStripeLengthMin

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLengthMin is the minimum acceptable value. The desired Stripe Length is specified using ExtentStripeLength, while the maximum is defined by ExtentStripeLengthMax. ExtentStripeLengthMin MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of ExtentStripeLength.

uint16 DataRedundancyGoal

DataRedundancyGoal describes the desired number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The bounds (max and min) for redundancy are defined using the properties, DataRedundancyMax and DataRedundancyMin.

uint16 ChangeableType

Enumeration indicating the type of setting. “Fixed - Not Changeable” settings are primordial. These setting are defined at the implementor of the class. “Changeable - Transient” is the type of setting produced by the “CreateSetting” method. A client can subsequently request that the implementation persist the generated and potentially modified setting indefinately. Only a “Changeable - Transient” setting SHALL be converted to a “Changeable = Persistent” setting; the setting SHALL NOT be changed back.

		ValueMap
		Values

		0
		Fixed - Not Changeable

		1
		Changeable - Transient

		2
		Changeable - Persistent

uint16 ExtentStripeLengthMax

ExtentStripeLength describes the number of underlying StorageExtents across which data is striped in the common striping-based storage organizations. This is also known as the number of ‘members’ or ‘columns’. When used in a goal setting instance, ExtentStripeLengthMax is the maximum acceptable value. The desired Stripe Length is specified using ExtentStripeLength, while the minimum is defined by ExtentStripeLengthMin. ExtentStripeLengthMax MUST be set to NULL if the scoping StorageCapablities indicates that it is not supported in this context. If the property is supported, and is part of StorageSettingWithHints it MAY be set to NULL. If used it will constrain the effects of Hint selections. When used in a Setting instance associated to a Volume, this property is set to the specific value of ExtentStripeLength.

uint16 PackageRedundancyGoal

PackageRedundancyGoal describes the desired number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The bounds (max and min) for redundancy are defined using the properties, PackageRedundancyMax and PackageRedundancyMin.

uint16 DataRedundancyMax

DataRedundancyMax describes the maximum number of complete copies of data to be maintained. Examples would be RAID 5 where 1 copy is maintained and RAID 1 where 2 or more copies are maintained. Possible values are 1 to n. The desired redundancy is specified using DataRedundancyGoal, while the minimum is defined by DataRedundancyMin.

uint16 PackageRedundancyMin

PackageRedundancyMin describes the minimum number of redundant packages to be used. For example, in the storage domain, package redundancy describes how many disk spindles can fail without data loss including, at most, one spare. An example would be RAID5 with a spare disk which would have a PackageRedundancy of 2. Possible values are 0 to n. The desired redundancy is specified using PackageRedundancyGoal, while the maximum is defined by PackageRedundancyMax.

Local methods

uint32 CloneSetting (LMI_StorageSetting Clone)

Create a copy of this instance. The resulting instance will have the same class and the same properties as the original instance except ChangeableType, which will be set to “Changeable - Transient” in the clone, and InstanceID.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		OUT LMI_StorageSetting Clone

		Created copy.

Inherited properties

uint64 InterconnectSpeed

uint16 InterconnectType

uint8 DeltaReservationGoal

uint16 UseReplicationBuffer

string InstanceID

uint16 LowSpaceWarningThreshold

uint16 DiskType

string SubsystemID

string Description

uint16 DataOrganization

uint64 UserDataStripeDepthMin

string EmulatedDevice

uint16 CompressionRate

uint16 ThinProvisionedPoolType

uint16 FormFactorType

string ConfigurationName

boolean CompressedElement

string CUImage

string SoOrgID

boolean PersistentReplica

uint16 InitialSynchronization

uint16 Encryption

uint16 StorageExtentInitialUsage

string ElementName

uint64 ThinProvisionedInitialReserve

string Caption

uint16 PortType

boolean IncrementalDeltas

uint16 StoragePoolInitialUsage

string SoID

uint16 ReplicationPriority

uint8 DeltaReservationMin

uint64 Generation

uint32 RPM

uint64 UserDataStripeDepthMax

uint64 SpaceLimit

uint16 SpaceLimitWarningThreshold

string[] ComponentSetting

uint8 DeltaReservationMax

uint64 UserDataStripeDepth

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementCapabilities

Class reference

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

uint16[] Characteristics

Characteristics provides descriptive information about the Capabilities. when the value 2 “Default” is specified, the associated Capabilities shall represent the default capabilities of the associated Managed Element

when the value 2 “Default” is not specified, the Capabilities instance may represent the default capabilities of the Managed Element

When the value 3 “Current” is specified, the associated Capabilities shall represent the current capabilities of the associated Managed Element

When the value 3 “Current” is not specified, the Capabilities instance may represent the current capabilities of the Managed Element.

		ValueMap
		Values

		2
		Default

		3
		Current

		
		DMTF Reserved

		32768..65535
		Vendor Specific

CIM_Capabilities Capabilities

The Capabilities object associated with the element.

CIM_ManagedElement ManagedElement

The managed element.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ATAPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ATAPort

Class reference

Subclass of CIM_LogicalPort

Represents the port of an ATA device to system connection.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 PortType

The type of port.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		91
		ATA

		92
		SATA

		93
		SATA2

		16000..
		Vendor Reserved

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

uint64 MaxSpeed

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 UsageRestriction

string OtherPortType

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint64 Speed

uint16 Availability

string SystemCreationClassName

uint64 RequestedSpeed

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EncryptionFormat.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EncryptionFormat

Class reference

Subclass of LMI_DataFormat

Base class for all encryption formats. This format represents encrypted data on a block device.

Key properties

Name

CSName

CSCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

string FormatTypeDescription

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

uint16 DetailedStatus

uint16 FormatType

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16 PrimaryStatus

uint64 Generation

string CSCreationClassName

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Baseboard.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Baseboard

Class reference

Subclass of CIM_Card

The Card class represents a type of physical container that can be plugged into another Card or HostingBoard, or is itself a HostingBoard/Motherboard in a Chassis. The CIM_Card class includes any package capable of carrying signals and providing a mounting point for PhysicalComponents, such as Chips, or other PhysicalPackages, such as other Cards.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string Version

A string that indicates the version of the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

boolean HostingBoard

Boolean indicating that this Card is a Motherboard or, more generically, a baseboard in a Chassis.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

string Model

The name by which the PhysicalElement is generally known.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

datetime ManufactureDate

real32 Width

sint16[] OperatingVoltages

boolean Removable

string PartNumber

uint16 RemovalConditions

string Status

boolean CanBeFRUed

boolean Replaceable

uint16 PrimaryStatus

string RequirementsDescription

uint16[] OperationalStatus

string SlotLayout

string[] VendorCompatibilityStrings

uint16 DetailedStatus

string OtherIdentifyingInfo

boolean SpecialRequirements

boolean PoweredOn

real32 Depth

boolean RequiresDaughterBoard

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

uint16 OperatingStatus

datetime InstallDate

string OtherPackageType

Inherited methods

ConnectorPower

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDrive.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDrive

Class reference

Subclass of CIM_DiskDrive

Capabilities and managment of a DiskDrive, a subtype of MediaAccessDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint64 InterconnectSpeed

This property identifies the port speed in bit/second. If the speed is unknown the property should be set to 0.

uint16 InterconnectType

This property identifies the drive interface type.

ATA: Advanced Technology Attachment

SATA: Serial ATA

SAS: Serial Attached SCSI

FC: Fibre Channel

SOP: SCSI Over PCIe – Peripheral Component Interconnect express.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Applicable

		3
		ATA

		4
		SATA

		5
		SAS

		6
		FC

		7
		SOP

uint64 Capacity

Capacity of disk drive, in bytes.

sint16 Temperature

Current temperature of disk drive, in degrees Celsius

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 DiskType

The technology used to store data. the hybrid uses a combination of HDD and SSD in the same drive.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Hard Disk Drive

		3
		Solid State Drive

		4
		Hybrid

string SystemName

The System Name of the scoping system.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

uint32 RPM

This property identifies how fast the drive media spins in Rotations Per Minute. Solid State drives should set this property to 0. If the RPM is unknown the property should be set to 0xFFFFFFFF

uint16 FormFactor

The Physical size of the disk drive.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Not Reported

		3
		5.25 inch

		4
		3.5 inch

		5
		2.5 inch

		6
		1.8 inch

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Caption

The Caption property is a short textual description (one- line string) of the object.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16 HealthState

boolean MediaIsLocked

uint64 MaxAccessTime

uint16 RequestedState

uint16 Encryption

uint16 PrimaryStatus

uint64 MaxMediaSize

datetime TimeOfLastMount

uint16[] Capabilities

uint16 CommunicationStatus

datetime TimeOfLastStateChange

uint64 TotalMountTime

uint64 PowerOnHours

string Status

string[] StatusDescriptions

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 LoadTime

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

boolean PowerManagementSupported

string UnitsDescription

uint32 UncompressedDataRate

uint16 OperatingStatus

datetime LastCleaned

uint16 LocationIndicator

string OtherInterconnectType

string[] OtherIdentifyingInfo

uint64 UnitsUsed

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint32 NumberOfMediaSupported

uint16[] AdditionalAvailability

uint16 DetailedStatus

uint16 StatusInfo

uint64 UnloadTime

string ErrorMethodology

uint64 MinBlockSize

uint16 Security

uint64 MaxUnitsBeforeCleaning

uint64 MountCount

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint64 DefaultBlockSize

string ErrorDescription

string CompressionMethod

boolean NeedsCleaning

string OtherEnabledState

uint64 MaxBlockSize

uint32 LastErrorCode

datetime InstallDate

uint16 Availability

string[] CapabilityDescriptions

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

LockMedia

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedFileSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedFileSystem

Class reference

Subclass of CIM_HostedFileSystem

A link between the System (such as a Computer or Application System) and the FileSystem that is a part of it.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_LocalFileSystem PartComponent

The FileSystem that is part of the System and hosted on it.

Local methods

None

Inherited properties

CIM_System GroupComponent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_IPNetworkConnection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_IPNetworkConnection

Class reference

Subclass of CIM_ServiceAccessPoint

“CIM_IPNetworkConnection class represents service access point for the IP interface configuration in the system, Eg. “IP stack configuration on a Local Area Connection”,”IP stack configuration on a ethernet interface”.

An IP network connection is an aggregation point of different types of settings that can be applied to an IP interface to represent protocol end points”.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string ID

This shall contain a free form string, that identifies the IP network connection.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_UnixFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_UnixFile

Class reference

Subclass of CIM_UnixFile

The UnixFile class holds properties that are valid for various subclasses of LogicalFile, in a Unix environment. This is defined as a separate and unique class since it is applicable to Unix files, directories, etc. It is associated via a FileIdentity relationship to these subclasses of LogicalFile. Unless this approach of creating and associating a separate class is used, it is necessary to subclass each of the inheritance hierarchies under LogicalFile, duplicating the properties in this class. The referenced _PC* and _POSIX* constants are defined in unistd.h. Some properties indicate whether the UNIX implementation support a feature such as asynchronous I/O or priority I/O. If supported, sysconf returns the value as defined in the appropriate header file such as unistd.h. If a feature is not supported, then pathconf returns a -1. In this case, the corresponding property should be returned without any value.

Key properties

CSName

FSCreationClassName

LFCreationClassName

FSName

LFName

CSCreationClassName

Local properties

string SELinuxExpectedContext

Expected SELinux context.

string SELinuxCurrentContext

Current SELinux context.

Local methods

None

Inherited properties

boolean SetUid

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

string UserID

uint16 CommunicationStatus

uint64 PosixAsyncIo

string Description

uint64 NameMax

string Name

string FSCreationClassName

string ElementName

uint64 PosixSyncIo

string LFCreationClassName

uint16 PrimaryStatus

string GroupID

uint64 PosixPrioIo

string FSName

boolean SetGid

string Status

datetime InstallDate

string LFName

uint64 PathMax

uint64 LinkCount

uint64 LinkMax

uint64 PosixNoTrunc

string FileInodeNumber

string Caption

uint64 Generation

datetime LastModifiedInode

string CSCreationClassName

uint64 PosixChownRestricted

uint16[] OperationalStatus

uint16 OperatingStatus

boolean SaveText

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SwitchesAmong.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SwitchesAmong

Class reference

Subclass of CIM_ForwardsAmong

A SwitchService switches frames between SwitchPorts. This association makes that relationship explicit.

Key properties

Dependent

Antecedent

Local properties

CIM_SwitchService Dependent

The switching service.

CIM_SwitchPort Antecedent

The switch port.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Chassis.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Chassis

Class reference

Subclass of CIM_PhysicalFrame

The Chassis class represents the PhysicalElements that enclose other Elements and provide definable functionality, such as a desktop, processing node, UPS, disk or tape storage, or a combination of these.

Key properties

Tag

CreationClassName

Local properties

uint16 InputCurrentType

Enumeration indicating whether the input voltage required by the Chassis is:

Unknown indicates the InputCurrentType is unknown

Other indicates that InputCurrentType is not one of the enumerated values. OtherInputCurrentType may have more information.

AC indicates that the InputCurrentType is Alternating Current (AC)

DC indicates that the InputCurrentType is Direct Current (DC)

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		AC

		3
		DC

uint16 MultipleSystemSupport

MultipleSystemSupport indicates whether or not this chassis supports multiple systems, for example server blades.

		ValueMap
		Values

		0
		Unknown

		1
		True

		2
		False

uint16 ChassisPackageType

ChassisPackageType indicates the physical form factor for the type of Chassis. This property may have a value when the PackageType property contains the value 3 “Chassis Frame”.

A value of 28 “Blade Enclosure” shall indicate the Chassis is designed to contain one or more PhysicalPackage(s) of PackageType 16 “Blade” or PackageType 17 “Blade Expansion”.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		SMBIOS Reserved

		3
		Desktop

		4
		Low Profile Desktop

		5
		Pizza Box

		6
		Mini Tower

		7
		Tower

		8
		Portable

		9
		LapTop

		10
		Notebook

		11
		Hand Held

		12
		Docking Station

		13
		All in One

		14
		Sub Notebook

		15
		Space-Saving

		16
		Lunch Box

		17
		Main System Chassis

		18
		Expansion Chassis

		19
		SubChassis

		20
		Bus Expansion Chassis

		21
		Peripheral Chassis

		22
		Storage Chassis

		23
		SMBIOS Reseved

		24
		Sealed-Case PC

		25
		SMBIOS Reserved

		26
		CompactPCI

		27
		AdvancedTCA

		28
		Blade Enclosure

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string ChassisTypeDescription

A string providing more information on the ChassisPackageType.

sint16 CurrentRequiredOrProduced

Current required by the Chassis at 120V. If power is provided by the Chassis (as in the case of a UPS), this property may indicate the amperage produced, as a negative number.

string[] TypeDescriptions

The use of this property is deprecated in lieu of a single value property, ChassisTypeDescription.

An array of free-form strings providing more information on the ChassisTypes array entries. Note, each entry of this array is related to the entry in ChassisTypes that is located at the same index.

uint16 NumberOfPowerCords

Integer indicating the number of power cords which must be connected to the Chassis, for all the componentry to operate.

string OtherInputCurrentType

A string describing the input current type when the value of the instance’s InputCurrentType property is (“Other”).

sint32 InputVoltage

A signed integer indicating the input voltage required by the Chassis. If the value of this property is unknown, it SHOULD have a value of 0. If the value of InputCurrentType is “Unknown”, this property SHOULD have a value of 0.

uint16 RackMountable

RackMountable indicates whether or not the chassis is Rack Mountable.

		ValueMap
		Values

		0
		Unknown

		1
		True

		2
		False

uint16[] ChassisTypes

The use of this property is deprecated in lieu of ChassisPackageType. A physical package should not have multiple form factors. Therefore, this property is being deprecated in lieu of a single value property.

An enumerated, integer-valued array indicating the type of Chassis.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Desktop

		4
		Low Profile Desktop

		5
		Pizza Box

		6
		Mini Tower

		7
		Tower

		8
		Portable

		9
		LapTop

		10
		Notebook

		11
		Hand Held

		12
		Docking Station

		13
		All in One

		14
		Sub Notebook

		15
		Space-Saving

		16
		Lunch Box

		17
		Main System Chassis

		18
		Expansion Chassis

		19
		SubChassis

		20
		Bus Expansion Chassis

		21
		Peripheral Chassis

		22
		Storage Chassis

		23
		Rack Mount Chassis

		24
		Sealed-Case PC

		25
		Multi-system Chassis

uint16 HeatGeneration

Amount of heat generated by the Chassis in BTU/hour.

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

real32 Width

boolean Removable

uint16 SecurityBreach

string PartNumber

uint16 RemovalConditions

boolean AudibleAlarm

string[] StatusDescriptions

string ElementName

boolean CanBeFRUed

string Description

boolean Replaceable

uint16 PrimaryStatus

boolean LockPresent

string Tag

string BreachDescription

string[] VendorCompatibilityStrings

string Manufacturer

string Status

string OtherIdentifyingInfo

string Name

datetime InstallDate

string[] ServiceDescriptions

boolean VisibleAlarm

boolean PoweredOn

uint16 DetailedStatus

uint16[] ServicePhilosophy

string Caption

boolean IsLocked

uint16 PackageType

string Model

uint16[] OperationalStatus

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Depth

real32 Height

string Version

uint16 OperatingStatus

string CableManagementStrategy

string CreationClassName

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_HostedAccessPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_HostedAccessPoint

Class reference

Subclass of CIM_HostedDependency

CIM_HostedAccessPoint is an association between a Service AccessPoint and the System on which it is provided. The cardinality of this association is one-to-many and is weak with respect to the System. Each System can host many ServiceAccessPoints. Heuristic: If the implementation of the ServiceAccessPoint is modeled, it must be implemented by a Device or SoftwareFeature that is part of the System that is hosting the ServiceAccessPoint.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The SAPs that are hosted on this System.

CIM_System Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LUKSStorageExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LUKSStorageExtent

Class reference

Subclass of LMI_EncryptionExtent

This extent represents clear-text block device of some LUKS format.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

string InstanceID

uint16[] ClientSettableUsage

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string DeviceBusType

string ElementName

uint64 Generation

datetime InstallDate

string OtherNameNamespace

uint16 NameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string[] Names

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DiskPartitionConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DiskPartitionConfigurationService

Class reference

Subclass of CIM_Service

DiskPartitionConfigurationService provides methods for clients

to configure DiskPartitions.

The instrumentation MUST NOT instantiate instances of partitions (such as hidden, maintenance, or zero-length partitions) that are not intended for use by applications (filesystems, databases, ...). There are two reasons for this constraint. There are different system-specific ways to indicate whether or not a partition is hidden, in some cases, the starting/ending block information is invalid, but ignored. If these properties are exposed, clients will not have a way to determine which blocks are in use. The other reason is that typically the number of partitions is fixed in the underlying data structures (or grows by large, fixed-size chunks). Common practice is to have a one (or a few) partition per disk with many hidden partitions. Instantiating a lot of hidden partitions clutters up the model without value add. The methods of this service and the properties of DiskPartitionConfigurationCapabilities provide a view of partitions actually in use without requiring clients to understand system-specific details.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 PartitioningSchemes

Describes the partitioning schemes supported by the platform. AIX and HP_UX do not allow partitions. Linux allows volumes with and without partitions, Solaris requires Partitions. No more than a single instance of this class MAY be instantiated on a system. If set to ‘No partitions allowed’ then the methods of this service are not available.

		ValueMap
		Values

		2
		No partitions allowed

		3
		Volumes may be partitioned or treated as whole

		4
		Volumes must be partitioned

Local methods

uint32 CreateOrModifyPartition (CIM_StorageExtent extent, uint64 StartingAddress, uint64 EndingAddress, string DeviceFileName, CIM_GenericDiskPartition Partition)

This method creates a new partition if the Partition parameter is null or modifies the partition specified. If the starting and ending address parameters are null, the resulting partition will occupy the entire underlying extent. If the starting address is non-null and the ending address is null, the resulting partition will extend to the end of the underlying extent.

If a partition is being created, a LogicalDisk instance is also created BasedOn the partition. The NumberOfBlocks and ComsumableBlocks properties MUST be the same value and MUST be common to the partition and LogicalDisk (since partition metadata is part of the partition table, not part of partitions). The StartingAddress of the LogicalDisk MUST be 0, the ConsumableBlocks of the LogicalDisk and partition MUST be the same, and the difference between the StartingAddress and EndingAddress of the partition and LogicalDisk must be the same - one less than ConsumableBlocks/NumberOfBlocks.

The underlying extent MUST be associated to a capabilities class describing the installed partition style (partition table); this association is established using SetPartitionStyle().

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		0x1000
		Overlap Not Supported

		0x1001
		No Available Partitions

		0x1002
		Specified partition not on specified extent

		0x1003
		Device File Name not valid

		0x1004
		LogicalDisk with different DeviceFileName exists

		
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		IN CIM_StorageExtent extent

		A reference to the underlying extent the partition is base on.

		IN uint64 StartingAddress

		The starting block number.

		IN uint64 EndingAddress

		The ending block number.

		IN string DeviceFileName

		The platform-specific special file name to be assigned to the LogicalDisk instance BasedOn the new DiskPartition instance.

		IN, OUT CIM_GenericDiskPartition Partition

		A reference an existing partition instance to modify or null to request a new partition.

uint32 SetPartitionStyle (CIM_StorageExtent Extent, CIM_DiskPartitionConfigurationCapabilities PartitionStyle)

This method installs a partition table on an extent of the specified partition style; creating an association between the extent and that capabilities instances referenced as method parameters. As a side effect, the consumable block size of the underlying extent is reduced by the block size of the metadata reserved by the partition table and associated metadata. This size is in the PartitionTableSize property of the associated DiskPartitionConfigurationCapabilities instance.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		0x1000
		Extent already has partition table

		0x1001
		Requested Extent too large

		0x1002
		Style not supported by Service

		
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		IN CIM_StorageExtent Extent

		A reference to the extent (volume or partition) where this style (partition table) will be installed.

		IN CIM_DiskPartitionConfigurationCapabilities PartitionStyle

		A reference to the DiskPartitionConfigurationCapabilities instance describing the desired partition style.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PhysicalMemoryRealizes.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PhysicalMemoryRealizes

Class reference

Subclass of CIM_Realizes

CIM_Realizes is the association that defines the mapping between LogicalDevices and the PhysicalElements that implement them.

Key properties

Dependent

Antecedent

Local properties

LMI_Memory Dependent

The LogicalDevice.

LMI_PhysicalMemory Antecedent

The physical component that implements the Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StatisticalData

Class reference

Subclass of CIM_ManagedElement

CIM_StatisticalData is a root class for any arbitrary collection of statistical data and/or metrics applicable to one or more ManagedElements. These statistics MUST represent the most recent observations and MUST NOT be provided if irrelevant or stale. Note that this class uses a simplified naming/identity algorithm as compared to CIM_StatisticalInformation.

Key properties

InstanceID

Local properties

string ElementName

The user friendly name for this instance of StatisticalData. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

datetime StatisticTime

The time the most recent measurement was taken, relative to the managed element where the statistic was collected.

datetime StartStatisticTime

The time, relative to managed element where the statistic was collected, when the first measurement was taken. If the statistic is reset, the StartStatisticTime is the time when the reset was performed.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

datetime SampleInterval

Some statistics are sampled at consistent time intervals. This property provides the sample interval so that client applications can determine the minimum time that new statistics should be pulled. If the statistics are not sampled at consistent time intervals, this property must be set to a zero time interval.

Local methods

uint32 ResetSelectedStats (string[] SelectedStatistics)

Method to reset one or more of the instance’s statistics. The method takes one parameter as input - an array of strings indicating which statistics to reset. If all the statistics in the instance should be reset, the first element of the array MUST be set to “All” or “ALL”. If one or more individual statistics should be reset, the corresponding property names are entered into the elements of the array.

The method returns 0 if successful, 1 if not supported, and any other value if an error occurred. A method is specified so that the StatisticalInformation’s provider/ instrumentation, which calculates the statistics, can reset its internal processing, counters, etc.

In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN string[] SelectedStatistics

		Array of strings indicating which statistics to reset.

Inherited properties

string Description

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SettingsDefineCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SettingsDefineCapabilities

Class reference

Subclass of CIM_Component

This association indicates that the non-null, non-key set of properties of the component SettingData instance specifies some capabilities of the associated Capabilities instance. The interpretation of the set of properties in the associated SettingData is governed by the properties: PropertyPolicy and ValueRole.

For a particular Capabilities instance, the complete set of Component SettingData instances, together with properties of the Capabilities instance itself, defines the overall range of supported capabilities.

PropertyPolicy determines whether the properties of the set are interpreted independently or as a whole (i.e. correlated.)

ValueRole further qualifies the members of the set.

This association eliminates the need to define and maintain corresponding property definitions and values in both a Capabilities subclass and a SettingData subclass.

Typically these setting instances will be published along with the associated Capabilities instance and will not be modifiable by the client.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

uint16 ValueRange

The ValueRange property indicates further semantics on the interpretation of all non-null, non-key properties of the Component SettingData.

“Point” indicates that this SettingData instance provides a single set of values.

“Minimums”, “Maximums”, and “Increments”, are only evaluated against non-null, non-key, non-enumerated, non-boolean, numeric properties of the SettingData instance. Each property of that set shall be mathematically comparable to other instances of that property.

“Minimums” indicates that this SettingData instance provides minimum values for evaluated properties. When used with PropertyPolicy = “Independent”, only one such setting per particular SettingData instance shall be specified for any Capabilities. Unless restricted by a Maximums on the same set of properties, all values that compare higher than the specified values are also considered to be supported by the associated capabilities instance.

“Maximums” indicates that this SettingData instance provides maximum values for evaluated properties. When used with PropertyPolicy = “Independent”, only one such setting per particular SettingData instance shall be specified for any Capabilities. Unless restricted by a Minimums on the same set of properties, all values that compare lower than the specified values are also considered to be supported by the associated capabilities instance.

“Increments” indicates that this SettingData instance provides increment values for evaluated properties. For the associated Capabilities, if an evaluated property currently has no corresponding minimums or maximums, then the property has no affect. Otherwise, for each evaluated property: its value x shall be between the minimum and maximum, inclusively, and shall have the property that both the result of maximum minus x and the result of x minus minimum are each an integer multiple of the increment. If either minimum or maximum is not specified and the other is, then the missing value shall be respectively assumed to be the lowest or highest supported value for the property’s data-type. Additionally, if both a minimum and a maximum are specified for an evaluated property, then the result of maximum minus minimum shall be an integer multiple of the increment.

		ValueMap
		Values

		0
		Point

		1
		Minimums

		2
		Maximums

		3
		Increments

		
		DMTF Reserved

CIM_Capabilities GroupComponent

The Capabilities instance.

CIM_SettingData PartComponent

A Setting used to define the associated Capabilities instance.

uint16 ValueRole

The ValueRole property indicates further semantics on the interpretation of the non-null, non-key properties of the Component SettingData.

“Default” indicates that property values of the component SettingData instance will be used as default values, when a new SettingData instance is created for elements whose capabilities are defined by the associated Capabilities instance.

Across instances of settingdata, for particular properties having the same semantic purpose, at most one such settingdata instance shall be specified as a default.

“Optimal” indicates that the SettingData instance represents optimal setting values for elements associated with the associated capabilities instance. Multiple component SettingData instances may be declared as optimal.”Mean” indicates that the non-null, non-key, non-enumerated, non-boolean, numeric properties of the associated SettingData instance represents an average point along some dimension. For different combinations of SettingData properties, multiple component SettingData instances may be declared as “Mean”. “Supported” indicates that the non-null, non-key properties of the Component SettingData instance represents a set of supported property values that are not otherwise qualified.

		ValueMap
		Values

		0
		Default

		1
		Optimal

		2
		Mean

		3
		Supported

		
		DMTF Reserved

uint16 PropertyPolicy

PropertyPolicy defines whether or not the non-null, non-key properties of the associated SettingData instance are treated independently or as a correlated set. For instance, an independent set of maximum properties might be defined, when there is no relationship between each property. On the other hand, several correlated sets of maximum properties might need to be defined when the maximum values of each are dependent on some of the others.

		ValueMap
		Values

		0
		Independent

		1
		Correlated

		
		DMTF Reserved

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountedFileSystemElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountedFileSystemElementSettingData

Class reference

Subclass of CIM_ElementSettingData

This association connects mounted file system (representing a mount) with options of the mount.

If IsNext property of this association is 1 (‘Is Next’), the associated setting represents options of persistent mount stored in /etc/fstab. This setting will be applied on next machine reboot.

If IsCurrent property of this association is 1 (‘Is Current’), the associated setting represents currently active options of the mounted filesystem.

Key properties

SettingData

ManagedElement

Local properties

LMI_MountedFileSystemSetting SettingData

A setting attached to the mounted filesystem. Each filesystem can have two setting instances attached, one for currently mounted filesystem and one for a persistent setting (typically an fstab entry).

LMI_MountedFileSystem ManagedElement

A mounted filesystem.

Local methods

None

Inherited properties

uint16 IsMinimum

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPAssignmentSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPAssignmentSettingData

Class reference

Subclass of CIM_IPAssignmentSettingData

This class and its sub-classes represents Internet Protocol (IP) related settings. When used as an accumulation of settings (AddressOrigin set to 11 “cumulative configuration”), this SettingData instance is the aggregation point identifying an IP configuration. Multiple IP configurations could exist for a target. Each configuration is represented with an instance of IPAssignmentSettingData. The details of the IP configuration are defined by instances of sub-classes of this class (i.e. StaticIPAssignmentSettingData, DHCPSettingData, DNSSettingData). These instances are associated with the IPAssignmentSettingData instance using the OrderedComponent or ConcreteComponent associations. For example, a static IP configuration would be represented by an instance of IPAssignmentSettingData and an instance of StaticIPAssignmentSettingData associated via an instance of ConcreteComponent. A static IP configuration including DNS would be modeled using an instance of IPAssignmentSettingData, DNSSettingData, and StaticIPAssignmentSettingData. The DNSSettingData and StaticIPAssignmentSettingData instance would be associated with the IPAssignmentSettingData using instances of ConcreteComponent.

Key properties

InstanceID

Local properties

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		4096
		IPv4

		4097
		IPv6

		32768
		Both IPv4 and IPv6

string Caption

Name of the configuration.

uint16 IPv6Type

Type of the setting for IPv6. Value of this property comes from LMI_CreateIPSetting method. Use ModifyInstance method to change the type of the configuration.

		ValueMap
		Values

		0
		Disabled

		3
		Static

		7
		DHCPv6

		9
		Stateless

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask for IPv4 or Prefix Length for IPv6, and Gateway shall be assigned to the IPProtocolEndpoint.

Value 9 - Stateless means that the values are autoconfigured using stateless IPv6 configuration. Value 11 - Cumulative Configuration means that the configuration contains multiple sub-configurations, that are in instances of CIM_IPAssignmentSettingData subclasses and are associated via LMI_OrderedIPAssignmentComponent to instance of this class

		ValueMap
		Values

		9
		Stateless

		11
		cumulative configuration

uint16 IPv4Type

Type of the setting for IPv4. Value of this property comes from LMI_CreateIPSetting method. Use ModifyInstance method to change the type of the configuration.

		ValueMap
		Values

		0
		Disabled

		3
		Static

		4
		DHCP

Local methods

uint32 LMI_AddStaticIPRoute (uint16 AddressType, string DestinationAddress, string DestinationMask, uint8 PrefixLength, LMI_IPRouteSettingData Route)

Add static IP route that will be part of the IPAssignmentSettingData.

Parameters

		IN uint16 AddressType

		An enumeration that describes the format of the address properties.

		ValueMap
		Values

		1
		IPv4

		2
		IPv6

		IN string DestinationAddress

		The address which serves as the destination to be reached.

		IN string DestinationMask

		The mask for the IPv4 destination address.

		IN uint8 PrefixLength

		The prefix length for the IPv6 destination address.

		OUT LMI_IPRouteSettingData Route

		Created static IP route

Inherited properties

string SoOrgID

string SoID

uint16 AddressPrefixOrigin

string OtherAddressSuffixOriginDescription

string OtherAddressPrefixOriginDescription

uint16 ChangeableType

string InstanceID

string[] ComponentSetting

string ElementName

string Description

string ConfigurationName

uint64 Generation

uint16 AddressSuffixOrigin

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EnabledLogicalElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EnabledLogicalElementCapabilities

Class reference

Subclass of CIM_Capabilities

EnabledLogicalElementCapabilities describes the capabilities supported for changing the state of the assciated EnabledLogicalElement.

Key properties

InstanceID

Local properties

uint16 MaxElementNameLen

Maximum supported ElementName length.

uint16[] RequestedStatesSupported

RequestedStatesSupported indicates the possible states that can be requested when using the method RequestStateChange on the EnabledLogicalElement.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

string ElementNameMask

This string expresses the restrictions on ElementName.The mask is expressed as a regular expression.See DMTF standard ABNF with the Management Profile Specification Usage Guide, appendix C for the regular expression syntax permitted.

Since the ElementNameMask can describe the maximum length of the ElementName,any length defined in the regexp is in addition to the restriction defined in MaxElementNameLen (causing the smaller value to be the maximum length)The ElementName value satisfies the restriction, if and only if it matches the regular expression

uint16[] StateAwareness

StateAwareness indicates support for modeling the state of the associated instance of CIM_EnabledLogicalElement.

If StateAwareness contains the value 2 “Implicit”, the RequestedState and TransitioningToState properties of the associated instance of CIM_EnabledLogicalElement shall provide information about state transitions that were initiated through a mechanism other than invocation of the RequestStateChange() method.

If StateAwareness contains the value 3 “RequestStateChange”, the RequestedState and TransitioningToState properties of the associated instance of CIM_EnabledLogicalElement shall provide information about state transitions initiated by invocation of the RequestStateChange() method.

A value of NULL or an array that contains zero elements shall indicate the RequestedState and TransitioningToState properties will not reflect any transitions, irrespective of how they are initiated.

		ValueMap
		Values

		2
		Implicit

		3
		RequestStateChange

		
		DMTF Reserved

boolean ElementNameEditSupported

Boolean indicating whether the ElementName can be modified.

Local methods

None

Inherited properties

string ElementName

string Caption

uint64 Generation

string InstanceID

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Card.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Card

Class reference

Subclass of CIM_PhysicalPackage

The Card class represents a type of physical container that can be plugged into another Card or HostingBoard, or is itself a HostingBoard/Motherboard in a Chassis. The CIM_Card class includes any package capable of carrying signals and providing a mounting point for PhysicalComponents, such as Chips, or other PhysicalPackages, such as other Cards.

Key properties

Tag

CreationClassName

Local properties

sint16[] OperatingVoltages

Operating voltages required by the Card.

boolean HostingBoard

Boolean indicating that this Card is a Motherboard or, more generically, a baseboard in a Chassis.

string RequirementsDescription

A free-form string describing the way(s) in which this Card is physically unique from other Cards. This property only has meaning when the corresponding boolean property, SpecialRequirements, is set to TRUE.

string SlotLayout

SlotLayout is a free-form string that describes the slot positioning, typical usage, restrictions, individual slot spacings or any other pertinent information for the slots on a Card.

boolean SpecialRequirements

Boolean indicating that this Card is physically unique from other Cards of the same type and therefore requires a special Slot. For example, a double-wide Card requires two Slots. Another example is where a certain Card may be used for the same general function as other Cards but requires a special Slot (e.g., extra long), whereas the other Cards can be placed in any available Slot. If set to TRUE, then the corresponding property, RequirementsDescription, should specify the nature of the uniqueness or purpose of the Card.

boolean RequiresDaughterBoard

Boolean indicating that at least one daughterboard or auxiliary Card is required in order to function properly.

Local methods

uint32 ConnectorPower (CIM_PhysicalConnector Connector, boolean PoweredOn)

This method manipulates the power to a PhysicalConnector on a Card. It is intended to be used by a Card (especially by a motherboard - i.e., HostingBoard=TRUE) to turn the power on and off for a specific PhysicalConnector located on it. For example, in a personal computer, a system slot does not know how to turn itself on and off. However, the motherboard hosting this slot may have that capability. This is important in order to support hot swapping of an adapter card in a system slot. The method should return 0 if successful, 1 if the request is not supported, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_PhysicalConnector Connector

		The connector to change the power setting for.

		IN boolean PoweredOn

		If TRUE, turn power on for the connector. If FALSE, turn power off.

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

real32 Width

string Version

boolean Removable

string PartNumber

uint16 RemovalConditions

string Status

string ElementName

boolean CanBeFRUed

string Description

boolean Replaceable

uint16 PrimaryStatus

uint16[] OperationalStatus

string[] VendorCompatibilityStrings

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

string Name

boolean PoweredOn

string Caption

real32 Depth

uint16 PackageType

string Model

real32 Weight

uint16 CommunicationStatus

uint64 Generation

real32 Height

string Tag

uint16 OperatingStatus

string CreationClassName

datetime InstallDate

string OtherPackageType

Inherited methods

IsCompatible

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Group.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Group

Class reference

Subclass of CIM_Group

The Group class is used to collect ManagedElements that are intended to be conformant with an LDAP GroupOfNames, as defined by IETF RFC 2256. For other purposes, ConcreteCollection, or other subclasses of Collection, may be more appropriate.

This class is defined so as to incorporate commonly-used LDAP attributes to permit implementations to easily derive this information from LDAP-accessible directories. This class’s properties are a subset of a related class, OtherGroupInformation, which defines all the group properties and in array form for directory compatibility.

Key properties

CreationClassName

Name

Local properties

None

Local methods

uint32 DeleteGroup ()

Delete the group. The group is not deleted if it is a primary group of a user.

		ValueMap
		Values

		0
		Operation completed successfully

		1
		Failed

		
		DMTF Reserved

		4096
		Non existing group

		4097
		Group is primary group of a user

Parameters

None

Inherited properties

string ElementName

string Name

string BusinessCategory

string InstanceID

string CommonName

uint64 Generation

string Caption

string CreationClassName

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PCIController.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PCIController

Class reference

Subclass of CIM_Controller

PCIController is a superclass for the PCIBridge and PCIDevice classes. These classes model adapters and bridges on a PCI bus. The properties in PCIController and its subclasses are defined in the various PCI Specifications that are published by the PCI SIG.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 InterruptPin

Defines the PCI interrupt request pin (INTA# to INTD#) to which a PCI functional device is connected.

		ValueMap
		Values

		0
		None

		1
		INTA#

		2
		INTB#

		3
		INTC#

		4
		INTD#

		5
		Unknown

uint16[] Capabilities

An array of integers that indicates controller capabilities. Information such as “Supports 66MHz” (value=2) is specified in this property. The data in the Capabilities array is gathered from the PCI Status Register and the PCI Capabilities List as defined in the PCI Specification.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Supports 66MHz

		3
		Supports User Definable Features

		4
		Supports Fast Back-to-Back Transactions

		5
		PCI-X Capable

		6
		PCI Power Management Supported

		7
		Message Signaled Interrupts Supported

		8
		Parity Error Recovery Capable

		9
		AGP Supported

		10
		Vital Product Data Supported

		11
		Provides Slot Identification

		12
		Hot Swap Supported

		13
		Supports PCIe

		14
		Supports PCIe Gen 2

		15
		Supports PCIe Gen 3

		16..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

boolean SelfTestEnabled

Reports if the PCI device can perform the self-test function. Returns bit 7 of the BIST register as a Boolean.

uint8 LatencyTimer

Defines the minimum amount of time, in PCI clock cycles, that the bus master can retain ownership of the bus.

uint16 DeviceSelectTiming

The slowest device-select timing for a target device.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Fast

		3
		Medium

		4
		Slow

		5
		Reserved

uint16 CommandRegister

Current contents of the register that provides basic control over the ability of the device to respond to or perform PCI accesses.

string[] CapabilityDescriptions

An array of free-form strings that provides more detailed explanations for any of the PCIController features that are indicated in the Capabilities array. Note, each entry of this array is related to the entry in the Capabilities array that is located at the same index.

uint32 ExpansionROMBaseAddress

Doubleword Expansion ROM-base memory address.

uint8 CacheLineSize

Specifies the system cache line size in doubleword increments (for example, a 486-based system would store the value 04h, indicating a cache line size of four doublewords.

uint8 ClassCode

Register of 8 bits that identifies the basic function of the PCI device. This property is only the upper byte (offset 0Bh) of the 3-byte ClassCode field. Note that the ValueMap array of the property specifies the decimal representation of this information.

		ValueMap
		Values

		0
		Pre 2.0

		1
		Mass Storage

		2
		Network

		3
		Display

		4
		Multimedia

		5
		Memory

		6
		Bridge

		7
		Simple Communications

		8
		Base Peripheral

		9
		Input

		10
		Docking Station

		11
		Processor

		12
		Serial Bus

		13
		Wireless

		14
		Intelligent I/O

		15
		Satellite Communication

		16
		Encryption/Decryption

		17
		Data Acquisition and Signal Processing

		18..254
		PCI Reserved

		255
		Other

Local methods

uint8 BISTExecution ()

Method to invoke PCI device self-test. This method sets bit 6 of the BIST register. The return result is the lower 4 bits of the BIST register where 0 indicates success and non-zero is a device-dependent failure. Support for this method is optional in the PCI Specification.

Parameters

None

Inherited properties

uint16 RequestedState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 HealthState

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

datetime TimeOfLastReset

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint32 MaxNumberControlled

uint16[] AvailableRequestedStates

uint16 ProtocolSupported

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string ProtocolDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

string DeviceID

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalComponent

Class reference

Subclass of CIM_PhysicalElement

The PhysicalComponent class represents any low-level or basic Component within a Package. A Component object either can not or does not need to be decomposed into its constituent parts. For example, an ASIC (or Chip) can not be further decomposed. A tape for data storage (PhysicalMedia) does not need to be decomposed. Any PhysicalElement that is not a Link, Connector, or Package is a descendent (or member) of this class. For example, the UART chipset on an internal modem Card would be a subclass (if additional properties or associations are defined) or an instance of PhysicalComponent.

Key properties

Tag

CreationClassName

Local properties

boolean HotSwappable

Deprecated!
The use of this property is being deprecated. Instead RemovalConditions should be used. The RemovalConditions property addresses whether a PhysicalComponent is removable with or without power being applied.

A PhysicalComponent is HotSwappable if it is possible to replace the Element with a physically different but equivalent one while the containing Package has power applied to it (ie, is ‘on’). For example, a fan Component may be designed to be HotSwappable. All HotSwappable Components are inherently Removable and Replaceable.

boolean Removable

The use of this property is being deprecated. Instead RemovalConditions should be used. The RemovalConditions property addresses whether a PhysicalComponent is removable with or without power being applied.

A PhysicalComponent is Removable if it is designed to be taken in and out of the physical container in which it is normally found, without impairing the function of the overall packaging. A Component can still be Removable if power must be ‘off’ in order to perform the removal. If power can be ‘on’ and the Component removed, then the Element is both Removable and HotSwappable. For example, an upgradeable Processor chip is Removable.

boolean Replaceable

Deprecated!
The use of this property is being deprecated because it is redundant with the FRU class and its associations. A PhysicalComponent is Replaceable if it is possible to replace (FRU or upgrade) the Element with a physically different one. For example, some ComputerSystems allow the main Processor chip to be upgraded to one of a higher clock rating. In this case, the Processor is said to be Replaceable. All Removable Components are inherently Replaceable.

uint16 RemovalConditions

The RemovalCapabilites property is used to describe the conditions under which a PhysicalPackage can be removed. Since all PhysicalPackages are not removable, this property defaults to 2, ‘Not Applicable’.

		ValueMap
		Values

		0
		Unknown

		2
		Not Applicable

		3
		Removable when off

		4
		Removable when on or off

Local methods

None

Inherited properties

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

uint16 CommunicationStatus

string Version

string PartNumber

string Status

string ElementName

boolean CanBeFRUed

string Description

uint16[] OperationalStatus

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string Caption

string Model

uint16 PrimaryStatus

uint64 Generation

string Tag

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Job.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Job

Class reference

Subclass of CIM_LogicalElement

A Job is a LogicalElement that represents an executing unit of work, such as a script or a print job. A Job is distinct from a Process in that a Job can be scheduled or queued, and its execution is not limited to a single system.

Key properties

Local properties

uint32 Priority

Indicates the urgency or importance of execution of the Job. The lower the number, the higher the priority. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the setting information that would influence the results of a job.

uint32 JobRunTimes

The number of times that the Job should be run. A value of 1 indicates that the Job is not recurring, while any non-zero value indicates a limit to the number of times that the Job will recur. Zero indicates that there is no limit to the number of times that the Job can be processed, but that it is terminated either after the UntilTime or by manual intervention. By default, a Job is processed once.

string OtherRecoveryAction

A string describing the recovery action when the RecoveryAction property of the instance is 1 (“Other”).

datetime UntilTime

The time after which the Job is invalid or should be stopped. This time can be represented by an actual date and time, or by an interval relative to the time that this property is requested. A value of all nines indicates that the Job can run indefinitely.

sint8 RunDay

The day in the month on which the Job should be processed. There are two different interpretations for this property, depending on the value of DayOfWeek. In one case, RunDay defines the day-in-month on which the Job is processed. This interpretation is used when the DayOfWeek is 0. A positive or negative integer indicates whether the RunDay should be calculated from the beginning or end of the month. For example, 5 indicates the fifth day in the RunMonth and -1 indicates the last day in the RunMonth.

When RunDayOfWeek is not 0, RunDay is the day-in-month on which the Job is processed, defined in conjunction with RunDayOfWeek. For example, if RunDay is 15 and RunDayOfWeek is Saturday, then the Job is processed on the first Saturday on or after the 15th day in the RunMonth (for example, the third Saturday in the month). If RunDay is 20 and RunDayOfWeek is -Saturday, then this indicates the first Saturday on or before the 20th day in the RunMonth. If RunDay is -1 and RunDayOfWeek is -Sunday, then this indicates the last Sunday in the RunMonth.

uint8 RunMonth

The month during which the Job should be processed. Specify 0 for January, 1 for February, and so on.

		ValueMap
		Values

		0
		January

		1
		February

		2
		March

		3
		April

		4
		May

		5
		June

		6
		July

		7
		August

		8
		September

		9
		October

		10
		November

		11
		December

uint16 ErrorCode

A vendor-specific error code. The value must be set to zero if the Job completed without error. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run error can be stored in this single-valued property.

uint16 RecoveryAction

Describes the recovery action to be taken for an unsuccessfully run Job. The possible values are:

0 = “Unknown”, meaning it is unknown as to what recovery action to take

1 = “Other”, indicating that the recovery action will be specified in the OtherRecoveryAction property

2 = “Do Not Continue”, meaning stop the execution of the job and appropriately update its status

3 = “Continue With Next Job”, meaning continue with the next job in the queue

4 = “Re-run Job”, indicating that the job should be re-run

5 = “Run Recovery Job”, meaning run the Job associated using the RecoveryJob relationship. Note that the recovery Job must already be in the queue from which it will run.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Do Not Continue

		3
		Continue With Next Job

		4
		Re-run Job

		5
		Run Recovery Job

uint16 PercentComplete

The percentage of the job that has completed at the time that this value is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run data can be stored in this single-valued property.

Note that the value 101 is undefined and will be not be allowed in the next major revision of the specification.

uint16 LocalOrUtcTime

This property indicates whether the times represented in the RunStartInterval and UntilTime properties represent local times or UTC times. Time values are synchronized worldwide by using the enumeration value 2, “UTC Time”.

		ValueMap
		Values

		1
		Local Time

		2
		UTC Time

sint8 RunDayOfWeek

A positive or negative integer used in conjunction with RunDay to indicate the day of the week on which the Job is processed. RunDayOfWeek is set to 0 to indicate an exact day of the month, such as March 1. A positive integer (representing Sunday, Monday, ..., Saturday) means that the day of week is found on or after the specified RunDay. A negative integer (representing -Sunday, -Monday, ..., -Saturday) means that the day of week is found on or BEFORE the RunDay.

		ValueMap
		Values

		-7
		-Saturday

		-6
		-Friday

		-5
		-Thursday

		-4
		-Wednesday

		-3
		-Tuesday

		-2
		-Monday

		-1
		-Sunday

		0
		ExactDayOfMonth

		1
		Sunday

		2
		Monday

		3
		Tuesday

		4
		Wednesday

		5
		Thursday

		6
		Friday

		7
		Saturday

string JobStatus

A free-form string that represents the status of the job. The primary status is reflected in the inherited OperationalStatus property. JobStatus provides additional, implementation-specific details.

datetime ElapsedTime

The time interval that the Job has been executing or the total execution time if the Job is complete. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run time can be stored in this single-valued property.

boolean DeleteOnCompletion

Indicates whether or not the job should be automatically deleted upon completion. Note that the ‘completion’ of a recurring job is defined by its JobRunTimes or UntilTime properties, or when the Job is terminated by manual intervention. If this property is set to false and the job completes, then the extrinsic method DeleteInstance must be used to delete the job instead of updating this property.

datetime TimeSubmitted

The time that the Job was submitted to execute. A value of all zeroes indicates that the owning element is not capable of reporting a date and time. Therefore, the ScheduledStartTime and StartTime are reported as intervals relative to the time their values are requested.

string ErrorDescription

A free-form string that contains the vendor error description. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run error can be stored in this single-valued property.

datetime RunStartInterval

The time interval after midnight when the Job should be processed. For example,

00000000020000.000000:000

indicates that the Job should be run on or after two o’clock, local time or UTC time (distinguished using the LocalOrUtcTime property.

datetime ScheduledStartTime

The time that the current Job is scheduled to start. This time can be represented by the actual date and time, or an interval relative to the time that this property is requested. A value of all zeroes indicates that the Job is already executing. The property is deprecated in lieu of the more expressive scheduling properties, RunMonth, RunDay, RunDayOfWeek, and RunStartInterval.

string Notify

The User who is to be notified upon the Job completion or failure.

datetime StartTime

The time that the Job was actually started. This time can be represented by an actual date and time, or by an interval relative to the time that this property is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run time can be stored in this single-valued property.

string Owner

The User that submitted the Job, or the Service or method name that caused the job to be created.

Local methods

uint32 KillJob (boolean DeleteOnKill)

Deprecated!
KillJob is being deprecated because there is no distinction made between an orderly shutdown and an immediate kill. CIM_ConcreteJob.RequestStateChange() provides ‘Terminate’ and ‘Kill’ options to allow this distinction.

A method to kill this job and any underlying processes, and to remove any ‘dangling’ associations.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		6
		Access Denied

		7
		Not Found

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		IN boolean DeleteOnKill

		Indicates whether or not the Job should be automatically deleted upon termination. This parameter takes precedence over the property, DeleteOnCompletion.

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string Description

uint16 DetailedStatus

string Name

datetime InstallDate

string ElementName

string Caption

uint16 PrimaryStatus

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

LMI_MountedFileSystemCapabilities Capabilities

Supported capabilities for mounting support.

LMI_MountConfigurationService ManagedElement

The central instance of mounting management.

Local methods

None

Inherited properties

uint16[] Characteristics

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedJobMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedJobMethodResult

Class reference

Subclass of CIM_AssociatedJobMethodResult

AssociatedJobMethodResult represents an association between a ConcreteJob and the MethodResult expressing the parameters for the Job when the job was created by side-effect of the execution of an extrinsic method.

Key properties

Job

JobParameters

Local properties

None

Local methods

None

Inherited properties

CIM_ConcreteJob Job

CIM_MethodResult JobParameters

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemberOfStorageStatisticsCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemberOfStorageStatisticsCollection

Class reference

Subclass of CIM_MemberOfCollection

CIM_MemberOfCollection is an aggregation used to establish membership of ManagedElements in a Collection.

Key properties

Member

Collection

Member

Collection

Local properties

LMI_BlockStorageStatisticalData Member

The aggregated member of the Collection.

LMI_StorageStatisticsCollection Collection

The Collection that aggregates members.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssignedIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssignedIdentity

Class reference

This relationship associates an Identity to a specific ManagedElement, whose trust and account information is represented.

Key properties

IdentityInfo

ManagedElement

Local properties

CIM_Identity IdentityInfo

An Identity of the referenced ManagedElement.

CIM_ManagedElement ManagedElement

The ManagedElement assigned to or representing a specific Identity.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstDeletion.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstDeletion

Class reference

Subclass of CIM_InstDeletion

CIM_InstDeletion notifies when an existing instance is deleted.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DNSProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DNSProtocolEndpoint

Class reference

Subclass of CIM_ProtocolEndpoint

A class derived from CIM_ProtocolEndpoint which represents the DNS client and DNS configuration for a single IP endpoint. The DNS server addresses can be determined by querying the AccessInfo property of associated CIM_RemoteServiceAccessPoint instances which have an AccessContext of “DNS Server”. The order in which the DNS servers will be queried can be determined by the relative values of the OrderOfAccess property on each CIM_RemoteAccessAvailableToElement association which associated the CIM_RemoteServiceAccessPoint with the CIM_DNSProtocolEndpoint.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

boolean AppendParentSuffixes

Whether or not the client appends the parent domain suffix to target names prior to attempting to resolve.

string DomainName

The domain to use for this client connection.

string Hostname

The Hostname actually in use for this client connection.

boolean RegisterThisConnectionsAddress

Whether or not the client attempted to register this connection’s address in DNS.

uint16[] DHCPOptionsToUse

One or more DHCP options that the DNS client is utilizing if they were returned during a DHCP bind operation.

		ValueMap
		Values

		8
		Domain Name Server

		14
		Host Name

		17
		Domain Name

		18..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

boolean AppendPrimarySuffixes

Whether or not the client appends the primary domain suffix to target names prior to attempting to resolve.

string[] DNSSuffixesToAppend

The DNS suffixes to append when attempting to resolve a hostname.

boolean UseSuffixWhenRegistering

Whether or not the suffix is appended before registering the client name with the DNS server.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PCIDeviceSystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PCIDeviceSystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_PCIDevice PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountManagementServiceSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountManagementServiceSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

LMI_AccountSettingData SettingData

The default enforced setting for new Accounts

LMI_AccountManagementService ManagedElement

The Central Instance of Account management

Local methods

None

Inherited properties

uint16 IsMinimum

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedProcessorCacheMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedProcessorCacheMemory

Class reference

Subclass of CIM_AssociatedCacheMemory

Indicates that the Memory provides Cache to the Dependent Logical Element.

Key properties

Dependent

Antecedent

Local properties

LMI_ProcessorCacheMemory Antecedent

Memory installed on or associated with a Device.

LMI_Processor Dependent

The LogicalElement.

Local methods

None

Inherited properties

uint16 WritePolicy

uint32 FlushTimer

uint16 CacheType

uint32 LineSize

string OtherLevelDescription

string OtherReplacementPolicyDescription

uint16 ReadPolicy

string OtherWritePolicyDescription

uint16 ReplacementPolicy

uint16 Associativity

string OtherReadPolicyDescription

uint16 Level

string OtherAssociativityDescription

string OtherCacheTypeDescription

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AccountOnSystem.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AccountOnSystem

Class reference

Subclass of CIM_SystemComponent

A system (e.g., ApplicationSystem, ComputerSystem, AdminDomain) aggregates Accounts and scopes the uniqueness of the Account names (i.e., userids).

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_System GroupComponent

The aggregating system also provides name scoping for the Account.

CIM_Account PartComponent

The subordinate Account.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LUKSBasedOn.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LUKSBasedOn

Class reference

Subclass of CIM_BasedOn

BasedOn is an association describing how StorageExtents can be assembled from lower level Extents. For example, ProtectedSpaceExtents are parts of PhysicalExtents, while VolumeSets are assembled from one or more Physical or ProtectedSpaceExtents. As another example, CacheMemory can be defined independently and realized in a PhysicalElement or can be ‘based on’ Volatile or NonVolatileStorageExtents.

Key properties

Dependent

Antecedent

Local properties

None

Local methods

None

Inherited properties

CIM_StorageExtent Dependent

CIM_StorageExtent Antecedent

uint64 StartingAddress

uint64 EndingAddress

uint16 OrderIndex

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkSAPSAPDependency.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkSAPSAPDependency

Class reference

Subclass of CIM_SAPSAPDependency

CIM_SAPSAPDependency is an association between one ServiceAccessPoint and another ServiceAccessPoint that indicates that the latter is required for the former to utilize or connect with its Service. For example, to print to a network printer, local Print Access Points must utilize underlying network-related SAPs, or ProtocolEndpoints, to send the print request.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The ServiceAccessPoint that is dependent on an underlying SAP.

CIM_ServiceAccessPoint Antecedent

The required ServiceAccessPoint.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AccountManagementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AccountManagementCapabilities

Class reference

Subclass of CIM_EnabledLogicalElementCapabilities

AccountManagementCapabilities describes the capabilities supported for managing Accounts associated with an instance of AccountManagementService. AccountManagementCapabilities is associated with an instance of AccountManagementService through the ElementCapabilities association.

Key properties

InstanceID

Local properties

uint32[] SupportedUserPasswordEncodings

This property enumerates encoding algorithms that a client may use to encode the UserPassword property when creating or modifying an instance of CIM_Account. See CIM_Account property UserPasswordEncoding for a description of each enum value.

		ValueMap
		Values

		2
		ascii

		3
		kbd

		4
		pin

		5
		UTF-8

		6
		UTF-16

		7
		UTF-16LE

		8
		UTF-16BE

		9
		UCS-2

		10
		UCS-2LE

		11
		UCS-2BE

		
		DMTF Reserved

		65536..4294967295
		Vendor Reserved

uint16 MaximumAccountsSupported

MaximumAccountsSupported shall indicate the maximum number of accounts that may be managed by the associated instance of CIM_AccountManagementService. Note that if multiple instances of CIM_AccountManagementService manage the accounts of a system, the total maximum number of accounts supported on the system is the sum of MaximumAccountsSupported for all of the instances of CIM_AccountManagementService. A value of zero shall indicate that the maximum number of accounts is unknown or that a maximum number of accounts is not enforced.

uint16[] OperationsSupported

OperationsSupported describes the type of operations that are supported for an Account associated with the AccountManagementService.

“Create” indicates the AccountManagementService may be used to create new accounts.

“Modify” indicates that the associated Accounts may be modified.

“Delete” indicates that associated Accounts may be deleted.

		ValueMap
		Values

		2
		Create

		3
		Modify

		4
		Delete

		5
		CreateUserContact

		6
		CreateUserContactByIdentity

		7
		ModifyUserContact

		8
		DeleteUserContact

		9
		GetAccount

		10
		GetUserContact

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

uint16[] SupportedUserPasswordEncryptionAlgorithms

This property enumerates encryption algorithms that a client may use to encrypt a value in the UserPassword property when creating or modifying an instance of CIM_Account. This capability is aimed at ensuring some measure of confidentiality when the password is transferred over an unencrypted transport protocol. An implementation may elect to accept only encrypted passwords, without regard to whether the transport protocol is encrypted. Similarly, a a client may elect to always provide encrypted passwords to implementations that accept either unencrypted or encrypted passwords, even if the underlying transport protocol is encrypted.

See CIM_Account property UserPasswordEncryptionAlgorithm for a description of each enum value.

		ValueMap
		Values

		0
		None

		1
		Other

		2
		HTTP Digest MD5(A1)

		
		DMTF Reserved

string UserPasswordEncryptionSalt

A value unique to the specific WBEM server that may be used in the selected UserPassword encryption algorithm to ensure a value that is unique among all WBEM servers even if a user uses the same password on multiple WBEM servers.

string[] OtherSupportedUserPasswordEncryptionAlgorithms

Additional implementation-specific algorithms that a client may use to encrypt a value in the UserPassword property when creating or modifying an instance of CIM_Account. If this property is non-NULL, a client may select an algorithm in it by setting CIM_Account.UserPasswordEncryptionAlgorithm to 1 (“Other”) and setting CIM_Account.OtherUserPasswordEncryptionAlgorithm to the value of the selected algorithm string.

Local methods

None

Inherited properties

string ElementName

uint16 MaxElementNameLen

string Caption

uint16[] RequestedStatesSupported

string ElementNameMask

uint64 Generation

string InstanceID

uint16[] StateAwareness

boolean ElementNameEditSupported

string Description

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedJobMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedJobMethodResult

Class reference

AssociatedJobMethodResult represents an association between a ConcreteJob and the MethodResult expressing the parameters for the Job when the job was created by side-effect of the execution of an extrinsic method.

Key properties

Job

JobParameters

Local properties

CIM_ConcreteJob Job

The associated ConcreteJob.

CIM_MethodResult JobParameters

The associated MethodResult.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxBoolean.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxBoolean

Class reference

Subclass of LMI_SELinuxElement

Class representing an SELinux policy boolean.

Key properties

InstanceID

Local properties

boolean State

Current state.

boolean DefaultState

State on next system boot.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_UnixDirectory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_UnixDirectory

Class reference

Subclass of CIM_UnixDirectory

UnixDirectory is a type of File that logically groups UnixFiles ‘contained’ in it.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

uint64 FileSizeBits

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemConfigurationCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemConfigurationCapabilities

Class reference

Subclass of CIM_FileSystemConfigurationCapabilities

FileSystemConfigurationCapabilities specifies the capability of a FileSystemConfigurationService to support the specified methods.

Key properties

InstanceID

Local properties

uint16[] SupportedActualFileSystemTypes

An array of enumerated values that indicates the set of actual file system implementation types that this FileSystemConfigurationService can support in its Capabilities. For each file system type listed here, there MUST be at least one FileSystemCapabilities element.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		32769
		EXT4

		32770
		BTRFS

		32771
		JFS

		32772
		TMPFS

		32773
		VFAT

uint16[] SupportedAsynchronousMethods

An array of methods of this Service that are supported as asynchronous methods.

		ValueMap
		Values

		2
		CreateFileSystem

		3
		DeleteFileSystem

		4
		ModifyFileSystem

		5
		CreateGoal

		6
		GetRequiredStorageSize

		
		DMTF Reserved

		32769
		LMI_CreateFileSystem

uint16 InitialAvailability

An enumerated value that indicates the state of availability in which the Service can create the file system. The choices include ‘Mounted’ and ‘Unmounted’. If ‘Mounted’, the mount-point will be at a vendor-specific default LogicalFile, and a MountedElement association will be surfaced.

		ValueMap
		Values

		0
		Unknown

		2
		Mounted

		3
		Unmounted

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] SupportedSynchronousMethods

An array of methods of this Service that are supported as synchronous methods.

		ValueMap
		Values

		2
		CreateFileSystem

		3
		DeleteFileSystem

		4
		ModifyFileSystem

		5
		CreateGoal

		6
		GetRequiredStorageSize

		
		DMTF Reserved

		32769
		LMI_CreateFileSystem

Local methods

None

Inherited properties

string Description

string InstanceID

string ElementName

string Caption

uint64 Generation

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_UnixDeviceFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_UnixDeviceFile

Class reference

Subclass of CIM_DeviceFile

DeviceFile is a special type of LogicalFile that represents a Device. This class is a specialization of DeviceFile for a Unix environment.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

uint16 DeviceFileType

The type of device file.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Block

		3
		Character

string OtherTypeDescription

Additional information when the DeviceFileType property is set to “Other”.

string DeviceDescription

Additional information provided by the driver. This property may be null if no information is available, or a general description of the device when available, e.g. “Non-rewind tape streamer”.

string DeviceMinor

The Device’s Minor Id.

string DeviceMajor

The Device’s Major Id.

string DeviceId

The device Identifier: this is the st_rdev field in the stat structure.

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

uint64 FileSize

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedStorageStatisticsCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedStorageStatisticsCollection

Class reference

Subclass of CIM_HostedCollection

HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that has meaning only in the context of a System, a Collection whose elements are restricted by the definition of the System, or both of these types of Collections.

Key properties

Dependent

Antecedent

Local properties

LMI_StorageStatisticsCollection Dependent

The collection defined in the context of a system.

CIM_System Antecedent

The scoping system.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVStorageExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVStorageExtent

Class reference

Subclass of LMI_StorageExtent

This class represents Logical Volume devices on the managed system.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string ElementName

Name of the Logical Volume.

string UUID

UUID of the Logical Volume.

boolean ThinlyProvisioned

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

string InstanceID

uint64 ExtentStripeLength

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string DeviceBusType

uint64 Generation

datetime InstallDate

string OtherNameNamespace

uint16 NameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint16[] ClientSettableUsage

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16 TransitioningToState

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string[] Names

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGElementSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGElementSettingData

Class reference

Subclass of CIM_ElementSettingData

ElementSettingData represents the association between ManagedElements and applicable setting data. This association also describes whether this is a default or current setting. Each non-null, non-key property of the associated SettingData instance defines a setting value for the associated ManagedElement. The properties, IsDefault, IsCurrent, IsNext, IsMinimum, IsMaximum, and IsPending further qualify those setting values.

Note: the referenced SettingData instance does not reflect the current desired state of the referenced ManagedElement unless IsCurrent = “Is Current”.

When IsMinimum and/or IsMaximum properties have the value “Is Minimum” or “Is Maximum” respectively, the referenced SettingData instance reflects desired minimum or maximum values respectively. When IsMinimum and IsMaximum have any other value, the referenced SettingData reflects actual desired values.

Key properties

SettingData

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16 IsMinimum

CIM_SettingData SettingData

uint16 IsPending

uint16 IsNext

uint16 IsCurrent

CIM_ManagedElement ManagedElement

uint16 IsMaximum

uint16 IsDefault

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SwitchService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SwitchService

Class reference

Subclass of CIM_ForwardingService

Generic switch (bridging) service class. Additional switching functions are incorporated as subordinate services related to this class via ServiceComponent associations.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint8 BridgeType

Indicates what type of switching service can be performed.

		ValueMap
		Values

		1
		Unknown

		2
		Transparent-only

		3
		SourceRoute-only

		4
		SRT

uint16 BridgeAddressType

BridgeAddressType defines the type of addressing scheme used for this Bridge and its BridgeAddress property.

		ValueMap
		Values

		1
		Other

		2
		IPv4

		3
		IPv6

		4
		MAC

		5
		MAC + Spanning Tree Priority

uint16 NumPorts

The number of switch ports controlled by this switching service.

string BridgeAddress

Address used by this SwitchService when it must be uniquely identified. For an ethernet bridge, the MAC Address serves as the BridgeAddress. When concatenated with a SpanningTreeService Priority, a unique bridge identifier results. The MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469. In other scenarios, like Ipv6, the address is formatted as “ffff:ffff:ffff:ffff”.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string[] StartupConditions

string Caption

string StartMode

uint16[] AvailableRequestedStates

string[] StartupParameters

uint16 ProtocolType

string OtherProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string ServiceURL

string[] Keywords

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_System.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_System

Class reference

Subclass of CIM_EnabledLogicalElement

CIM_System represents an entity made up of component parts (defined by the SystemComponent relationship), that operates as a ‘functional whole’. Systems are top-level objects in the CIM hierarchy, requiring no scoping or weak relationships in order to exist and have context. It should be reasonable to uniquely name and manage a System at an enterprise level. For example, a ComputerSystem is a kind of System that can be uniquely named and independently managed in an enterprise. However, these qualities are not true for the power supply (or the power supply sub-‘system’) within the computer.

Although a System can be viewed as a Collection, this view is not the correct model. A Collection is simply a ‘bag’ that ‘holds’ its members. A System is a higher-level abstraction, built out of its individual components. It is more than the sum of its parts. Note that System is a subclass of EnabledLogicalElement which allows the entire abstraction to be functionally enabled or disabled at a higher level than enabling or disabling its component parts.

Key properties

Name

CreationClassName

Local properties

string NameFormat

The System object and its derivatives are top-level objects of CIM. They provide the scope for numerous components. Having unique System keys is required. A heuristic can be defined in individual System subclasses to attempt to always generate the same System Name Key. The NameFormat property identifies how the System name was generated, using the heuristic of the subclass.

string[] IdentifyingDescriptions

An array of free-form strings providing explanations and details behind the entries in the OtherIdentifying Info array. Note, each entry of this array is related to the entry in OtherIdentifyingInfo that is located at the same index.

string[] OtherIdentifyingInfo

OtherIdentifyingInfo captures additional data, beyond System Name information, that could be used to identify a ComputerSystem. One example would be to hold the Fibre Channel World-Wide Name (WWN) of a node. Note that if only the Fibre Channel name is available and is unique (able to be used as the System key), then this property would be NULL and the WWN would become the System key, its data placed in the Name property.

string Name

The inherited Name serves as the key of a System instance in an enterprise environment.

string[] Roles

An array (bag) of strings that specifies the administrator -defined roles this System plays in the managed environment. Examples might be ‘Building 8 print server’ or ‘Boise user directories’. A single system may perform multiple roles.

Note that the instrumentation view of the ‘roles’ of a System is defined by instantiating a specific subclass of System, or by properties in a subclass, or both. For example, the purpose of a ComputerSystem is defined using the Dedicated and OtherDedicatedDescription properties.

string PrimaryOwnerContact

A string that provides information on how the primary system owner can be reached (for example, phone number, e-mail address, and so on).

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string PrimaryOwnerName

The name of the primary system owner. The system owner is the primary user of the system.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

datetime InstallDate

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

string Description

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkRemoteServiceAccessPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkRemoteServiceAccessPoint

Class reference

Subclass of CIM_RemoteServiceAccessPoint

RemoteServiceAccessPoint describes access or addressing information or a combination of this information for a remote connection that is known to a local network element. This information is scoped or contained by the local network element, because this is the context in which the connection is remote.

The relevance of the remote access point and information on its use are described by subclassing RemoteServiceAccessPoint or by associating to it.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string AccessInfo

Access or addressing information or a combination of this information for a remote connection. This information can be a host name, network address, or similar information.

uint16 AccessContext

The AccessContext property identifies the role this RemoteServiceAccessPoint is playing in the hosting system.

		ValueMap
		Values

		2
		Default Gateway

		3
		DNS Server

uint16 InfoFormat

An enumerated integer that describes the format and interpretation of the AccessInfo property.

		ValueMap
		Values

		3
		IPv4 Address

		4
		IPv6 Address

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string Status

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string ElementName

string Caption

string OtherInfoFormatDescription

uint16[] AvailableRequestedStates

uint64 Generation

string OtherAccessContext

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Log.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Log

Class reference

Subclass of CIM_EnabledLogicalElement

Log represents any type of event, error or informational register or chronicle. The object describes the existence of the log and its characteristics. Log does not dictate the form of the data represented or how records/messages are stored in the log and/or accessed. Subclasses will define the appropriate methods and behavior.

Key properties

Local properties

uint64 MaxNumberOfRecords

Maximum number of records that can be captured in the Log. If undefined, a value of zero should be specified.

uint64 CurrentNumberOfRecords

Current number of records in the Log.

uint16 LogState

LogState is an integer enumeration that indicates the current state of a log represented by CIM_Log subclasses. LogState is to be used in conjunction with the EnabledState property to fully describe the current state of the log. The following text briefly summarizes the various log states:

Unknown (0) indicates the state of the log is unknown.

Normal (2) indicates that the log is or could be executing logging commands, will process any queued log entries, and will queue new logging requests.

Erasing (3) indicates that the log is being erased.

Not Applicable (4) indicates the log does not support representing a log state.

		ValueMap
		Values

		0
		Unknown

		2
		Normal

		3
		Erasing

		4
		Not Applicable

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 OverwritePolicy

OverwritePolicy is an integer enumeration that indicates whether the log, represented by the CIM_Log subclasses, can overwrite its entries.Unknown (0) indicates the log’s overwrite policy is unknown.

Wraps when Full (2) indicates that the log overwrites its entries with new entries when the log has reached its maximum capacity.

Never Overwrites (7) indicates that the log never overwrites its entries by the new entries.

Archives (8) indicates that the logging is never interupted, and the log archives old entries using an algorithm such as reaching a specific threshold on number of entries to archive a specific number of old ones to free space for new entries. The archived entries may not be readily retreived through the enumeration of log entries.

		ValueMap
		Values

		0
		Unknown

		2
		Wraps When Full

		7
		Never Overwrites

		8
		Archives

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

Local methods

uint32 ClearLog ()

Requests that the Log be cleared of all entries.

The return value should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value, as indicated by the ValueMap/Values qualifiers, if an error occurred.

		ValueMap
		Values

		0
		Completed with no error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6..0x0FFF
		DMTF_Reserved

		0x1000..0x7FFF
		Method_Reserved

		0x8000..
		Vendor_Reserved

Parameters

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NetworkPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NetworkPort

Class reference

Subclass of CIM_LogicalPort

NetworkPort is the logical representation of network communications hardware such as a physical connector and the setup or operation of the network chips, at the lowest layers of a network stack.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string OtherNetworkPortType

Note: The use of this property is deprecated in lieu of CIM_LogicalPort.PortType.

Deprecated description: The type of module, when PortType is set to 1 (“Other”.)

uint64 SupportedMaximumTransmissionUnit

The maximum transmission unit (MTU) that can be supported.

uint16 LinkTechnology

An enumeration of the types of links. When set to 1 (“Other”), the related property OtherLinkTechnology contains a string description of the type of link.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Ethernet

		3
		IB

		4
		FC

		5
		FDDI

		6
		ATM

		7
		Token Ring

		8
		Frame Relay

		9
		Infrared

		10
		BlueTooth

		11
		Wireless LAN

uint16 PortNumber

NetworkPorts are often numbered relative to either a logical module or a network element.

string[] NetworkAddresses

An array of strings that indicates the network addresses for the port.

string PermanentAddress

PermanentAddress defines the network address that is hardcoded into a port. This ‘hardcoded’ address can be changed using a firmware upgrade or a software configuration. When this change is made, the field should be updated at the same time. PermanentAddress should be left blank if no ‘hardcoded’ address exists for the NetworkAdapter.

boolean FullDuplex

Boolean that indicates that the port is operating in full duplex mode.

uint64 ActiveMaximumTransmissionUnit

The active or negotiated maximum transmission unit (MTU) that can be supported.

boolean AutoSense

A Boolean that indicates whether the NetworkPort is capable of automatically determining the speed or other communications characteristics of the attached network media.

string OtherLinkTechnology

A string value that describes LinkTechnology when it is set to 1, “Other”.

uint64 Speed

The current bandwidth of the Port in Bits per Second. For ports that vary in bandwidth or for those where no accurate estimation can be made, this property should contain the nominal bandwidth.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

uint64 MaxSpeed

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string[] StatusDescriptions

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16 PortType

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 UsageRestriction

string OtherPortType

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

uint64 RequestedSpeed

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxServiceHasElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxServiceHasElement

Class reference

Subclass of CIM_Dependency

Association class that connects the SELinux system service with its elements.

Key properties

Dependent

Antecedent

Local properties

LMI_SELinuxService Dependent

The SELinux system service.

LMI_SELinuxElement Antecedent

The SELinux element.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveRealizes.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveRealizes

Class reference

Subclass of CIM_Realizes

CIM_Realizes is the association that defines the mapping between LogicalDevices and the PhysicalElements that implement them.

Key properties

Dependent

Antecedent

Local properties

LMI_DiskDrive Dependent

The LogicalDevice.

LMI_DiskPhysicalPackage Antecedent

The physical component that implements the Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorChip.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorChip

Class reference

Subclass of CIM_Chip

The Chip class represents any type of integrated circuit hardware, including ASICs, processors, memory chips, etc.

Key properties

Tag

CreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SerialNumber

A manufacturer-allocated number used to identify the Physical Element.

string PartNumber

The part number assigned by the organization that is responsible for producing or manufacturing the PhysicalElement.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

A textual description of the PhysicalElement.

string Manufacturer

The name of the organization responsible for producing the PhysicalElement. This organization might be the entity from whom the Element is purchased, but this is not necessarily true. The latter information is contained in the Vendor property of CIM_Product.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string Model

The name by which the PhysicalElement is generally known.

string Tag

An arbitrary string that uniquely identifies the Physical Element and serves as the key of the Element. The Tag property can contain information such as asset tag or serial number data. The key for PhysicalElement is placed very high in the object hierarchy in order to independently identify the hardware or entity, regardless of physical placement in or on Cabinets, Adapters, and so on. For example, a hotswappable or removable component can be taken from its containing (scoping) Package and be temporarily unused. The object still continues to exist and can even be inserted into a different scoping container. Therefore, the key for Physical Element is an arbitrary string and is defined independently of any placement or location-oriented hierarchy.

string SystemCreationClassName

Local methods

None

Inherited properties

boolean HotSwappable

string SKU

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string UserTracking

string VendorEquipmentType

datetime ManufactureDate

uint16 CommunicationStatus

string Version

boolean Removable

string Status

boolean CanBeFRUed

boolean Replaceable

uint16[] OperationalStatus

uint16 FormFactor

string OtherIdentifyingInfo

datetime InstallDate

boolean PoweredOn

uint16 PrimaryStatus

uint64 Generation

uint16 RemovalConditions

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NextHopRoute.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NextHopRoute

Class reference

Subclass of CIM_ManagedElement

NextHopRoute represents one of a series of ‘hops’ to reach a network destination. A route is administratively defined, or calculated/learned by a particular routing process. A ConcreteDependency associaton may be instantiated between a route and its routing service to indicate this. (In this scenario, the route is dependent on the service.)

Key properties

InstanceID

Local properties

string DestinationAddress

The address which serves as the destination to be reached.

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority. (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

boolean IsStatic

TRUE indicates that this is a static route, and FALSE indicates a dynamically-learned route.

uint16 AdminDistance

The specific administrative distance of this route, overriding any default distances specified by the system or routing service.

uint16 RouteMetric

RouteMetric provides a numeric indication as to the preference of this route, compared to other routes that reach the same destination.

uint16 TypeOfRoute

An enumerated integer indicating whether the route is administrator-defined (value=2), computed (via a routing protocol/algorithm, value=3) or the actual route implemented in the network (value=4). The default is a computed route.

		ValueMap
		Values

		2
		Administrator Defined Route

		3
		Computed Route

		4
		Actual Route

Local methods

None

Inherited properties

string Description

string Caption

uint64 Generation

string ElementName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_HostedService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_HostedService

Class reference

Subclass of CIM_HostedDependency

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

CIM_Service Dependent

The Service hosted on the System.

CIM_System Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LANEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LANEndpoint

Class reference

Subclass of CIM_ProtocolEndpoint

A communication endpoint which, when its associated interface device is connected to a LAN, may send and receive data frames. LANEndpoints include Ethernet, Token Ring and FDDI interfaces.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string[] GroupAddresses

Multicast addresses to which the LANEndpoint listens.

uint16 LANType

Deprecated!
An indication of the kind of technology used on the LAN. This property is deprecated in lieu of ProtocolType, which is an enumeration inherited from ProtocolEndpoint and which includes the Values specified here.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Ethernet

		3
		TokenRing

		4
		FDDI

string[] AliasAddresses

Other unicast addresses that may be used to communicate with the LANEndpoint.

uint32 MaxDataSize

The largest information field that may be sent or received by the LANEndpoint.

string LANID

A label or identifier for the LAN Segment to which the Endpoint is connected. If the Endpoint is not currently active/connected or this information is not known, then LANID is NULL.

uint16 ProtocolIFType

ProtocolIFType’s enumeration is limited to Layer 2-related and reserved values for this subclass of ProtocolEndpoint.

		ValueMap
		Values

		1
		Other

		6
		Ethernet CSMA/CD

		9
		ISO 802.5 Token Ring

		15
		FDDI

		225..4095
		IANA Reserved

		4301..32767
		DMTF Reserved

		32768..
		Vendor Reserved

string MACAddress

The principal unicast address used in communication with the LANEndpoint. The MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469.

string OtherLANType

A free-form string that describes the type of technology used on the LAN when the value of the LANType property is equal to 1 (i.e., “Other”). This property is deprecated since its purpose overlaps with OtherTypeDescription, which which is inherited from ProtocolEndpoint.

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

uint16 RequestedState

string InstanceID

uint16 CommunicationStatus

string SystemName

string NameFormat

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ServiceAffectsIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ServiceAffectsIdentity

Class reference

Subclass of CIM_ServiceAffectsElement

ServiceAffectsElement represents an association between a Service and the ManagedElements that might be affected by its execution. Instantiating this association indicates that running the service may change, manage, provide functionality for,or pose some burden on the ManagedElement. This burden might affect performance, throughput, availability, and so on.

Key properties

AffectedElement

AffectingElement

Local properties

LMI_Identity AffectedElement

The managed Identity

LMI_AccountManagementService AffectingElement

The Central Instance of Account management

Local methods

None

Inherited properties

string[] OtherElementEffectsDescriptions

uint16[] ElementEffects

uint16 AssignedSequence

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ServiceAccessPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ServiceAccessPoint

Class reference

Subclass of CIM_EnabledLogicalElement

CIM_ServiceAccessPoint represents the ability to utilize or invoke a Service. Access points represent that a Service is made available for other entities to use.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string SystemName

The Name of the scoping System.

string Name

The Name property uniquely identifies the ServiceAccessPoint and provides an indication of the functionality that is managed. This functionality is described in more detail in the Description property of the object.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping System.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16 PrimaryStatus

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Sensor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Sensor

Class reference

Subclass of CIM_LogicalDevice

A Sensor is an entity capable of measuring or reporting the characteristics of some physical property - for example, the temperature or voltage characteristics of a Computer System.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 SensorType

The Type of the Sensor, e.g. Voltage or Temperature Sensor. If the type is set to “Other”, then the OtherSensorType Description can be used to further identify the type, or if the Sensor has numeric readings, then the type of the Sensor can be implicitly determined by the Units. A description of the different Sensor types is as follows: A Temperature Sensor measures the environmental temperature. Voltage and Current Sensors measure electrical voltage and current readings. A Tachometer measures speed/revolutions of a Device. For example, a Fan Device can have an associated Tachometer which measures its speed. A Counter is a general purpose Sensor that measures some numerical property of a Device. A Counter value can be cleared, but it never decreases. A Switch Sensor has states like Open/Close, On/Off, or Up/Down. A Lock has states of Locked/Unlocked. Humidity, Smoke Detection and Air Flow Sensors measure the equivalent environmental characteristics. A Presence Sensor detects the presence of a PhysicalElement. A Power Consumption Sensor measures the instantaneous power consumed by a managed element. A Power Production Sensor measures the instantaneous power produced by a managed element such as a power supply or a voltage regulator. A pressure sensor is used to report pressure. Intrusion sensor reports an intrusion of an enclosure regardless whether it was authorized or not.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Temperature

		3
		Voltage

		4
		Current

		5
		Tachometer

		6
		Counter

		7
		Switch

		8
		Lock

		9
		Humidity

		10
		Smoke Detection

		11
		Presence

		12
		Air Flow

		13
		Power Consumption

		14
		Power Production

		15
		Pressure

		16
		Intrusion

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string CurrentState

The current state indicated by the Sensor. This is always one of the “PossibleStates”.

string OtherSensorTypeDescription

A string describing the Sensor type - used when the SensorType property is set to “Other”.

string[] PossibleStates

PossibleStates enumerates the string outputs of the Sensor. For example, a “Switch” Sensor may output the states “On”, or “Off”. Another implementation of the Switch may output the states “Open”, and “Close”. Another example is a NumericSensor supporting thresholds. This Sensor can report the states like “Normal”, “Upper Fatal”, “Lower Non-Critical”, etc. A NumericSensor that does not publish readings and thresholds, but stores this data internally, can still report its states.

string SensorContext

SensorContext indicates the purpose and context of the sensor. For example, the property may indicate what entity is being monitored or where the sensor is installed. Contextual and location information should be provided using associations to existing model elements. This property may be used if additional differentiation is necessary beyond that which is possible to convey using associations or values of SensorType. The value shall be formatted using the following algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> shall include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the SensorContext or that is a registered ID assigned to the business entity by a recognized global authority. In addition, to ensure uniqueness, <OrgID> shall not contain a colon (:).

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements.

uint64 PollingInterval

The polling interval that the Sensor hardware or the instrumentation uses to determine the current state of the Sensor.

Local methods

None

Inherited properties

uint16 PrimaryStatus

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSystemService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSystemService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_Service Dependent

Instance of LMI Service.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSystemCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSystemCapabilities

Class reference

Subclass of CIM_Capabilities

FileSystemCapabilities specifies the combination of properties that a FileSystemService can support when creating or maintaining FileSystems. Each supported combination of properties is specified by a FileSystemSetting that is associated with the FileSystemCapabilities element via ElementSettingData.

A FileSystemCapabilities element specifies the properties supported when using it.

This class provides a CreateGoal method that can be used to create a FileSystemSetting element that can be used as a goal for creating or modifying a filesystem. This class also supports persistence and recoverability of a FileSystem and its contained elements as defined in CIM 2.8 for the use of DatabaseStorageArea.

Key properties

InstanceID

Local properties

uint16[] SupportedProperties

An array of property names of the Setting that this Capabilities element supports. The Object-related parameters are not specified because they must always be supported even if not used.

		ValueMap
		Values

		2
		DataExtentsSharing

		3
		CopyTarget

		4
		FilenameCaseAttributes

		5
		FilenameStreamFormats

		6
		FilenameFormats

		7
		LockingSemantics

		8
		AuthorizationProtocols

		9
		AuthenticationProtocols

		10
		Persistence

		
		DMTF Reserved

		0x8000..
		Vendor Defined

string[] SupportedOtherPersistenceTypes

Deprecated!
An array of strings describing the persistence capabilities where the corresponding entry in SupportedPersistenceTypes has a value of “Other”. This value is ignored in all other cases.

uint16[] SupportedPersistenceTypes

Deprecated!
An array of enumerated values representing the persistence capabilities of the FileSystem. A value of “Persistent” indicates that the FileSystem supports persistence, can be preserved through an orderly shutdown and could be protected. A value of “Temporary” indicates that the FileSystem supports non-persistence, may not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem could controlled outside of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the OtherPersistenceType attribute, and is expected to be rarely, if ever, used.

		ValueMap
		Values

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

uint16[] SupportedOperations

An array of enumerated values representing the operations to files and directories on the file system. Set of supported operations depends on the file system type. The operation information is used as the action type in the access control management.

		ValueMap
		Values

		1
		Read

		2
		Write

		3
		Execute

		4
		Create

		5
		Rename

		6
		Delete

		7
		Change Attribute

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 ActualFileSystemType

An enumerated value that indicates the file system implementation type supported by this Capabilities.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		0x8000..
		Vendor Defined

Local methods

uint64 GetRequiredStorageSize (string FileSystemGoal, string ExtentSetting, uint64 ExpectedSize, uint64 MinimumSizeAcceptable, uint64 MaximumSizeUsable)

This method returns the “expected” size of StorageExtent that would support a file system specified by the input FileSystemGoal parameter assuming that the other settings for the StorageExtent are specified by the ExtentSetting parameter.

If the input FileSystemGoal or the ExtentSetting are NULL, this method returns a value computed by using the default FileSystemSetting or some vendor-specific canned StorageSetting.

A value of 0 is returned if this method is not able to determine a reasonable size or does not restrict sizes based on setting information.

Parameters

		IN string FileSystemGoal

		FileSystemGoal is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter, that is used to specify the settings for the FileSystem to be created.

		IN string ExtentSetting

		ExtentSetting is an element of class CIM_StorageSetting, or a derived class, encoded as a string-valued embedded object parameter, that is used to specify the settings of the StorageExtent to be used for this FileSystem.

		OUT uint64 ExpectedSize

		A number that indicates the size of the storage extent that this FileSystem is expected to need. A value of 0 indicates that there is no expected size.

		OUT uint64 MinimumSizeAcceptable

		A number that indicates the size of the smallest storage extent that would support the specified FileSystem. A value of 0 indicates that there is no minimum size.

		OUT uint64 MaximumSizeUsable

		A number that indicates the size of the largest storage extent that would be usable for the specified FileSystem. A value of 0 indicates that there is no maximum size.

uint16 CreateGoal (CIM_ConcreteJob Job, string TemplateGoal, string SupportedGoal)

Start a job to create a supported FileSystemSetting from a FileSystemSetting provided by the caller. If the operation completes successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. A Reference to the ConcreteJob will be returned in the output parameter Job.

This method MAY return a CIM_Error representing that a single named property of a setting (or other) parameter (either reference or embedded object) has an invalid value or that an invalid combination of named properties of a setting (or other) parameter (either reference or embedded object) has been requested.

If the input TemplateGoal is NULL or the empty string, this method returns a default FileSystemSetting that is supported by this FileSystemCapabilities.

The output is returned as the SupportedGoal parameter. Both TemplateGoal and SupportedGoal are embedded objects and do not exist in the provider but are maintained by the client.

If the TemplateGoal specifies values that cannot be supported this method MUST return an appropriate error and should return a best match for a SupportedGoal.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		TemplateGoal is not well-formed

		7
		TemplateGoal cannot be satisfied exactly

		8
		StorageSetting cannot be used with ActualFileSystemType

		9
		StorageSetting cannot be used with CopyTarget

		10
		StorageSetting cannot be used with ObjectType

		
		DMTF Reserved

		4097
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN string TemplateGoal

		TemplateGoal is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter, that is used as the template to be matched .

		OUT string SupportedGoal

		SupportedGoal is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter, that is used to return the best supported match to the TemplateGoal.

Inherited properties

string Description

string InstanceID

string ElementName

string Caption

uint64 Generation

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Setting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Setting

Class reference

Subclass of CIM_ManagedElement

The Setting class represents configuration-related and operational parameters for one or more ManagedSystemElements. An Element can have multiple Setting objects associated with it. The current operational values for the parameters of an Element are reflected by properties in the Element itself or by properties in its associations. These properties do not have to be the same values present in the Setting object. For example, a modem might have a Setting baud rate of 56Kb/sec but be operating at 19.2Kb/sec.

Note: The CIM_SettingData class is very similar to CIM_Setting, yet both classes are present in the model because many implementations have successfully used CIM_Setting. However, issues have arisen that could not be resolved without defining a new class. Therefore, until a new major release occurs, both classes will exist in the model. Refer to the Core White Paper for additional information. Setting instances can be aggregated together into higher-level Setting objects using ConcreteComponent associations.

Key properties

Local properties

string SettingID

The identifier by which the Setting object is known.

Local methods

uint32 VerifyOKToApplyIncrementalChangeToCollection (CIM_CollectionOfMSEs Collection, datetime TimeToApply, datetime MustBeCompletedBy, string[] PropertiesToApply, string[] CanNotApply)

The VerifyOKToApplyIncrementalChangeToCollection method is used to verify that a subset of the properties in this Setting can be applied to the referenced Collection of ManagedSystemElements at the given time or time interval, without causing adverse effects to either the Collection itself or its surrounding environment. The net effect is to execute the VerifyOKToApplyIncrementalChangeToMSE method against each of the Elements that are aggregated by the Collection. This method takes four input parameters: Collection (the Collection of ManagedSystemElements that is being verified), TimeToApply (which, being a datetime, can be either a specific time or a time interval), MustBeCompletedBy (which indicates the required completion time for the method), and a PropertiesToApply array (which contains a list of the property names whose values will be verified). If the array is null or empty or contains the string “all” as a property name, all Settings properties will be verified. If it is set to “none” then no Settings properties will be verified. The return value should be 0 if it is okay to apply the Setting, 1 if the method is not supported, 2 if the Setting cannot be applied within the specified times, and any other number if an error occurred. One output parameter, CanNotApply, is defined, which is a string array that lists the keys of the ManagedSystemElements to which the Setting cannot be applied. This parameter enables those Elements to be revisited and either fixed or have other corrective action taken on them.

In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_CollectionOfMSEs Collection

		The Collection of ManagedSystemElements for which the setting is being verified.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

		IN string[] PropertiesToApply

		A list of the property names whose values will be verified.

		OUT string[] CanNotApply

		A string array that lists the keys of the ManagedSystemElements to which the Setting cannot be applied.

uint32 VerifyOKToApplyIncrementalChangeToMSE (CIM_ManagedSystemElement MSE, datetime TimeToApply, datetime MustBeCompletedBy, string[] PropertiesToApply)

The VerifyOKToApplyIncrementalChangeToMSE method is used to verify that a subset of the properties in this Setting can be applied to the referenced ManagedSystemElement at the given time or time interval. This method takes four input parameters: MSE (the ManagedSystemElement that is being verified), TimeToApply (which, being a datetime, can be either a specific time or a time interval), MustBeCompletedBy (which indicates the required completion time for the method), and a PropertiesToApply array (which contains a list of the property names whose values will be verified). If the array is null or empty or contains the string “ALL” as a property name, then all Settings properties will be verified. If it is set to “NONE”, then no Settings properties will be verified. The return value should be 0 if it is okay to apply the Setting, 1 if the method is not supported, 2 if the Setting cannot be applied within the specified times, and any other number if an error occurred. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_ManagedSystemElement MSE

		The ManagedSystemElement for which the Setting is being verified.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

		IN string[] PropertiesToApply

		A list of the property names whose values will be verified.

uint32 ApplyToCollection (CIM_CollectionOfMSEs Collection, datetime TimeToApply, boolean ContinueOnError, datetime MustBeCompletedBy, string[] CanNotApply)

The ApplyToCollection method performs the application of the Setting to the referenced Collection of ManagedSystemElements. The net effect is to execute the ApplyToMSE method against each of the Elements that are aggregated by the Collection. If the input value ContinueOnError is false, this method applies the Setting to all Elements in the Collection until it encounters an error. In the case of an error, the method stops execution, logs the key of the Element that caused the error in the CanNotApply array, and issues a return code of 2. If the input value ContinueOnError is true, then this method applies the Setting to all of the ManagedSystemElements in the Collection, and reports the failed Elements in the array, CanNotApply. For the latter, processing will continue until the method is applied to all Elements in the Collection, regardless of any errors encountered. The key of each ManagedSystemElement to which the Setting could not be applied is logged into the CanNotApply array. This method takes four input parameters: Collection (the Collection of Elements to which the Setting is being applied), TimeToApply (which, being a datetime, can be either a specific time or a time interval), ContinueOnError (true indicates to continue processing when an error is encountered), and MustBeCompletedBy (which indicates the required completion time for the method). The return value should be 0 if the Setting is successfully applied to the referenced Collection, 1 if the method is not supported, 2 if the Setting was not applied within the specified times, 3 if the Setting cannot be applied using the input value for ContinueOnError, and any other number if an error occurred. One output parameter, CanNotApplystring, is defined, which is an array that lists the keys of the ManagedSystemElements to which the Setting could not be applied. This output parameter has meaning only when the ContinueOnError parameter is true.

In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Note: If an error occurs when applying the Setting to a ManagedSystemElement in the Collection, the Element must be configured as it was when the “Apply” attempt began. That is, the Element should not be left in an indeterminate state.

Parameters

		IN CIM_CollectionOfMSEs Collection

		The Collection of ManagedSystemElements to be applied.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN boolean ContinueOnError

		True means to continue processing when an error is encountered.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

		OUT string[] CanNotApply

		A string array that lists the keys of the ManagedSystemElements to which the Setting could not be applied.

uint32 VerifyOKToApplyToCollection (CIM_CollectionOfMSEs Collection, datetime TimeToApply, datetime MustBeCompletedBy, string[] CanNotApply)

The VerifyOKToApplyToCollection method is used to verify that this Setting can be applied to the referenced Collection of ManagedSystemElements, at the given time or time interval, without causing adverse effects to either the Collection itself or its surrounding environment. The net effect is to execute the VerifyOKToApply method against each of the Elements that are aggregated by the Collection. This method takes three input parameters: Collection (the Collection of ManagedSystemElements that is being verified), TimeToApply (which, being a datetime, can be either a specific time or a time interval), and MustBeCompletedBy (which indicates the required completion time for the method). The return value should be 0 if it is okay to apply the Setting, 1 if the method is not supported, 2 if the Setting cannot be applied within the specified times, and any other number if an error occurred. One output parameter, CanNotApply, is defined, which is a string array that lists the keys of the ManagedSystemElements to which the Setting cannot be applied. This parameter enables those Elements to be revisited and either fixed or have other corrective action taken on them.

In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_CollectionOfMSEs Collection

		The Collection of ManagedSystemElements that is being verified.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

		OUT string[] CanNotApply

		A string array that lists the keys of the ManagedSystemElements to which the Setting cannot be applied.

uint32 ApplyToMSE (CIM_ManagedSystemElement MSE, datetime TimeToApply, datetime MustBeCompletedBy)

The ApplyToMSE method performs the actual application of the Setting to the referenced ManagedSystemElement. It takes three input parameters: MSE (the ManagedSystemElement to which the Setting is being applied), TimeToApply (which, being a datetime, can be either a specific time or a time interval), and MustBeCompletedBy (which indicates the required completion time for the method). Note that the semantics of this method are that individual Settings are either wholly applied or not applied at all to their target ManagedSystemElement. The return value should be 0 if the Setting is successfully applied to the referenced ManagedSystemElement, 1 if the method is not supported, 2 if the Setting was not applied within the specified times, and any other number if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Note: If an error occurs when applying the Setting to a ManagedSystemElement, the Element must be configured as it was when the “Apply” attempt began. That is, the Element should not be left in an indeterminate state.

Parameters

		IN CIM_ManagedSystemElement MSE

		The ManagedSystemElement to which the Setting is being applied.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

uint32 ApplyIncrementalChangeToCollection (CIM_CollectionOfMSEs Collection, datetime TimeToApply, boolean ContinueOnError, datetime MustBeCompletedBy, string[] PropertiesToApply, string[] CanNotApply)

The ApplyIncrementalChangeToCollection method performs the application of a subset of the properties in this Setting to the referenced Collection of ManagedSystemElements. The net effect is to execute the ApplyIncrementalChangeToMSE method against each of the Elements that are aggregated by the Collection. If the input value ContinueOnError is false, this method applies the Setting to all Elements in the Collection until it encounters an error, in which case it stops execution, logs the key of the Element that caused the error in the CanNotApply array, and issues a return code of 2. If the input value ContinueOnError is true, then this method applies the Setting to all of the ManagedSystemElements in the Collection, and reports the failed Elements in the array, CanNotApply. For the latter, processing will continue until the method is applied to all Elements in the Collection, regardless of any errors encountered. The key of each ManagedSystemElement to which the Setting could not be applied is logged into the CanNotApply array. This method takes four input parameters: Collection (the Collection of Elements to which the Setting is being applied), TimeToApply (which, being a datetime, can be either a specific time or a time interval), ContinueOnError (true indicates to continue processing when an error is encountered), MustBeCompletedBy (which indicates the required completion time for the method), and a PropertiesToApply array (which contains a list of the property names whose values will be applied). If a property is not in this list, it will be ignored by the Apply. If the array is null or empty or contains the string “ALL” as a property name, then all Settings properties will be applied. If it is set to “NONE”, then no Settings properties will be applied.

The return value should be 0 if the Setting is successfully applied to the referenced Collection, 1 if the method is not supported, 2 if the Setting was not applied within the specified time, 3 if the Setting cannot be applied using the input value for ContinueOnError, and any other number if an error occurred. One output parameter, CanNotApplystring, is defined, which is an array that lists the keys of the ManagedSystemElements to which the Setting could not be applied. This output parameter has meaning only when the ContinueOnError parameter is true.

In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Note: If an error occurs when applying the Setting to a ManagedSystemElement in the Collection, the Element must be configured as it was when the “Apply” attempt began. That is, the Element should not be left in an indeterminate state.

Parameters

		IN CIM_CollectionOfMSEs Collection

		The Collection of Elements to which the Setting is being applied.

		IN datetime TimeToApply

		A specific time or a time interval.

		IN boolean ContinueOnError

		True indicates to continue processing when an error is encountered.

		IN datetime MustBeCompletedBy

		This parameter indicates the required completion time for the method.

		IN string[] PropertiesToApply

		A list of the property names whose values will be verified.

		OUT string[] CanNotApply

		A string array that lists the keys of the ManagedSystemElements to which the Setting cannot be applied.

uint32 VerifyOKToApplyToMSE (CIM_ManagedSystemElement MSE, datetime TimeToApply, datetime MustBeCompletedBy)

The VerifyOKToApplyToMSE method is used to verify that this Setting can be applied to the referenced ManagedSystemElement at the given time or time interval. This method takes three input parameters: MSE (the Managed SystemElement that is being verified), TimeToApply (which, being a datetime, can be either a specific time or a time interval), and MustBeCompletedBy (which indicates the required completion time for the method). The return value should be 0 if it is okay to apply the Setting, 1 if the method is not supported, 2 if the Setting cannot be applied within the specified times, and any other number if an error occurred. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_ManagedSystemElement MSE

		The ManagedSystemElement that is being verified.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

uint32 ApplyIncrementalChangeToMSE (CIM_ManagedSystemElement MSE, datetime TimeToApply, datetime MustBeCompletedBy, string[] PropertiesToApply)

The ApplyIncrementalChangeToMSE method performs the actual application of a subset of the properties in the Setting to the referenced ManagedSystemElement. It takes four input parameters: MSE (the ManagedSystem Element to which the Setting is being applied), TimeToApply (which, being a datetime, can be either a specific time or a time interval), MustBeCompletedBy (which indicates the required completion time for the method), and a PropertiesToApply array (which contains a list of the property names whose values will be applied). If a property is not in this list, it will be ignored by the Apply. If the array is null, empty, or contains the string “ALL” as a property name, then all Settings properties will be applied. If it is set to “NONE”, then no Settings properties will be applied.

Note that the semantics of this method are that individual Settings are either wholly applied or not applied at all to their target ManagedSystemElement. The return value should be 0 if the Setting is successfully applied to the referenced ManagedSystemElement, 1 if the method is not supported, 2 if the Setting was not applied within the specified times, and any other number if an error occurred. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are “translated” can also be specified in the subclass as a Values array qualifier.

Note: If an error occurs when applying the Setting to a ManagedSystemElement, the Element must be configured as it was when the “Apply” attempt began. That is, the Element should not be left in an indeterminate state.

Parameters

		IN CIM_ManagedSystemElement MSE

		The ManagedSystemElement to which the Setting is being applied.

		IN datetime TimeToApply

		TimeToApply can be either a specific time or a time interval.

		IN datetime MustBeCompletedBy

		The required completion time for the method.

		IN string[] PropertiesToApply

		A list of the property names whose values will be applied.

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareIdentityResource.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareIdentityResource

Class reference

Subclass of CIM_SoftwareIdentityResource

SoftwareIdentityResource describes the URL of a file or other resource that contains all or part of of a SoftwareIdentity for use by the SoftwareInstallationService. For example, a CIM_SoftwareIdentity might consist of a meta data file, a binary executable file, and a installability checker file for some software on a system. This class allows a management client to selectively access the constituents of the install package to perform a check function, or retrieve some meta data information for the install package represented by the SoftwareIdentity class without downloading the entire package. SoftwareIdentityResources will be related to the SoftwareIdentity using the SAPAvailableForElement association.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint16 RequestedState

RequestedState is an integer enumeration that indicates the last requested or desired state for the element, irrespective of the mechanism through which it was requested. The actual state of the element is represented by EnabledState. This property is provided to compare the last requested and current enabled or disabled states. Note that when EnabledState is set to 5 (“Not Applicable”), then this property has no meaning. Refer to the EnabledState property description for explanations of the values in the RequestedState enumeration.

“Unknown” (0) indicates the last requested state for the element is unknown.

Note that the value “No Change” (5) has been deprecated in lieu of indicating the last requested state is “Unknown” (0). If the last requested or desired state is unknown, RequestedState should have the value “Unknown” (0), but may have the value “No Change” (5).Offline (6) indicates that the element has been requested to transition to the Enabled but Offline EnabledState.

It should be noted that there are two new values in RequestedState that build on the statuses of EnabledState. These are “Reboot” (10) and “Reset” (11). Reboot refers to doing a “Shut Down” and then moving to an “Enabled” state. Reset indicates that the element is first “Disabled” and then “Enabled”. The distinction between requesting “Shut Down” and “Disabled” should also be noted. Shut Down requests an orderly transition to the Disabled state, and might involve removing power, to completely erase any existing state. The Disabled state requests an immediate disabling of the element, such that it will not execute or accept any commands or processing requests.

This property is set as the result of a method invocation (such as Start or StopService on CIM_Service), or can be overridden and defined as WRITEable in a subclass. The method approach is considered superior to a WRITEable property, because it allows an explicit invocation of the operation and the return of a result code.

If knowledge of the last RequestedState is not supported for the EnabledLogicalElement, the property shall be NULL or have the value 12 “Not Applicable”.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Deferred

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string AccessInfo

Access or addressing information or a combination of this information for a remote connection. This information can be a host name, network address, or similar information.

string[] StatusDescriptions

Strings describing the various OperationalStatus array values. For example, if “Stopping” is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.

uint16 ExtendedResourceType

A enumerated integer that provides further information for ResourceType. It will set to 2 (‘Not Applicable’) if there is no extended information available.

		ValueMap
		Values

		0
		Unknown

		2
		Not Applicable

		3
		Linux RPM

		4
		HP-UX Depot

		5
		Windows MSI

		6
		Solaris Package

		7
		Macintosh Disk Image

		8
		Debian linux Package

		11
		HP Smart Component

		101..200
		Vendor Reserved

		201
		HTML

		202
		PDF

		203
		Text File

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

string SystemName

The Name of the scoping System.

string MirrorList

URL to a file containing list of base URLS to mirrors of this repository. http://, ftp:// and file:// schemas are supported. This can contain special variables prefixed with $, which are substituted for system values. These include $releasever - defaults to the version of “redhat-release” package, $arch - architecture of system, $basearch - base architecture of system ($arch == “i686”, then $basearch == “i386”, $uuid - unique but persisent uuid for this machine.

uint16 AccessContext

The AccessContext property identifies the role this RemoteServiceAccessPoint is playing in the hosting system.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Default Gateway

		3
		DNS Server

		4
		SNMP Trap Destination

		5
		MPLS Tunnel Destination

		6
		DHCP Server

		7
		SMTP Server

		8
		LDAP Server

		9
		Network Time Protocol (NTP) Server

		10
		Management Service

		11
		internet Storage Name Service (iSNS)

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Description

The Description property provides a textual description of the object.

uint16 TransitioningToState

TransitioningToState indicates the target state to which the instance is transitioning.

A value of 5 “No Change” shall indicate that no transition is in progress.A value of 12 “Not Applicable” shall indicate the implementation does not support representing ongoing transitions.

A value other than 5 or 12 shall identify the state to which the element is in the process of transitioning.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

datetime TimeOfLastStateChange

The date or time when the EnabledState of the element last changed. If the state of the element has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.

uint16[] AvailableRequestedStates

AvailableRequestedStates indicates the possible values for the RequestedState parameter of the method RequestStateChange, used to initiate a state change. The values listed shall be a subset of the values contained in the RequestedStatesSupported property of the associated instance of CIM_EnabledLogicalElementCapabilities where the values selected are a function of the current state of the CIM_EnabledLogicalElement. This property may be non-null if an implementation is able to advertise the set of possible values as a function of the current state. This property shall be null if an implementation is unable to determine the set of possible values as a function of the current state.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		
		DMTF Reserved

boolean RepoGPGCheck

Whether or not a GPG signature check should be performed on the repodata from this repository.

uint16 ResourceType

An enumerated integer that specifies the type of resource referenced by the RemoteServiceAccessPoint.AccessInfo property.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Installer and Payload

		3
		Installer

		4
		Payload

		5
		Installability checker

		6
		Security Advisory

		7
		Engineering Advisory

		9
		Technical release notes

		10
		Change notification

		11
		Whitepaper

		12
		Marketing Documentation

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

boolean GPGCheck

Whether or not a GPG signature check should be performed on the packages gotten from this repository.

string Name

Repository id. A unique name representing repository of system.

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Caption

A human readable string describing the repository.

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 InfoFormat

A SoftwareIdentityResource will always be a URL.

		ValueMap
		Values

		1
		Other

		2
		Host Name

		3
		IPv4 Address

		4
		IPv6 Address

		5
		IPX Address

		6
		DECnet Address

		7
		SNA Address

		8
		Autonomous System Number

		9
		MPLS Label

		10
		IPv4 Subnet Address

		11
		IPv6 Subnet Address

		12
		IPv4 Address Range

		13
		IPv6 Address Range

		100
		Dial String

		101
		Ethernet Address

		102
		Token Ring Address

		103
		ATM Address

		104
		Frame Relay Address

		200
		URL

		201
		FQDN

		202
		User FQDN

		203
		DER ASN1 DN

		204
		DER ASN1 GN

		205
		Key ID

		206
		Parameterized URL

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 Generation

Generation is an optional, monotonically increasing property that may be used to identify a particular generation of the resource represented by this class.

If Generation is supported by the implementation, its value shall not be null.

Except as otherwise specified, a value (including null) of Generation specified at creation time shall be replaced by null if Generation is not supported by the implementation or shall be a, (possibly different), non-null value if the implementation does support Generation.

After creation and if supported, Generation shall be updated, at least once per access, whenever the represented resource is modified, regardless of the source of the modification.

Note: the Generation value only needs to be updated once between references, even if the resource is updated many times. The key point is to assure that it will be different if there have been updates, not to count each update.

Note: unless otherwise specified, the value of Generation within one instance is not required to be coordinated with the value of Generation in any other instance.

Note:the semantics of the instance, (as defined by its creation class), define the underlying resource. That underlying resource may be a collection or aggregation of resources. And, in that case, the semantics of the instance further define when updates to constituent resources also require updates to the Generation of the collective resource. Default behavior of composite aggregations should be to update the Generation of the composite whenever the Generation of a component is updated.

Subclasses may define additional requirements for updates on some or all of related instances.

For a particular instance, the value of Generation may wrap through zero, but the elapsed time between wraps shall be greater than 10’s of years.

This class does not require Generation to be unique across instances of other classes nor across instances of the same class that have different keys. Generation shall be different across power cycles, resets, or reboots if any of those actions results in an update. Generation may be different across power cycles, resets, or reboots if those actions do not result in an update. If the Generation property of an instance is non-null, and if any attempt to update the instance includes the Generation property, then if it doesn’t match the current value, the update shall fail.

The usage of this property is intended to be further specified by applicable management profiles.

Typically, a client will read the value of this property and then supply that value as input to an operation that modifies the instance in some means. This may be via an explicit parameter in an extrinsic method or via an embedded value in an extrinsic method or intrinsic operation.

For example: a profile may require that an intrinsic instance modification supply the Generation property and that it must match for the modification to succeed.

string OtherAccessContext

When the AccessContext property contains a value of 1, “Other” then this is a free form string providing more information about the role of RemoteServiceAccessPoint in the hosting system.

sint32 Cost

Relative cost of accessing this repository. Useful for weighing one repo’s packages as greater/less than any other.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping System.

datetime TimeOfLastUpdate

Time of the repository’s last update on server.

Local methods

uint32 RequestStateChange (uint16 RequestedState, CIM_ConcreteJob Job, datetime TimeoutPeriod)

Requests that the state of the element be changed to the value specified in the RequestedState parameter. When the requested state change takes place, the EnabledState and RequestedState of the element will be the same. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost.

A return code of 0 shall indicate the state change was successfully initiated.

A return code of 3 shall indicate that the state transition cannot complete within the interval specified by the TimeoutPeriod parameter.

A return code of 4096 (0x1000) shall indicate the state change was successfully initiated, a ConcreteJob has been created, and its reference returned in the output parameter Job. Any other return code indicates an error condition.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown or Unspecified Error

		3
		Cannot complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 RequestedState

		The state requested for the element. This information will be placed into the RequestedState property of the instance if the return code of the RequestStateChange method is 0 (‘Completed with No Error’), or 4096 (0x1000) (‘Job Started’). Refer to the description of the EnabledState and RequestedState properties for the detailed explanations of the RequestedState values.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

		OUT CIM_ConcreteJob Job

		May contain a reference to the ConcreteJob created to track the state transition initiated by the method invocation.

		IN datetime TimeoutPeriod

		A timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition.

If this property does not contain 0 or null and the implementation does not support this parameter, a return code of ‘Use Of Timeout Parameter Not Supported’ shall be returned.

Inherited properties

uint16 CommunicationStatus

string Status

uint16 DetailedStatus

datetime InstallDate

string OtherResourceType

string OtherInfoFormatDescription

string OtherEnabledState

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_IPVersionSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_IPVersionSettingData

Class reference

Subclass of CIM_SettingData

This SettingData instance represents an IP version. This instance can be associated to one or more CIM_ManagedElements (Eg. CIM_ComputerSystem or CIM_IPNetworkConnection) to respresent the IP version. The properties of the CIM_ElementSettingData can be used show the IPVersions that are configured as default, current or Next boot.

Key properties

InstanceID

Local properties

uint16 ProtocolIFType

An enumeration that describes the IP version.

		ValueMap
		Values

		0
		Unknown

		
		DMTF Reserved

		4096
		IPv4

		4097
		IPv6

		32768..
		Vendor Reserved

Local methods

None

Inherited properties

string SoOrgID

string SoID

string ElementName

string Description

uint16 ChangeableType

string[] ComponentSetting

string InstanceID

uint64 Generation

string Caption

string ConfigurationName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveSystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveSystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_DiskDrive PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstallationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstallationService

Class reference

Subclass of CIM_SoftwareInstallationService

A subclass of service which provides methods to install (or update) Software Identities in ManagedElements.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

uint16 RequestedState

RequestedState is an integer enumeration that indicates the last requested or desired state for the element, irrespective of the mechanism through which it was requested. The actual state of the element is represented by EnabledState. This property is provided to compare the last requested and current enabled or disabled states. Note that when EnabledState is set to 5 (“Not Applicable”), then this property has no meaning. Refer to the EnabledState property description for explanations of the values in the RequestedState enumeration.

“Unknown” (0) indicates the last requested state for the element is unknown.

Note that the value “No Change” (5) has been deprecated in lieu of indicating the last requested state is “Unknown” (0). If the last requested or desired state is unknown, RequestedState should have the value “Unknown” (0), but may have the value “No Change” (5).Offline (6) indicates that the element has been requested to transition to the Enabled but Offline EnabledState.

It should be noted that there are two new values in RequestedState that build on the statuses of EnabledState. These are “Reboot” (10) and “Reset” (11). Reboot refers to doing a “Shut Down” and then moving to an “Enabled” state. Reset indicates that the element is first “Disabled” and then “Enabled”. The distinction between requesting “Shut Down” and “Disabled” should also be noted. Shut Down requests an orderly transition to the Disabled state, and might involve removing power, to completely erase any existing state. The Disabled state requests an immediate disabling of the element, such that it will not execute or accept any commands or processing requests.

This property is set as the result of a method invocation (such as Start or StopService on CIM_Service), or can be overridden and defined as WRITEable in a subclass. The method approach is considered superior to a WRITEable property, because it allows an explicit invocation of the operation and the return of a result code.

If knowledge of the last RequestedState is not supported for the EnabledLogicalElement, the property shall be NULL or have the value 12 “Not Applicable”.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Deferred

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16 CommunicationStatus

CommunicationStatus indicates the ability of the instrumentation to communicate with the underlying ManagedElement. CommunicationStatus consists of one of the following values: Unknown, None, Communication OK, Lost Communication, or No Contact.

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“Not Available” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Communication OK ” indicates communication is established with the element, but does not convey any quality of service.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the Managed Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Communication OK

		3
		Lost Communication

		4
		No Contact

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string SystemName

The Name of the scoping System.

uint16 DetailedStatus

DetailedStatus compliments PrimaryStatus with additional status detail. It consists of one of the following values: Not Available, No Additional Information, Stressed, Predictive Failure, Error, Non-Recoverable Error, SupportingEntityInError. Detailed status is used to expand upon the PrimaryStatus of the element.

A Null return indicates the implementation (provider) does not implement this property.

“Not Available” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“No Additional Information” indicates that the element is functioning normally as indicated by PrimaryStatus = “OK”.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning normally but a failure is predicted in the near future.

“Non-Recoverable Error ” indicates that this element is in an error condition that requires human intervention.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

		ValueMap
		Values

		0
		Not Available

		1
		No Additional Information

		2
		Stressed

		3
		Predictive Failure

		4
		Non-Recoverable Error

		5
		Supporting Entity in Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string Description

The Description property provides a textual description of the object.

uint16 TransitioningToState

TransitioningToState indicates the target state to which the instance is transitioning.

A value of 5 “No Change” shall indicate that no transition is in progress.A value of 12 “Not Applicable” shall indicate the implementation does not support representing ongoing transitions.

A value other than 5 or 12 shall identify the state to which the element is in the process of transitioning.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

boolean Started

Started is a Boolean that indicates whether the Service has been started (TRUE), or stopped (FALSE).

string Name

The Name property uniquely identifies the Service and provides an indication of the functionality that is managed. This functionality is described in more detail in the Description property of the object.

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions.

OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“None” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Servicing” describes an element being configured, maintained, cleaned, or otherwise administered.

“Starting” describes an element being initialized.

“Stopping” describes an element being brought to an orderly stop.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Migrating” element is being moved between host elements.

“Immigrating” element is being moved to new host element.

“Emigrating” element is being moved away from host element.

“Shutting Down” describes an element being brought to an abrupt stop.

“In Test” element is performing test functions.

“Transitioning” describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable.

“In Service” describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Servicing

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		8
		Completed

		9
		Migrating

		10
		Emigrating

		11
		Immigrating

		12
		Snapshotting

		13
		Shutting Down

		14
		In Test

		15
		Transitioning

		16
		In Service

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string SystemCreationClassName

The CreationClassName of the scoping System.

string CreationClassName

CreationClassName indicates the name of the class or the subclass that is used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

uint32 InstallFromURI (CIM_ConcreteJob Job, string URI, CIM_ManagedElement Target, uint16[] InstallOptions, string[] InstallOptionsValues)

Start a job to install software from a specific URI in a ManagedElement.

Note that this method is provided to support existing, alternative download mechanisms (such as used for firmware download). The ‘normal’ mechanism will be to use the InstallFromSoftwareIdentity method.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to to perform the install. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		URI not accessible

		4108..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN string URI

		A URI for the software based on RFC 2079.

		IN CIM_ManagedElement Target

		The installation target.

		IN uint16[] InstallOptions

		Options to control the install process.

See the InstallOptions parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method for the description of these values.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN string[] InstallOptionsValues

		InstallOptionsValues is an array of strings providing additionalinformation to InstallOptions for the method to install the software. Each entry of this array is related to the entry in InstallOptions that is located at the same index providing additional information for InstallOptions.

For further information on the use of InstallOptionsValues parameter, see the description of the InstallOptionsValues parameter of the SoftwareInstallationService.InstallFromSoftwareIdentity method.

uint32 CheckSoftwareIdentity (CIM_SoftwareIdentity Source, CIM_ManagedElement Target, CIM_Collection Collection, uint16[] InstallCharacteristics)

This method allows a client application to determine whether a specific SoftwareIdentity can be installed (or updated) on a ManagedElement. It also allows other characteristics to be determined such as whether install will require a reboot. In addition a client can check whether the SoftwareIdentity can be added simulataneously to a specified SofwareIndentityCollection. A client MAY specify either or both of the Collection and Target parameters. The Collection parameter is only supported if SoftwareInstallationServiceCapabilities.CanAddToCollection is TRUE.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Reserved

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		No supported path to image

		4108
		Cannot add to Collection

		4109
		Asynchronous Job already in progress

		4110..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN CIM_SoftwareIdentity Source

		Reference to the SoftwareIdentity to be checked.

		IN CIM_ManagedElement Target

		Reference to the ManagedElement that the Software Identity is going to be installed in (or updated).

		IN CIM_Collection Collection

		Reference to the Collection to which the Software Identity will be added.

		OUT uint16[] InstallCharacteristics

		The parameter describes the characteristics of the installation/update that will take place if the Source Software Identity is installed:

Target automatic reset: The target element will automatically reset once the installation is complete.

System automatic reset: The containing system of the target ManagedElement (normally a logical device or the system itself) will automatically reset/reboot once the installation is complete.

Separate target reset required: EnabledLogicalElement.RequestStateChange MUST be used to reset the target element after the SoftwareIdentity is installed.

Separate system reset required: EnabledLogicalElement.RequestStateChange MUST be used to reset/reboot the containing system of the target ManagedElement after the SoftwareIdentity is installed.

Manual Reboot Required: The system MUST be manually rebooted by the user.

No reboot required : No reboot is required after installation.

User Intervention Recomended : It is recommended that a user confirm installation of this SoftwareIdentity. Inappropriate application MAY have serious consequences.

MAY be added to specified collection : The SoftwareIndentity MAY be added to specified Collection.

		ValueMap
		Values

		2
		Target automatic reset

		3
		System automatic reset

		4
		Separate target reset Required

		5
		Separate system reset Required

		6
		Manual Reboot Required

		7
		No Reboot Required

		8
		User Intervention recommended

		9
		MAY be added to specified Collection

		
		DMTF Reserved

		0x7FFF..0xFFFF
		Vendor Specific

uint32 FindIdentity (string Name, uint32 Epoch, string Version, string Release, string Architecture, LMI_SoftwareIdentityResource Repository, boolean AllowDuplicates, boolean ExactMatch, LMI_SoftwareIdentity[] Matches)

Search for installed or available software identity matching specified properties. In case “Repository” is given, only available packages of this repository will be browsed. “AllowDuplicates” causes, that packages of the name <name>.<arch> will be listed multiple times if more versions are available. Other input parameters with non-NULL values are compared to corresponding properties of LMI_SoftwareIdentity instances. 0 is returned if any matching package is found, 1 otherwise.

Parameters

IN string Name

IN uint32 Epoch

IN string Version

IN string Release

IN string Architecture

		IN LMI_SoftwareIdentityResource Repository

		Allows to specify particular software repository, where the search shall take place. If given, only available packages will be browsed.

		IN boolean AllowDuplicates

		Whether the different versions of the same package shall be included in result. This defaults to “False”.

		IN boolean ExactMatch

		Whether to compare “Name” for exact match. If “False”, package name and its summary string (“Caption”) will be searched for occurences of “Name” parameter’s value. Defaults to “False”.

		OUT LMI_SoftwareIdentity[] Matches

		All matching packages found shall be available in this parameter.

uint32 InstallFromSoftwareIdentity (CIM_ConcreteJob Job, uint16[] InstallOptions, string[] InstallOptionsValues, CIM_SoftwareIdentity Source, CIM_ManagedElement Target, CIM_Collection Collection)

Start a job to install or update a SoftwareIdentity (Source) on a ManagedElement (Target).

In addition the method can be used to add the SoftwareIdentity simulataneously to a specified SofwareIndentityCollection. A client MAY specify either or both of the Collection and Target parameters. The Collection parameter is only supported if SoftwareInstallationService.CanAddToCollection is TRUE.

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to perform the install. The Job’s reference will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098
		Unattended/silent installation not supported

		4099
		Downgrade/reinstall not supported

		4100
		Not enough memory

		4101
		Not enough swap-space

		4102
		Unsupported version transition

		4103
		Not enough disk space

		4104
		Software and target operating system mismatch

		4105
		Missing dependencies

		4106
		Not applicable to target

		4107
		No supported path to image

		4108
		Cannot add to Collection

		4109..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN uint16[] InstallOptions

		Options to control the install process.

Defer target/system reset : do not automatically reset the target/system.

Force installation : Force the installation of the same or an older SoftwareIdentity. Install: Perform an installation of this software on the managed element.

Update: Perform an update of this software on the managed element.

Repair: Perform a repair of the installation of this software on the managed element by forcing all the files required for installing the software to be reinstalled.

Reboot: Reboot or reset the system immediately after the install or update of this software, if the install or the update requires a reboot or reset.

Password: Password will be specified as clear text without any encryption for performing the install or update.

Uninstall: Uninstall the software on the managed element.

Log: Create a log for the install or update of the software.

SilentMode: Perform the install or update without displaying any user interface.

AdministrativeMode: Perform the install or update of the software in the administrative mode. ScheduleInstallAt: Indicates the time at which theinstall or update of the software will occur.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

		IN string[] InstallOptionsValues

		InstallOptionsValues is an array of strings providing additional information to InstallOptions for the method to install the software. Each entry of this array is related to the entry in InstallOptions that is located at the same index providing additional information for InstallOptions.

If the index in InstallOptions has the value “Password ” then a value at the corresponding index of InstallOptionValues shall not be NULL.

If the index in InstallOptions has the value “ScheduleInstallAt” then the value at the corresponding index of InstallOptionValues shall not be NULL and shall be in the datetime type format.

If the index in InstallOptions has the value “Log ” then a value at the corresponding index of InstallOptionValues may be NULL.

If the index in InstallOptions has the value “Defer target/system reset”, “Force installation”,”Install”, “Update”, “Repair” or “Reboot” then a value at the corresponding index of InstallOptionValues shall be NULL.

		IN CIM_SoftwareIdentity Source

		Reference to the source of the install.

		IN CIM_ManagedElement Target

		The installation target. If NULL then the SOftwareIdentity will be added to Collection only. The underlying implementation is expected to be able to obtain any necessary metadata from the Software Identity.

		IN CIM_Collection Collection

		Reference to the Collection to which the Software Identity SHALL be added. If NULL then the Software Identity will not be added to a Collection.

uint32 VerifyInstalledIdentity (CIM_SoftwareIdentity Source, CIM_ManagedElement Target, CIM_ConcreteJob Job, LMI_SoftwareIdentityFileCheck[] Failed)

Start a job to verify installed package represented by SoftwareIdentity (Source) on a ManagedElement (Target).

If 0 is returned, the function completed successfully and no ConcreteJob instance was required. If 4096/0x1000 is returned, a ConcreteJob will be started to perform the verification. The Job’s reference will be returned in the output parameter Job.

In former case, the Failed parameterwill contain all associated file checks, that did not pass. In the latter case this property will be NULL.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Target In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Unsupported TargetType

		4098..32767
		Method Reserved

		32768
		Software Identity Not Installed

		32769..65535
		Vendor Specific

Parameters

		IN CIM_SoftwareIdentity Source

		Reference to the installed SoftwareIdentity to be verified.

		IN CIM_ManagedElement Target

		Reference to the ManagedElement that the Software Identity is installed on.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		OUT LMI_SoftwareIdentityFileCheck[] Failed

		Array of file checks that did not pass verification. This is NULL in case that asynchronous job has been started.

Inherited properties

string[] StatusDescriptions

string LoSID

string ElementName

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

string Status

datetime InstallDate

string LoSOrgID

string StartMode

string PrimaryOwnerName

uint64 Generation

string OtherEnabledState

string PrimaryOwnerContact

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

InstallFromByteStream

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareMethodResult

Class reference

Subclass of LMI_MethodResult

Jobs are sometimes used to represent extrinsic method invocations that execute for times longer than the length of time is reasonable to require a client to wait. The method executing continues beyond the method return to the client. The class provides the result of the execution of a Job that was itself started by the side-effect of this extrinsic method invocation.

The indication instances embedded an instance of this class shall be the same indications delivered to listening clients or recorded, all or in part, to logs. Basically, this approach is a corollary to the functionality provided by an instance of ListenerDestinationLog (as defined in the Interop Model). The latter provides a comprehensive, persistent mechanism for recording Job results, but is also more resource-intensive and requires supporting logging functionality. Both the extra resources and logging may not be available in all environments (for example, embedded environments). Therefore, this instance-based approach is also provided.

The MethodResult instances shall not exist after the associated ConcreteJob is deleted.

Key properties

InstanceID

Local properties

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

string Caption

The Caption property is a short textual description (one- line string) of the object.

Local methods

None

Inherited properties

string InstanceID

instance PostCallIndication

uint64 Generation

instance PreCallIndication

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OwningJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OwningJobElement

Class reference

Subclass of CIM_OwningJobElement

OwningJobElement represents an association between a Job and the ManagedElement responsible for the creation of the Job. This association may not be possible, given that the execution of jobs can move between systems and that the lifecycle of the creating entity may not persist for the total duration of the job. However, this can be very useful information when available. This association defines a more specific ‘owner’ than is provided by the CIM_Job.Owner string.

Key properties

OwningElement

OwnedElement

Local properties

None

Local methods

None

Inherited properties

CIM_ManagedElement OwningElement

CIM_Job OwnedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSystemConfigurationCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSystemConfigurationCapabilities

Class reference

Subclass of CIM_Capabilities

FileSystemConfigurationCapabilities specifies the capability of a FileSystemConfigurationService to support the specified methods.

Key properties

InstanceID

Local properties

uint16[] SupportedActualFileSystemTypes

An array of enumerated values that indicates the set of actual file system implementation types that this FileSystemConfigurationService can support in its Capabilities. For each file system type listed here, there MUST be at least one FileSystemCapabilities element.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] SupportedAsynchronousMethods

An array of methods of this Service that are supported as asynchronous methods.

		ValueMap
		Values

		2
		CreateFileSystem

		3
		DeleteFileSystem

		4
		ModifyFileSystem

		5
		CreateGoal

		6
		GetRequiredStorageSize

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 InitialAvailability

An enumerated value that indicates the state of availability in which the Service can create the file system. The choices include ‘Mounted’ and ‘Unmounted’. If ‘Mounted’, the mount-point will be at a vendor-specific default LogicalFile, and a MountedElement association will be surfaced.

		ValueMap
		Values

		0
		Unknown

		2
		Mounted

		3
		Unmounted

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] SupportedSynchronousMethods

An array of methods of this Service that are supported as synchronous methods.

		ValueMap
		Values

		2
		CreateFileSystem

		3
		DeleteFileSystem

		4
		ModifyFileSystem

		5
		CreateGoal

		6
		GetRequiredStorageSize

		
		DMTF Reserved

		0x8000..
		Vendor Defined

Local methods

None

Inherited properties

string Description

string InstanceID

string ElementName

string Caption

uint64 Generation

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkInstModification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkInstModification

Class reference

Subclass of CIM_InstModification

LMI_NetworkInstModification notifies when an instance of one of the following classes is modified: LMI_IPAssignmentSettingData and LMI_IPNetworkConnection.

LMI_NetworkInstModification with LMI_IPNetworkConnection as a SourceInstance is also used to notify that Setting has been applied to IPNetworkConnection.

Key properties

Local properties

None

Local methods

None

Inherited properties

string[] ChangedPropertyNames

string OtherSeverity

string PreviousInstance

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ProcessorChipContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ProcessorChipContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_ProcessorChip PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Synchronized.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Synchronized

Class reference

Indicates that two ManagedElements were aligned or made to be equivalent at the specified point in time. If the Boolean property SyncMaintained is true, then synchronization of the Elements is preserved. Both like and unlike objects can be synchronized. For example, two WatchDog timers can be aligned, or the contents of a LogicalFile can be synchronized with the contents of a StorageExtent.

Key properties

SystemElement

SyncedElement

Local properties

datetime WhenActivated

Specifies when point-in-time was taken or when the replication association is activated, reactivated, resumed or restablished. Must be set to NULL if implementation is not capable of providing this information. A value of 0 indicates the information is not known.

boolean FailedCopyStopsHostIO

If true, the storage array tells host to stop sending data to source element if copying to a remote element fails.

uint16 CopyState

CopyState describes the state of the association with respect to Replication activity. Values are:

Initialized: The link to enable replication is established and source/replica elements are associated, but the data flow has not started.

Unsynchronized: Not all the source element data has been copied to the target element.

Synchronized: For the Mirror, Snapshot, or Clone replication, the target represents a copy of the source.

Broken: The relationship is non-functional due to errors in the source, the target, the path between the two or space constraints.

Fractured: Target is split from the source.

Split: The target element was gracefully (or systematically) split from its source element – consistency is guaranteed.

Inactive: Data flow has stopped, writes to source element will not be sent to target element.

Suspended: Data flow between the source and target elements has stopped. Writes to source element are held until the association is Resumed.

Failedover: Reads and writes to/from the target element. Source element is not reachable.

Prepared: Initialization is completed, the data flow has started, however, the data flow has not started.

Aborted: The copy operation is aborted with the Abort operation. Use the Resync Replica operation to restart the copy operation.

Skewed: The target has been modified and is no longer synchronized with the source element or the point-in-time view.

Mixed: Applies to the CopyState of GroupSynchronized. It indicates the StorageSynchronized associations of the elements in the groups have different CopyState values.

Partitioned: State of replication relationship can not be determined, for example, due to a connection problem.

Invalid: The array is unable to determine the state of the replication relationship, for example, after the connection is restored; however, either source or target elements have an unknown status.

Restored: It indicates the source element was restored from the target element.

		ValueMap
		Values

		2
		Initialized

		3
		Unsynchronized

		4
		Synchronized

		5
		Broken

		6
		Fractured

		7
		Split

		8
		Inactive

		9
		Suspended

		10
		Failedover

		11
		Prepared

		12
		Aborted

		13
		Skewed

		14
		Mixed

		15
		Not Applicable

		16
		Partitioned

		17
		Invalid

		18
		Restored

		
		DMTF Reserved

		0x8000..
		Vendor Specific

datetime WhenDeactivated

Specifies when the association was deactivated. A deactivated association is reactivated.Must be set to NULL if implementation is not capable of providing this information. A value of 0 indicates the information is not known.

uint16 CopyRecoveryMode

Describes whether the copy operation continues after a broken link is restored.

Automatic: copy operation resumes automatically.

Manual: CopyState is set to Suspended after the link is restored. It is required to issue the Resume operation to continue.

		ValueMap
		Values

		0
		Unknown

		2
		Automatic

		3
		Manual

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint16 SyncType

SyncType describes the intended outcome of the replication.Values are:

Mirror: create and maintain a copy of the source.

Snapshot: create a PIT, virtual copy of the source.

Clone: create a PIT, full copy the source.

		ValueMap
		Values

		
		DMTF Reserved

		6
		Mirror

		7
		Snapshot

		8
		Clone

		
		DMTF Reserved

		0x8000..
		Vendor Specific

datetime WhenSuspended

Specifies when the association was suspended. A suspended association is resumed.Must be set to NULL if implementation is not capable of providing this information. A value of 0 indicates the information is not known.

CIM_ManagedElement SystemElement

SystemElement represents one ManagedElement that is synchronized with the entity referenced as SyncedElement.

datetime WhenSynced

The point in time that the Elements were synchronized.

boolean SyncMaintained

Boolean indicating whether synchronization is maintained.

uint16 RequestedCopyState

RequestedCopyState is an integer enumeration that indicates the last requested or desired state for the association. The actual state of the association is represented by CopyState. Note that when CopyState reaches the requested state, this property will be set to ‘Not Applicable.

datetime WhenSynchronized

Specifies when the CopyState has a value of Synchronized. Must be set to NULL if implementation is not capable of providing this information. A value of 0 indicates the information is not known.

uint16 Mode

Mode describes whether the target elements will be updated synchronously or asynchronously. If NULL, implementaton decides the mode.

		ValueMap
		Values

		0
		Unknown

		2
		Synchronous

		3
		Asynchronous

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint16 ProgressStatus

ProgressStatus describes the status of the association with respect to Replication activity. Values are: Completed: The request is completed. Data flow is idle.

Dormant: Indicates that the data flow is inactive suspended or quiesced.

Initializing: In the process of establishing source/replica association and the data flow has not started.

Preparing: preparation-in-progress.

Synchronizing: sync-in-progress.

Resyncing: resync-in-progess.

Restoring: restore-in-progress.

Fracturing: fracture-in-progress.

Splitting: split-in-progress.

Failing over: in the process of switching source and target.

Failing back: Undoing the result of failover.

Detaching: detach-in-progress.

Aborting: abort-in-progress.

Mixed: Applies to groups with element pairs with different statuses. Generally, the individual statuses need to be examined.Suspending: The copy operation is in the process of being suspended.

Requires fracture: The requested operation has completed, however, the synchronization relationship needs to be fractured before further copy operations can be issued.

Requires resync: The requested operation has completed, however, the synchronization relationship needs to be resynced before further copy operations can be issued.

Requires activate: The requested operation has completed, however, the synchronization relationship needs to be activated before further copy operations can be issued.

Pending: The flow of data has stopped momentarily due to limited bandwidth or busy system.

Requires detach: The requested operation has completed, however, the synchronization relationship needs to be detached before further copy operations can be issued.

		ValueMap
		Values

		0
		Unknown

		2
		Completed

		3
		Dormant

		4
		Initializing

		5
		Preparing

		6
		Synchronizing

		7
		Resyncing

		8
		Restoring

		9
		Fracturing

		10
		Splitting

		11
		Failing over

		12
		Failing back

		13
		Aborting

		14
		Mixed

		15
		Not Applicable

		16
		Suspending

		17
		Requires fracture

		18
		Requires resync

		19
		Requires activate

		20
		Pending

		21
		Detaching

		22
		Requires detach

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16 PercentSynced

Specifies the percent of the work completed to reach synchronization. Must be set to NULL if implementation is not capable of providing this information.

CIM_ManagedElement SyncedElement

SyncedElement represents another ManagedElement that is synchronized with the entity referenced as SystemElement.

datetime WhenEstablished

Specifies when the association was established. Must be set to NULL if implementation is not capable of providing this information. A value of 0 indicates the information is not known.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

mof/LMI_UnixSocket.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_UnixSocket

Class reference

Subclass of CIM_DataFile

DataFile is a type of LogicalFile that is a named collection of data or executable code.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DiskPartition

Class reference

Subclass of CIM_GenericDiskPartition

A DiskPartition is a subclass of GenericDiskPartition for MBR (Master Boot Record) style partitions used in X86 platforms such as Windows and Linux.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 PartitionSubtype

The ‘sub’ type of a primary, extended, or logical Partition. The list of possible values corresponds to the decimal representation of the typical values in the Partition record.

		ValueMap
		Values

		0
		Empty | Microsoft

		1
		DOS 12-bit FAT

		2
		XENIX root

		3
		XENIX usr

		4
		DOS 16-bit FAT

		5
		DOS Extended

		6
		DOS 16-bit FAT (> 32MB)

		7
		OS/2 HPFS | Win NTFS | QNX Ver 2 | Adv UNIX

		8
		AIX Boot | OS /2 | Dell (Array) | Commodore DOS

		9
		AIX Data, Coherent

		10
		OS/2 Boot Manager

		11
		32-bit FAT

		12
		32-bit FAT

		14
		Microsoft 16-bit FAT

		15
		Microsoft DOS Extended

		16
		OPUS | OS/2 2.0

		17
		OS/2 (MOSS) Inactive Type 1

		18
		Compaq Diagnostics Partition | Microsoft

		20
		OS/2 (MOSS) Inactive Type 4

		22
		OS/2 (MOSS) Inactive Type 6

		23
		OS/2 (MOSS) Inactive Type 7

		27
		OS/2 (MOSS) Inactive Type B

		28
		OS/2 (MOSS) Inactive Type C

		33
		Microsoft

		35
		Microsoft

		36
		Microsoft

		38
		Microsoft

		49
		Microsoft

		51
		Microsoft

		52
		Microsoft

		53
		OS/2 Logical Volume Manager

		54
		Microsoft

		55
		OS/2 JFS Log

		60
		PowerQuest

		64
		VENIX 80286 | Series/1 Disk

		65
		Personal RISC Boot

		66
		Veritas

		67
		Veritas

		80
		OnTrack Disk Manager Read Only DOS

		81
		OnTrack Disk Manager Read/Write DOS

		82
		CPM | Microport System V/386 | OnTrack Disk Mgr | Microsoft

		83
		OnTrack Disk Manager

		84
		OnTrack Disk Manager Non-DOS

		85
		Micro House EZ-Drive Non-DOS

		86
		Golden Bow Vfeature | Microsoft

		97
		Storage Dimensions SpeedStor | Microsoft

		99
		UNIX - AT&T System V/386 | SCO UNIX

		100
		Novell NetWare | Speedstore

		101
		Novell NetWare

		102
		Novell NetWare

		103
		Novell

		104
		Novell

		105
		Novell

		113
		Microsoft

		115
		Microsoft

		116
		Microsoft

		117
		PC/IX IBM

		118
		Microsoft

		119
		QNX POSIX

		120
		QNX POSIX (Secondary)

		121
		QNX POSIX (Secondary)

		128
		Minix (<=1.4a) | Linux | Microsoft

		129
		Minix (>=1.4b) | Microsoft

		130
		Linux Swap | Prime

		131
		Linux Native | Apple

		132
		System Hibernation for APM

		134
		Microsoft

		135
		HPFS FT mirror

		147
		Amoeba | Microsoft

		148
		Amoeba BBT | Microsoft

		161
		Microsoft

		163
		Microsoft

		164
		Microsoft

		165
		BSD/386

		166
		Microsoft

		177
		Microsoft

		179
		Microsoft

		180
		Microsoft

		182
		Microsoft

		183
		BSDI fs | Microsoft

		184
		BSDI Swap | Microsoft

		193
		Microsoft

		196
		Microsoft

		198
		Microsoft

		199
		Syrinx | HPFS FT Disabled Mirror

		216
		CP/M 86

		219
		Digital Research CPM-86 | Concurrent DOS | OUTRIGGER

		225
		SpeedStor 12-bit FAT Extended

		227
		DOS Read-Only | Storage Dimensions

		228
		SpeedStor 16-bit FAT Extended

		229
		Microsoft

		230
		Microsoft

		239
		Intel

		240
		OS/2 Raw Data

		241
		Storage Dimensions

		242
		DOS (Secondary)

		243
		Microsoft

		244
		SpeedStor Large | Storage Dimensions

		246
		Microsoft

		254
		Lan Step | SpeedStor | IBM PS/2 IML

		255
		Bad Block Tables

		65535
		Unknown

uint16 NameFormat

DiskPartition names MUST use OS Device Name format. In cases where the partition names can not be used by applications programmatically (for example, open()) the NameFormat SHOULD be ‘Other’.

		ValueMap
		Values

		1
		Other

		12
		OS Device Name

boolean PrimaryPartition

Boolean indicating that the DiskPartition is labelled as the primary partition for a ComputerSystem.

uint16 PartitionType

The type of Partition.

		ValueMap
		Values

		0
		Unknown

		1
		Primary

		2
		Extended

		3
		Logical

uint16 NameNamespace

DiskPartition names MUST use OS Device Namespace.

		ValueMap
		Values

		1
		Other

		8
		OS Device Namespace

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint64 BlockSize

boolean Allocatable

string[] StatusDescriptions

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string[] ExtentDiscriminator

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

uint16 CompressionRate

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

string ElementName

uint64 Generation

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint16 EnabledDefault

string OtherNameFormat

uint16 PrimaryStatus

boolean ErrorCleared

string InstanceID

uint16[] OperationalStatus

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

boolean IsBasedOnUnderlyingRedundancy

uint16 LocationIndicator

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

string Name

uint16[] PowerManagementCapabilities

boolean Bootable

uint16 CompressionState

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string Signature

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 HealthState

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

string SignatureState

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

mof/LMI_UnixDeviceFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_UnixDeviceFile

Class reference

Subclass of CIM_UnixDeviceFile

DeviceFile is a special type of LogicalFile that represents a Device. This class is a specialization of DeviceFile for a Unix environment.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

None

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

uint16 DeviceFileType

datetime LastModified

string CompressionMethod

uint64 FileSize

boolean Writeable

string Name

datetime InstallDate

string Caption

string OtherTypeDescription

uint16 PrimaryStatus

string FSName

string DeviceDescription

uint64 Generation

string DeviceMinor

string CSCreationClassName

string DeviceMajor

uint16[] OperationalStatus

uint16 OperatingStatus

string DeviceId

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_VGStoragePool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_VGStoragePool

Class reference

Subclass of CIM_StoragePool

This class represents Volume Groups. Space in Volume Groups can be allocated in units called ‘extents’. Only whole extents can be allocated, no partial allocation is allowed.

Key properties

InstanceID

InstanceID

Local properties

string InstanceID

Unique ID of the Volume Group. It is unique in scope of CIM namespace. To ensure uniqueness, the ID has following format: LMI:VG:<VG name>.

boolean Primordial

If true, “Primordial” indicates that this StoragePool is the base from which storage capacity is drawn and returned in the activity of storage management. Being primordial means that this StoragePool shall not be created or deleted by consumers of this model. However, other actions, modeled or not, may affect the characteristics or size of primordial StoragePools. If false, “Primordial” indicated that the StoragePool, a concrete Storage Pool, is subject to storage services functions. This distinction is important because higher-level StoragePools may be assembled using the Component or AllocatedFromStoragePool associations. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based StoragePools cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string PoolID

Name of the Volume Group.

uint64 TotalManagedSpace

The total amount of capacity usable for the allocation of StorageVolumes, LogicalDisks, or child Storage Pools.

For primordial Storage Pools, this capacity reflects the usable capacity of Disk Drives or LUNs, for example, to the owning storage device or application. For example, in storage array, a primordial Storage Pool’s TotalManagedSpace does not include metadata such as the disk label area and absolute disk drive capacity lost in disk formatting.

For concrete Storage Pools, the same applies, but the metadata not included in TotalManagedSpace is consumed in virtualization like RAID and concatenation. Concrete Storage Pool may also be simple reserve of capacity. In such a case, no capacity may be lost in formation of the Storage Pool.

Conceptually TotalManagedSpace is the sum of all storage known via AssociatedComponentExtent associations to underlying StorageExtents. However, note some of these underlying storage may not be modeled by the instrumentation.

string Name

Path of the volume group in /dev filesystem

uint64 RemainingExtents

Number of available extents in this Volume Group.

uint64 ExtentSize

Volume group extent size.

uint64 RemainingManagedSpace

The remaining usable capacity after the allocation of StorageVolumes, LogicalDisks, or child Storage Pools. This property is maintained here to provide efficient access to this information. However, note that it is possible to compute RemainingManagedSpace as (TotalManagedSpace minus the sum of SpaceConsumed from all of the AllocatedFromStoragePool references from this StoragePool). Note that SpaceConsumed remains useful to determine the amount of capacity consumed by a particular allocated element.

string UUID

UUID of the Volume Group.

uint64 TotalExtents

Total number of extents in this Volume Group.

Local methods

uint32 GetSupportedSizes (uint16 ElementType, CIM_StorageSetting Goal, uint64[] Sizes)

For pools that that support a range of sizes for volume or pool creation, this method can be used to retrieve the supported range. Note that different pool implementations may support either or both the GetSupportedSizes and GetSupportedSizeRanges methods at different times, depending on Pool configuration. Also note that the advertised sizes may change after the call due to requests from other clients. If the pool currently only supports discrete sizes, then the return value will be set to 1.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedSizes instead

		3
		Invalid Element Type

Parameters

		IN uint16 ElementType

		The type of element for which supported sizes are reported. The Thin Provision values are only supported when the Thin Provisioning Profile is supported; the resulting StorageVolues/LogicalDisk shall have ThinlyProvisioned set to true.

		ValueMap
		Values

		2
		Storage Pool

		3
		Storage Volume

		4
		Logical Disk

		5
		Thin Provisioned Volume

		6
		Thin Provisioned Logical Disk

		IN CIM_StorageSetting Goal

		The StorageSetting for which supported sizes should be reported for.

		IN, OUT uint64[] Sizes

		List of supported sizes for a Volume/Pool creation or modification.

uint32 GetSupportedSizeRange (uint16 ElementType, CIM_StorageSetting Goal, uint64 MinimumVolumeSize, uint64 MaximumVolumeSize, uint64 VolumeSizeDivisor)

For pools that that support a range of sizes for volume or pool creation, this method can be used to retrieve the supported range. Note that different pool implementations may support either or both the GetSupportedSizes and GetSupportedSizeRanges methods at different times, depending on Pool configuration. Also note that the advertised sizes may change after the call due to requests from other clients. If the pool currently only supports discrete sizes, then the return value will be set to 1.

		ValueMap
		Values

		0
		Method completed OK

		1
		Method not supported

		2
		Use GetSupportedSizes instead

		3
		Invalid Element Type

Parameters

		IN uint16 ElementType

		The type of element for which supported size ranges are reported. The Thin Provision values are only supported when the Thin Provisioning Profile is supported; the resulting StorageVolues/LogicalDisk shall have ThinlyProvisioned set to true.

		ValueMap
		Values

		2
		Storage Pool

		3
		Storage Volume

		4
		Logical Disk

		5
		Thin Provisioned Volume

		6
		Thin Provisioned Logical Disk

		IN CIM_StorageSetting Goal

		The StorageSetting for which supported size ranges should be reported for.

		IN, OUT uint64 MinimumVolumeSize

		The minimum size for a volume/pool in bytes.

		IN, OUT uint64 MaximumVolumeSize

		The maximum size for a volume/pool in bytes.

		IN, OUT uint64 VolumeSizeDivisor

		A volume/pool size must be a multiple of this value which is specified in bytes.

Inherited properties

uint16 HealthState

uint64 CapacityInMigratingSource

uint64 Capacity

string[] StatusDescriptions

uint16[] ClientSettableUsage

string ResourceSubType

uint16 CommunicationStatus

uint16 Usage

uint64 CurrentlyConsumedResource

uint64 MaxConsumableResource

string Status

uint16 SpaceLimitDetermination

string Description

uint16 ResourceType

uint16 OperatingStatus

uint16 LowSpaceWarningThreshold

uint16 DetailedStatus

string AllocationUnits

datetime InstallDate

string OtherUsageDescription

string OtherResourceType

string Caption

uint64 CapacityInMigratingTarget

uint16 PrimaryStatus

uint64 ReservedSpace

uint64 Reserved

uint64 Generation

uint64 SpaceLimit

uint16[] OperationalStatus

uint64 ThinProvisionMetaDataSpace

boolean ElementsShareSpace

string ConsumedResourceUnits

Inherited methods

GetAvailableExtents

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

mof/LMI_MemberOfBlockStatisticsManifestCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemberOfBlockStatisticsManifestCollection

Class reference

Subclass of CIM_MemberOfCollection

CIM_MemberOfCollection is an aggregation used to establish membership of ManagedElements in a Collection.

Key properties

Member

Collection

Member

Collection

Local properties

LMI_BlockStatisticsManifest Member

The aggregated member of the Collection.

LMI_BlockStatisticsManifestCollection Collection

The Collection that aggregates members.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Battery.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Battery

Class reference

Subclass of CIM_PowerSource

Capabilities and management of the Battery. This class applies to both batteries in Laptop Systems and other internal or external batteries, such as an uninterruptible power supply (UPS).

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 BatteryStatus

Description of the charge status of the Battery. Values such as “Fully Charged” (value=3) or “Partially Charged” (value=11) can be specified. The value, 10, is not valid in the CIM Schema because in DMI it represents that no battery is installed. In this case, this object should not be instantiated. The valuemaps: 6(Charging), 7(Charging and High), 8(Charging and Low), and 9(Charing and Critical) has been deprecated in lieu of the ChargingStatus property. 10(Undefined) has been deprecated in lieu of 2(Unknown).

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Fully Charged

		4
		Low

		5
		Critical

		6
		Charging

		7
		Charging and High

		8
		Charging and Low

		9
		Charging and Critical

		10
		Undefined

		11
		Partially Charged

		12
		Learning

		13
		Overcharged

		
		DMTF Reserved

		32768..65535
		Vendor Specific

string OtherChemistryDescription

The description of the battery chemistry when the Chemistry property has value 1 (Other). The property shall be implemented if the Chemistry property has value 1(Other).

uint32 DesignCapacity

The design capacity of the battery in mWatt-hours. If this property is not supported, enter 0.

uint32 MaxRechargeTime

MaxRechargeTime indicates the maximum time, in minutes, to fully charge the Battery. This property represents the time to recharge a fully depleted Battery, not the current remaining charging time, which is indicated in the TimeToFullCharge property.

uint8 RemainingCapacityMaxError

The maximum error (as a percentage) in the mWatt-hour data reported by RemainingCapacity property.

uint16 PermanentErrorInfo

An enumeration that describes the error information in the event of permanent failure of the battery. This code will enable system administrators to troubleshoot the reason behind failed batteries. Unknown value means a permanent error has occured but the error type is unknown.

		ValueMap
		Values

		0
		Unknown

		2
		No Failure

		3
		Fuse Blown

		4
		Cell imbalance

		5
		Over voltage

		6
		FET inoperative

		7
		Communication error

		8
		Incompatible battery type

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint32 TimeToFullCharge

The remaining time in minutes to charge the battery fully at the current charging rate and usage.

uint32 MaxRechargeCount

The maximum number of times the Battery can be recharged.

uint32 RemainingCapacity

The Battery’s remaining charge capacity in mWatt-hours.

uint16 ChargingStatus

ChargingStatus indicates whether the battery is charging. Charging - the battery is charging. Discharging - the battery is discharging. Idle - the batter is neither charging nor discharging.

		ValueMap
		Values

		0
		Unknown

		2
		Charging

		3
		Discharging

		4
		Idle

		
		DMTF Reserved

		32768..65535
		Vendor Specified

uint32 TimeOnBattery

TimeOnBattery indicates the elapsed time in seconds since the ComputerSystem, UPS, or so on, last switched to battery power, or the time since the System or UPS was last restarted, whichever is less. Zero is returned if the Battery is ‘on line’.

uint64 DesignVoltage

The design voltage of the battery in mVolts. If this attribute is not supported, enter 0.

uint16 EstimatedChargeRemaining

An estimate of the percentage of full charge remaining.

string SmartBatteryVersion

The Smart Battery Data Specification version number that is supported by this Battery. If the Battery does not support this function, the value should be left blank.

uint8 HealthPercent

An estimate of the percentage of the overall battery health. It indicates how much the battery has deteriorated over time. It can take values 0 to 100; 255 if it is unknown.

uint16 Chemistry

An enumeration that describes the chemistry of the Battery.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Lead Acid

		4
		Nickel Cadmium

		5
		Nickel Metal Hydride

		6
		Lithium-ion

		7
		Zinc air

		8
		Lithium Polymer

		
		DMTF Reserved

		32768..65535
		Vendor Specified

uint32 ExpectedLife

Indicates the expected lifetime of the Battery in minutes, assuming that the Battery is fully charged. This property represents the total expected life of the Battery, not its current remaining life, which is indicated by the EstimatedRunTime property.

uint32 RechargeCount

The number of times the Battery has been recharged.

uint32 EstimatedRunTime

EstimatedRunTime is an estimate in minutes of the time that battery charge depletion will occur under the present load conditions if the utility power is off, or is lost and remains off, or a Laptop is disconnected from a power source.

uint32 FullChargeCapacity

The full charge capacity of the battery in mWatt-hours. Comparison of this value to the Battery DesignCapacity determines when the Battery requires replacement. The end of life of a Battery is typically when the FullCharge Capacity falls below 80% of the DesignCapacity. If this property is not supported, enter 0.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 PrimaryStatus

string OutputPowerUnits

string SystemName

datetime TimeOfLastStateChange

uint16 Availability

string Status

string ElementName

datetime InstallDate

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

string InstanceID

uint16 LocationIndicator

uint16 EnabledState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

uint16 EnabledDefault

uint16 OperatingStatus

uint16[] AdditionalAvailability

uint32 RatedMaxOutputPower

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

string Description

string Caption

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint16 CommunicationStatus

string ErrorDescription

boolean IsACOutput

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string Name

string CreationClassName

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/down.png

mof/LMI_NetworkInstCreation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkInstCreation

Class reference

Subclass of CIM_InstCreation

LMI_NetworkInstCreation notifies when a new instance of one of the following classes is created: LMI_IPAssignmentSettingData and LMI_IPNetworkConnection.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SecurityService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SecurityService

Class reference

Subclass of CIM_Service

A service providing security functionaity.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_RecordInLog.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_RecordInLog

Class reference

RecordInLog describes the aggregation or location of Log entries within a MessageLog.

Key properties

LogRecord

MessageLog

Local properties

CIM_LogRecord LogRecord

The Log entry contained within the MessageLog.

CIM_MessageLog MessageLog

The Message Log.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OwningStorageJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OwningStorageJobElement

Class reference

Subclass of LMI_OwningJobElement

OwningJobElement represents an association between a Job and the ManagedElement responsible for the creation of the Job. This association may not be possible, given that the execution of jobs can move between systems and that the lifecycle of the creating entity may not persist for the total duration of the job. However, this can be very useful information when available. This association defines a more specific ‘owner’ than is provided by the CIM_Job.Owner string.

Key properties

OwningElement

OwnedElement

Local properties

None

Local methods

None

Inherited properties

CIM_ManagedElement OwningElement

CIM_Job OwnedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementInConnector.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementInConnector

Class reference

Subclass of CIM_Dependency

Adapter cards, DIMMs and other physical elements are plugged into System Connectors for power and/or to transfer data. This relationship is defined by ElementInConnector.

Key properties

Dependent

Antecedent

Local properties

CIM_PhysicalElement Dependent

The Element in the Connector.

CIM_PhysicalConnector Antecedent

The Connector into which the Element is inserted.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MemberOfGroup.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemberOfGroup

Class reference

Subclass of CIM_MemberOfCollection

CIM_MemberOfCollection is an aggregation used to establish membership of ManagedElements in a Collection.

Key properties

Member

Collection

Local properties

LMI_Identity Member

The managed Identity

LMI_Group Collection

The managed Group on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_OwningCollectionElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_OwningCollectionElement

Class reference

OwningCollectionElement represents an association between a Collection and the ManagedElement responsible for the control or ownership of the Collection.

Key properties

OwningElement

OwnedElement

Local properties

CIM_ManagedElement OwningElement

The ManagedElement acting as the ‘owner’ or object that isresponsible for the control of the Collection.

CIM_Collection OwnedElement

The Collection owned or controlled by the ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_JournalRecordInLog.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_JournalRecordInLog

Class reference

Subclass of CIM_RecordInLog

RecordInLog describes the aggregation or location of Log entries within a MessageLog.

Key properties

LogRecord

MessageLog

LogRecord

MessageLog

Local properties

LMI_JournalLogRecord LogRecord

The Log entry contained within the MessageLog.

LMI_JournalMessageLog MessageLog

The Message Log.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ConcreteIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ConcreteIdentity

Class reference

Subclass of CIM_LogicalIdentity

CIM_ConcreteIdentity associates two elements that represent different aspects of the same underlying entity. It is defined as a concrete subclass of the abstract CIM_LogicalIdentity class, to be used in place of many specific subclasses of LogicalIdentity that add no semantics, that is, subclasses that do not clarify the type of identity, update cardinalities, or add or remove qualifiers. Note that when you define additional semantics for LogicalIdentity, this class should not be subclassed. Specific semantics continue to be defined as subclasses of the abstract CIM_LogicalIdentity. ConcreteIdentity is limited in its use as a concrete form of a general identity relationship.

It was deemed more prudent to create this concrete subclass than to change LogicalIdentity from an abstract to a concrete class. LogicalIdentity already had multiple abstract subclasses in the CIM Schema, and wider industry usage and impact could not be anticipated.

Key properties

SameElement

SystemElement

Local properties

CIM_ManagedElement SameElement

Another aspect of the ManagedElement.

CIM_ManagedElement SystemElement

One aspect of the ManagedElement. The use of ‘System’ in the name does not limit the scope of the association. This name is an artifact of the original definition of the association.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BatterySystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BatterySystemDevice

Class reference

Subclass of CIM_SystemDevice

LogicalDevices can be aggregated by a System. This relationship is made explicit by the SystemDevice association.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The parent system in the Association.

LMI_Battery PartComponent

The LogicalDevice that is a component of a System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartitionConfigurationCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartitionConfigurationCapabilities

Class reference

Subclass of CIM_DiskPartitionConfigurationCapabilities

DiskPartitionConfigurationCapabilities instances describe a partition style supported by the platform. An instance of this class is associated with a volume (or partition) when a partition table is installed (see DiskPartitionConfigurationService.SetPartitionStyle.

Key properties

InstanceID

Local properties

uint16[] SupportedSettings

List of supported properties in LMI_DiskPartitionConfigurationSetting. Different partition tables support different properties.

		ValueMap
		Values

		1
		Partition Type

		2
		Bootable

		3
		Hidden

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

uint32 PartitionTableSize

The number of block occupied by the partition table and other metadata. The effective block size for partitions is the StorageExtent’s ConsumableBlocks minus this size.

uint16 PartitionStyle

The partition style (i.e partition table type) associated with this capabilities instance.

LMI introduces additional partition styles.

		ValueMap
		Values

		2
		MBR

		3
		GPT

		4
		VTOC

		4097
		PC98

		4098
		SUN

		4099
		MAC

		4100
		EMBR

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16[] ValidSubPartitionStyles

Some partitions can act as a container for other partitions. If sub partitions are not supported, this should be set to NULL.

		ValueMap
		Values

		1
		Other

		2
		MBR

		3
		VTOC

		4
		GPT

		4100
		EMBR

boolean OverlapAllowed

The platform supports partitions with overlapping address ranges.

uint16 MaxNumberOfPartitions

The maximum number of partitions that can be BasedOn the Underlying extent.

uint16[] SupportedSynchronousActions

Enumeration indicating what operations will be executed synchronously. If an operation is included in this property then the underlying implementation is indicating that it supports the operation without the creation of a job.

		ValueMap
		Values

		2
		SetPartitionStyle

		3
		CreateOrModifyPartition

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint64 MaxCapacity

The largest partition size (in blocks) of this style supported on this platform.

Local methods

uint32 GetAlignment (CIM_StorageExtent Extent, uint64 Alignment)

Return allignment unit for given StorageExtent (in blocks). New partitions and metadata sectors should be aligned to this unit.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		IN CIM_StorageExtent Extent

		The StorageExtent to get alignment for.

		OUT uint64 Alignment

		Suggested alignment, in nr. of blocks.

uint32 FindPartitionLocation (CIM_StorageExtent Extent, uint64 Size, uint64 StartingAddress, uint64 EndingAddress)

This method finds the best place for partition of given size.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

		100
		Not Enough Free Space

Parameters

		IN CIM_StorageExtent Extent

		The StorageExtent, on which the partition should be created.

		IN, OUT uint64 Size

		On input, the requested size of the partition. On output, the achieeved size. It can be rounded to nearest block size or due to alignment.

If null, location of the largest possible partition will be returned.

		OUT uint64 StartingAddress

		Suggested starting block number of the partition. It already includes any metadata and alignment sectors.

		OUT uint64 EndingAddress

		Suggested ending block number of the partition.

uint32 CreateSetting (LMI_DiskPartitionConfigurationSetting Setting)

Create LMI_DiskPartitionConfigurationSetting applicable to this partition table. All properties its will have default values.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		OUT LMI_DiskPartitionConfigurationSetting Setting

		Created setting.

Inherited properties

string Description

uint16 Version

uint64 Generation

string[] OtherValidSubPartitionStyles

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MediaPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MediaPartition

Class reference

Subclass of CIM_StorageExtent

A MediaPartition is a presentation of a contiguous range of logical blocks and has identifying data written on/to it. It may include a signature written by the OS or by an application. This class is a common superclass for Disk and TapePartions. Partitions are directly realized by Physical Media (indicated by the RealizesExtent association) or built on StorageVolumes (indicated by the BasedOn association).

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean Allocatable

Boolean indicating that the Partition is available and may be allocated for use.

string SignatureAlgorithm

A free-form string describing the algorithm used to define the Partition Signature. The value of this property is dependent on the Signature’s State.

boolean Extendable

Boolean indicating that the Partition can be grown/extended without reformatting.

boolean Bootable

Boolean indicating that the Partition is labeled as bootable. (Note that this does not mean that an Operating System is actually loaded on the Partition.) With the advent of bootable Tape and other bootable media, this property is included in the higher level MediaPartition class, rather than in a subclass such as DiskPartition.

string Signature

An identifying string written to the Partition. Additional information related to this ‘Signature’ may be found in the properties, SignatureState and SignatureAlgorithm.

string SignatureState

An enumeration describing the state of the Partition’s identifying Signature string. Information such as “Uninitialized” (value=2), or “Assigned by Owning Application” (value=5) are possible entries.

		ValueMap
		Values

		0
		Unknown

		1
		Unimplemented

		2
		Uninitialized

		3
		Calculated by Operating System

		4
		Calculated by a Media Manager

		5
		Assigned by Owning Application

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string[] ExtentDiscriminator

string[] OtherIdentifyingInfo

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

uint16 EnabledDefault

string InstanceID

uint16[] OperationalStatus

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

boolean IsBasedOnUnderlyingRedundancy

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

boolean IsCompressed

string Name

uint16[] PowerManagementCapabilities

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

uint16 NameNamespace

boolean IsComposite

uint16 StatusInfo

string DeviceID

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

boolean IsConcatenated

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ServiceAvailableToElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ServiceAvailableToElement

Class reference

CIM_ServiceAvailableToElement conveys the semantics of a Service that is available for the use of a ManagedElement. An example of an available Service is that a Processor and an enclosure (a PhysicalElement) can use AlertOnLAN Services to signal an incomplete or erroneous boot. In reality, AlertOnLAN is simply a HostedService on a computer system that is generally available for use and is not a dependency of the processor or enclosure. To describe that the use of this service might be restricted or have limited availability or applicability, the CIM_ServiceAvailableToElement association would be instantiated between the Service and specific CIM_Processors and CIM_Chassis.

Key properties

UserOfService

ServiceProvided

Local properties

CIM_ManagedElement UserOfService

The ManagedElement that can use the Service.

CIM_Service ServiceProvided

The Service that is available.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

ManagedElement

Local properties

None

Local methods

None

Inherited properties

uint16[] Characteristics

CIM_Capabilities Capabilities

CIM_ManagedElement ManagedElement

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstCreation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstCreation

Class reference

Subclass of CIM_InstCreation

CIM_InstCreation notifies when a new instance is created.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/comment-close.png

mof/CIM_NextHopIPRoute.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NextHopIPRoute

Class reference

Subclass of CIM_NextHopRoute

NextHopIPRoute specifies routing in an IP network.

Key properties

InstanceID

Local properties

string OtherDerivation

A string describing how the route was derived when the RouteDerivation property is 1 (“Other”).

uint16 RouteDerivation

An enumerated integer indicating how the route was derived. This is useful for display and query purposes.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Connected

		3
		User-Defined

		4
		IGRP

		5
		EIGRP

		6
		RIP

		7
		Hello

		8
		EGP

		9
		BGP

		10
		ISIS

		11
		OSPF

string DestinationMask

The mask for the Ipv4 destination address.

uint16 AddressType

An enumeration that describes the format of the address properties.

		ValueMap
		Values

		0
		Unknown

		1
		IPv4

		2
		IPv6

uint8 PrefixLength

The prefix length for the IPv6 destination address.

Local methods

None

Inherited properties

string Description

string InstanceID

boolean IsStatic

string DestinationAddress

uint16 AdminDistance

uint16 RouteMetric

uint16 TypeOfRoute

uint64 Generation

string ElementName

string Caption

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EnabledLogicalElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EnabledLogicalElement

Class reference

Subclass of CIM_LogicalElement

This class extends LogicalElement to abstract the concept of an element that is enabled and disabled, such as a LogicalDevice or a ServiceAccessPoint.

Key properties

Local properties

uint16 RequestedState

RequestedState is an integer enumeration that indicates the last requested or desired state for the element, irrespective of the mechanism through which it was requested. The actual state of the element is represented by EnabledState. This property is provided to compare the last requested and current enabled or disabled states. Note that when EnabledState is set to 5 (“Not Applicable”), then this property has no meaning. Refer to the EnabledState property description for explanations of the values in the RequestedState enumeration.

“Unknown” (0) indicates the last requested state for the element is unknown.

Note that the value “No Change” (5) has been deprecated in lieu of indicating the last requested state is “Unknown” (0). If the last requested or desired state is unknown, RequestedState should have the value “Unknown” (0), but may have the value “No Change” (5).Offline (6) indicates that the element has been requested to transition to the Enabled but Offline EnabledState.

It should be noted that there are two new values in RequestedState that build on the statuses of EnabledState. These are “Reboot” (10) and “Reset” (11). Reboot refers to doing a “Shut Down” and then moving to an “Enabled” state. Reset indicates that the element is first “Disabled” and then “Enabled”. The distinction between requesting “Shut Down” and “Disabled” should also be noted. Shut Down requests an orderly transition to the Disabled state, and might involve removing power, to completely erase any existing state. The Disabled state requests an immediate disabling of the element, such that it will not execute or accept any commands or processing requests.

This property is set as the result of a method invocation (such as Start or StopService on CIM_Service), or can be overridden and defined as WRITEable in a subclass. The method approach is considered superior to a WRITEable property, because it allows an explicit invocation of the operation and the return of a result code.

If knowledge of the last RequestedState is not supported for the EnabledLogicalElement, the property shall be NULL or have the value 12 “Not Applicable”.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Deferred

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 TransitioningToState

TransitioningToState indicates the target state to which the instance is transitioning.

A value of 5 “No Change” shall indicate that no transition is in progress.A value of 12 “Not Applicable” shall indicate the implementation does not support representing ongoing transitions.

A value other than 5 or 12 shall identify the state to which the element is in the process of transitioning.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		5
		No Change

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		12
		Not Applicable

		
		DMTF Reserved

datetime TimeOfLastStateChange

The date or time when the EnabledState of the element last changed. If the state of the element has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.

uint16[] AvailableRequestedStates

AvailableRequestedStates indicates the possible values for the RequestedState parameter of the method RequestStateChange, used to initiate a state change. The values listed shall be a subset of the values contained in the RequestedStatesSupported property of the associated instance of CIM_EnabledLogicalElementCapabilities where the values selected are a function of the current state of the CIM_EnabledLogicalElement. This property may be non-null if an implementation is able to advertise the set of possible values as a function of the current state. This property shall be null if an implementation is unable to determine the set of possible values as a function of the current state.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		
		DMTF Reserved

uint16 EnabledDefault

An enumerated value indicating an administrator’s default or startup configuration for the Enabled State of an element. By default, the element is “Enabled” (value=2).

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		5
		Not Applicable

		6
		Enabled but Offline

		7
		No Default

		9
		Quiesce

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Enabled

		3
		Disabled

		4
		Shutting Down

		5
		Not Applicable

		6
		Enabled but Offline

		7
		In Test

		8
		Deferred

		9
		Quiesce

		10
		Starting

		11..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string OtherEnabledState

A string that describes the enabled or disabled state of the element when the EnabledState property is set to 1 (“Other”). This property must be set to null when EnabledState is any value other than 1.

Local methods

uint32 RequestStateChange (uint16 RequestedState, CIM_ConcreteJob Job, datetime TimeoutPeriod)

Requests that the state of the element be changed to the value specified in the RequestedState parameter. When the requested state change takes place, the EnabledState and RequestedState of the element will be the same. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost.

A return code of 0 shall indicate the state change was successfully initiated.

A return code of 3 shall indicate that the state transition cannot complete within the interval specified by the TimeoutPeriod parameter.

A return code of 4096 (0x1000) shall indicate the state change was successfully initiated, a ConcreteJob has been created, and its reference returned in the output parameter Job. Any other return code indicates an error condition.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown or Unspecified Error

		3
		Cannot complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 RequestedState

		The state requested for the element. This information will be placed into the RequestedState property of the instance if the return code of the RequestStateChange method is 0 (‘Completed with No Error’), or 4096 (0x1000) (‘Job Started’). Refer to the description of the EnabledState and RequestedState properties for the detailed explanations of the RequestedState values.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		4
		Shut Down

		6
		Offline

		7
		Test

		8
		Defer

		9
		Quiesce

		10
		Reboot

		11
		Reset

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

		OUT CIM_ConcreteJob Job

		May contain a reference to the ConcreteJob created to track the state transition initiated by the method invocation.

		IN datetime TimeoutPeriod

		A timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition.

If this property does not contain 0 or null and the implementation does not support this parameter, a return code of ‘Use Of Timeout Parameter Not Supported’ shall be returned.

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 DetailedStatus

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up.png

mof/CIM_Controller.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Controller

Class reference

Subclass of CIM_LogicalDevice

Controller is a superclass for grouping the miscellaneous control-related Devices that provide a classic bus master interface. Examples of Controllers are USBControllers, SerialControllers, and so on. The Controller class is an abstraction for Devices with a single protocol stack, which exist to control communications (data, control, and reset) to downstream devices. Note that a new abstract class (ProtocolController) has been created to model more complex interface controllers such as SCSI.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

datetime TimeOfLastReset

Time of last reset of the Controller.

uint32 MaxNumberControlled

Maximum number of directly addressable entities that are supported by this Controller. A value of 0 should be used if the number is unknown or unlimited.

uint16 ProtocolSupported

The protocol used by the Controller to access controlled Devices.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		EISA

		4
		ISA

		5
		PCI

		6
		ATA/ATAPI

		7
		Flexible Diskette

		8
		1496

		9
		SCSI Parallel Interface

		10
		SCSI Fibre Channel Protocol

		11
		SCSI Serial Bus Protocol

		12
		SCSI Serial Bus Protocol-2 (1394)

		13
		SCSI Serial Storage Architecture

		14
		VESA

		15
		PCMCIA

		16
		Universal Serial Bus

		17
		Parallel Protocol

		18
		ESCON

		19
		Diagnostic

		20
		I2C

		21
		Power

		22
		HIPPI

		23
		MultiBus

		24
		VME

		25
		IPI

		26
		IEEE-488

		27
		RS232

		28
		IEEE 802.3 10BASE5

		29
		IEEE 802.3 10BASE2

		30
		IEEE 802.3 1BASE5

		31
		IEEE 802.3 10BROAD36

		32
		IEEE 802.3 100BASEVG

		33
		IEEE 802.5 Token-Ring

		34
		ANSI X3T9.5 FDDI

		35
		MCA

		36
		ESDI

		37
		IDE

		38
		CMD

		39
		ST506

		40
		DSSI

		41
		QIC2

		42
		Enhanced ATA/IDE

		43
		AGP

		44
		TWIRP (two-way infrared)

		45
		FIR (fast infrared)

		46
		SIR (serial infrared)

		47
		IrBus

		48
		Serial ATA

string ProtocolDescription

A free-form string that provides more information that is related to the ProtocolSupported by the Controller.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EndpointForIPNetworkConnection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EndpointForIPNetworkConnection

Class reference

Subclass of CIM_SAPSAPDependency

CIM_EndpointForIPNetworkConnection associates the instance of CIM_IPNetworkConnection with the communication endpoint (Eg “CIM_LANEndpoint”.)

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

CIM_IPNetworkConnection Dependent

The instance representing the IP network connection.

CIM_ProtocolEndpoint Antecedent

The Protocol Endpoint for the network connection.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountedFileSystemSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountedFileSystemSetting

Class reference

Subclass of CIM_SettingData

Class for representing mount options. Basic boolean properties represent filesystem independent mount options (as listed in mount(8)).

Key properties

InstanceID

Local properties

boolean InterpretDevices

Interpret character or block special devices on the filesystem.Corresponds to ‘dev’ mount option.

boolean Silent

Turn on the silent flag. Corresponds to ‘silent’ mount option.

boolean UpdateAccessTimes

Update inode access times on this filesystem. Corresponds to ‘atime’ mount option.

boolean AllowSUID

Allow set-user-identifier or set-group-identifier bits to take effect. Corresponds to ‘suid’ mount option.

boolean UpdateFullAccessTimes

Allows to explicitly requesting full atime updates. This makes it possible for kernel to defaults to relatime or noatime but still allow userspace to override it. Corresponds to ‘strictatime’ mount option.

boolean AllowExecution

Permit execution of binaries. Corresponds to ‘exec’ mount option.

boolean Auto

Mount automatically at boot-up. Corresponds to ‘auto’ mount option. This option is only relevant in /etc/fstab.

boolean AllowUserMount

Allow an ordinary user to mount the filesystem. Corresponds to ‘user’ mount option. This option is only relevant in /etc/fstab.

boolean UpdateDirectoryAccessTimes

Update directory inode access times on this filesystem. This is the default. Corresponds to ‘diratime’ mount option.

string[] OtherOptions

Other mount options that can be filesystem specific. This property is also used to specify options with values (e.g. uid=0 or gid=100). OtherOptions are appended (in the same order as they appear in the array) to the basic options.

boolean UpdateRelativeAccessTimes

Update inode access times relative to modify or change time. Access time is only updated if the previous access time was earlier than the current modify or change time. Corresponds to ‘relatime’ mount option.

boolean AllowWrite

Mount the filesystem read-write. If false, mount read-only.Corresponds to ‘rw’ mount option.

uint16 FileSystemCheckOrder

Used by the fsck(8) program to determine the order in which filesystem checks are done at reboot time. The root filesystem should be specified with a 1, other filesystems with a 2. Filesystems within a drive are checked sequentially, but filesystems on different drives are checked in parallel. This option is only relevant in /etc/fstab.

boolean AllowMandatoryLock

Allow mandatory locks on this filesystem. See fcntl(2). Corresponds to ‘mand’ mount option.

boolean Dump

This field is used for these filesystems by the dump(8) command to determine which filesystems need to be dumped. If the field is not present, a value of zero is returned and dump will assume that the filesystem does not need to be dumped. This option is only relevant in /etc/fstab.

boolean SynchronousDirectoryUpdates

All directory updates within the filesystem should be done synchronously. This affects the following system calls: creat, link, unlink, symlink, mkdir, rmdir, mknod and rename. Corresponds to ‘dirsync’ mount option.

boolean SynchronousIO

All I/O to the filesystem should be done synchronously. In case of media with limited number of write cycles (e.g. some flash drives), this option may cause life-cycle shortening. Corresponds to ‘sync’ mount option.

Local methods

None

Inherited properties

string InstanceID

string ElementName

string Description

string ConfigurationName

string SoOrgID

string Caption

string SoID

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/file.png

mof/CIM_PCIDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PCIDevice

Class reference

Subclass of CIM_PCIController

Capabilities and management of a PCI device controller on an adapter card.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 VendorID

Register that contains a value assigned by the PCI SIG used to identify the manufacturer of the device.

uint16 PCIDeviceID

Register that contains a value assigned by the device manufacturer used to identify the type of device.

uint64[] BaseAddress64

Array of doubleword base-memory addresses for 64 bit addresses

uint8 RevisionID

Register that contains a value assigned by the device manufacturer used to identify the revision number of the device.

uint16 SubsystemVendorID

Subsystem vendor ID. ID information is reported from a PCIDevice through protocol-specific requests. The correct place in the CIM Schema for this information is in CIM_Physical Element (the Manufacturer property) for hardware, and CIM_Product (the Vendor property) if the information is related to Product acquisition. This data is also reported here, because it is part of the standard output from the Device and is an optimization.

uint8 FunctionNumber

The function number for this PCI device.

uint8 MaxLatency

Register that specifies how often the device needs access to the PCI bus in 250ns. A 0 value indicates no requirement.

uint16 SubsystemID

Subsystem identifier code.

uint8 BusNumber

The bus number where this PCI device resides.

uint8 DeviceNumber

The device number assigned to this PCI device for this bus.

uint32[] BaseAddress

Array of doubleword base-memory addresses.

uint8 MinGrantTime

Register that indicates how long the master would like to retain PCI bus ownership whenever it initiates a transaction. A 0 value indicates no requirement.

Local methods

None

Inherited properties

uint16 InterruptPin

datetime TimeOfLastReset

uint16 RequestedState

boolean PowerManagementSupported

uint16 HealthState

uint16 DeviceSelectTiming

uint16 CommunicationStatus

boolean SelfTestEnabled

string SystemName

datetime TimeOfLastStateChange

string Description

uint16 Availability

string Status

string ElementName

string[] StatusDescriptions

datetime InstallDate

uint16 TransitioningToState

uint64 Generation

uint8 LatencyTimer

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

string DeviceID

uint16 OperatingStatus

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string OtherEnabledState

uint64 PowerOnHours

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 CommandRegister

uint16 StatusInfo

uint16[] Capabilities

uint16[] PowerManagementCapabilities

uint32 MaxNumberControlled

uint32 ExpansionROMBaseAddress

uint16[] AvailableRequestedStates

uint8 CacheLineSize

uint16 ProtocolSupported

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

uint8 ClassCode

string ErrorDescription

string ProtocolDescription

string[] IdentifyingDescriptions

uint16 LocationIndicator

uint16[] OperationalStatus

uint32 LastErrorCode

string Name

string CreationClassName

string SystemCreationClassName

string[] CapabilityDescriptions

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

BISTExecution

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssignedGroupIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssignedGroupIdentity

Class reference

Subclass of CIM_AssignedIdentity

This relationship associates an Identity to a specific ManagedElement, whose trust and account information is represented.

Key properties

IdentityInfo

ManagedElement

Local properties

LMI_Identity IdentityInfo

The managed Identity

LMI_Group ManagedElement

The managed Group on the System

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

mof/CIM_LogicalIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalIdentity

Class reference

CIM_LogicalIdentity is an abstract and generic association, indicating that two ManagedElements represent different aspects of the same underlying entity. This relationship conveys what could be defined with multiple inheritance. In most scenarios, the Identity relationship is determined by the equivalence of Keys or some other identifying properties of the related Elements.

This relationship is reasonable in several scenarios. For example, it could be used to represent that a LogicalDevice is both a ‘bus’ entity and a ‘functional’ entity. A Device could be both a USB (bus) and a Keyboard (functional) entity.

Key properties

SameElement

SystemElement

Local properties

CIM_ManagedElement SameElement

SameElement represents an alternate aspect of the ManagedElement.

CIM_ManagedElement SystemElement

SystemElement represents one aspect of the Managed Element. The use of ‘System’ in the role name does not limit the scope of the association. The role name was defined in the original association, where the referenced elements were limited to LogicalElements. Since that time, it has been found valuable to instantiate these types of relationships for ManagedElements, such as Collections. So, the referenced elements of the association were redefined to be ManagedElements. Unfortunately, the role name could not be changed without deprecating the entire association. This was not deemed necessary just to correct the role name.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AbstractComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AbstractComponent

Class reference

CIM_AbstractComponent is a generic association used to establish ‘part of’ relationships between Managed Elements. This association subclasses to CIM_Component and view associations that derive from CIM_Component.

Key properties

GroupComponent

PartComponent

Local properties

CIM_ManagedElement GroupComponent

The parent element in the association.

CIM_ManagedElement PartComponent

The child element in the association.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkSystemDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkSystemDevice

Class reference

Subclass of CIM_SystemDevice

Association between NetworkPort and ComputerSystem where it belongs.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

CIM_ComputerSystem GroupComponent

The hosting ComputerSystem.

CIM_LogicalDevice PartComponent

The NetworkPort (or subclass) that is a component of a ComputerSystem.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/minus.png

mof/CIM_Check.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Check

Class reference

Subclass of CIM_ManagedElement

A CIM_Check is a condition or characteristic that is expected to be true in an environment defined or scoped by an instance of a CIM_ComputerSystem. The Checks associated with a particular SoftwareElement are organized into one of two groups using the Phase property of the CIM_SoftwareElementChecks association. Conditions that are expected to be true when a SoftwareElement is in a particular state and environment are known as ‘in-state’ conditions. Conditions that need to be satisfied in order to transition the SoftwareElement to its next state are known as ‘next-state’ conditions.

A CIM_ComputerSystem object represents the environment in which CIM_SoftwareElements are already deployed/installed or into which the elements will be deployed/installed. For the case in which an element is already installed, the CIM_InstalledSoftwareElement association identifies the CIM_ComputerSystem object that represents the “environment”. When a SoftwareElement is being deployed for installation on a ComputerSystem, that system is the target of the Check and is identified using the TargetSystem reference of the InvokeOnSystem method.

Key properties

CheckID

TargetOperatingSystem

Name

SoftwareElementID

Version

SoftwareElementState

Local properties

string CheckID

An identifier used in conjunction with other keys to uniquely identify the Check.

boolean CheckMode

The CheckMode property is used to indicate whether the condition is expected to exist or not exist in the environment. When the value is True, the condition is expected to exist (e.g., a file is expected to be on a system), so the Invoke methods are expected to return True. When the value is False, the condition is not expected to exist (e.g., a file is not to be on a system), so the Invoke methods are expected to return False.

uint16 TargetOperatingSystem

The Target Operating System of the SoftwareElement being checked.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		MACOS

		3
		ATTUNIX

		4
		DGUX

		5
		DECNT

		6
		Tru64 UNIX

		7
		OpenVMS

		8
		HPUX

		9
		AIX

		10
		MVS

		11
		OS400

		12
		OS/2

		13
		JavaVM

		14
		MSDOS

		15
		WIN3x

		16
		WIN95

		17
		WIN98

		18
		WINNT

		19
		WINCE

		20
		NCR3000

		21
		NetWare

		22
		OSF

		23
		DC/OS

		24
		Reliant UNIX

		25
		SCO UnixWare

		26
		SCO OpenServer

		27
		Sequent

		28
		IRIX

		29
		Solaris

		30
		SunOS

		31
		U6000

		32
		ASERIES

		33
		HP NonStop OS

		34
		HP NonStop OSS

		35
		BS2000

		36
		LINUX

		37
		Lynx

		38
		XENIX

		39
		VM

		40
		Interactive UNIX

		41
		BSDUNIX

		42
		FreeBSD

		43
		NetBSD

		44
		GNU Hurd

		45
		OS9

		46
		MACH Kernel

		47
		Inferno

		48
		QNX

		49
		EPOC

		50
		IxWorks

		51
		VxWorks

		52
		MiNT

		53
		BeOS

		54
		HP MPE

		55
		NextStep

		56
		PalmPilot

		57
		Rhapsody

		58
		Windows 2000

		59
		Dedicated

		60
		OS/390

		61
		VSE

		62
		TPF

		63
		Windows (R) Me

		64
		Caldera Open UNIX

		65
		OpenBSD

		66
		Not Applicable

		67
		Windows XP

		68
		z/OS

		69
		Microsoft Windows Server 2003

		70
		Microsoft Windows Server 2003 64-Bit

		71
		Windows XP 64-Bit

		72
		Windows XP Embedded

		73
		Windows Vista

		74
		Windows Vista 64-Bit

		75
		Windows Embedded for Point of Service

		76
		Microsoft Windows Server 2008

		77
		Microsoft Windows Server 2008 64-Bit

		78
		FreeBSD 64-Bit

		79
		RedHat Enterprise Linux

		80
		RedHat Enterprise Linux 64-Bit

		81
		Solaris 64-Bit

		82
		SUSE

		83
		SUSE 64-Bit

		84
		SLES

		85
		SLES 64-Bit

		86
		Novell OES

		87
		Novell Linux Desktop

		88
		Sun Java Desktop System

		89
		Mandriva

		90
		Mandriva 64-Bit

		91
		TurboLinux

		92
		TurboLinux 64-Bit

		93
		Ubuntu

		94
		Ubuntu 64-Bit

		95
		Debian

		96
		Debian 64-Bit

		97
		Linux 2.4.x

		98
		Linux 2.4.x 64-Bit

		99
		Linux 2.6.x

		100
		Linux 2.6.x 64-Bit

		101
		Linux 64-Bit

		102
		Other 64-Bit

		103
		Microsoft Windows Server 2008 R2

		104
		VMware ESXi

		105
		Microsoft Windows 7

		106
		CentOS 32-bit

		107
		CentOS 64-bit

		108
		Oracle Linux 32-bit

		109
		Oracle Linux 64-bit

		110
		eComStation 32-bitx

		111
		Microsoft Windows Server 2011

		113
		Microsoft Windows Server 2012

		114
		Microsoft Windows 8

		115
		Microsoft Windows 8 64-bit

		116
		Microsoft Windows Server 2012 R2

string Name

The name used to identify the SoftwareElement that is being checked.

string SoftwareElementID

This is an identifier for the SoftwareElement being checked.

string Version

The version of the SoftwareElement being checked.

uint16 SoftwareElementState

The SoftwareElementState of the SoftwareElement being checked.

		ValueMap
		Values

		0
		Deployable

		1
		Installable

		2
		Executable

		3
		Running

Local methods

uint32 Invoke ()

The Invoke method evaluates this Check. The details of the evaluation are described by the specific subclasses of CIM_Check. When the SoftwareElement being checked is already installed, the CIM_InstalledSoftwareElement association identifies the CIM_ComputerSystem in whose context the Invoke is executed. If this association is not in place, then the InvokeOnSystem method should be used - since it identifies the TargetSystem as an input parameter of the method.

The results of the Invoke method are based on the return value. A zero is returned if the condition is satisfied. A one is returned if the method is not supported. Any other value indicates the condition is not satisfied.

Parameters

		None

		

uint32 InvokeOnSystem (CIM_ComputerSystem TargetSystem)

The InvokeOnSystem method evaluates this Check. The details of the evaluation are described by the specific subclasses of CIM_Check. The method’s TargetSystem input parameter specifies the ComputerSystem in whose context the method is invoked.

The results of the InvokeOnSystem method are based on the return value. A zero is returned if the condition is satisfied. A one is returned if the method is not supported. Any other value indicates the condition is not satisfied.

Parameters

		IN CIM_ComputerSystem TargetSystem

		Reference to ComputerSystem in whose context the method is to be invoked.

Inherited properties

string InstanceID

string ElementName

string Caption

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkInstDeletion.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkInstDeletion

Class reference

Subclass of CIM_InstDeletion

LMI_NetworkInstDeletion notifies when an instance of one of the following classes is deleted: LMI_IPAssignmentSettingData and LMI_IPNetworkConnection

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedMemory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedMemory

Class reference

Subclass of CIM_Dependency

LogicalElements may have Memory installed on them or otherwise associated with them - such as CacheMemory. This is made explicit in this association.

Key properties

Dependent

Antecedent

Local properties

CIM_LogicalElement Dependent

The LogicalElement.

CIM_Memory Antecedent

Memory installed on or associated with a Device.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_static/comment.png

mof/LMI_MemberOfSoftwareCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MemberOfSoftwareCollection

Class reference

Subclass of CIM_MemberOfCollection

CIM_MemberOfCollection is an aggregation used to establish membership of ManagedElements in a Collection.

Key properties

Member

Collection

Local properties

LMI_SoftwareIdentity Member

The aggregated member of the Collection.

LMI_SystemSoftwareCollection Collection

The Collection that aggregates members.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PCIDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PCIDevice

Class reference

Subclass of CIM_PCIDevice

Capabilities and management of a PCI device controller on an adapter card.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 VendorID

Register that contains a value assigned by the PCI SIG used to identify the manufacturer of the device.

uint16 InterruptPin

Defines the PCI interrupt request pin (INTA# to INTD#) to which a PCI functional device is connected.

		ValueMap
		Values

		0
		None

		1
		INTA#

		2
		INTB#

		3
		INTC#

		4
		INTD#

		5
		Unknown

string SubsystemVendorName

Name of the subsystem vendor

uint16 PCIDeviceID

Register that contains a value assigned by the device manufacturer used to identify the type of device.

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

uint16[] Capabilities

An array of integers that indicates controller capabilities. Information such as “Supports 66MHz” (value=2) is specified in this property. The data in the Capabilities array is gathered from the PCI Status Register and the PCI Capabilities List as defined in the PCI Specification.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Supports 66MHz

		3
		Supports User Definable Features

		4
		Supports Fast Back-to-Back Transactions

		5
		PCI-X Capable

		6
		PCI Power Management Supported

		7
		Message Signaled Interrupts Supported

		8
		Parity Error Recovery Capable

		9
		AGP Supported

		10
		Vital Product Data Supported

		11
		Provides Slot Identification

		12
		Hot Swap Supported

		13
		Supports PCIe

		14
		Supports PCIe Gen 2

		15
		Supports PCIe Gen 3

		16..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string SubsystemName

Name of the subsystem

string SystemName

The System Name of the scoping system.

uint64[] BaseAddress64

Array of doubleword base-memory addresses for 64 bit addresses

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint8 RevisionID

Register that contains a value assigned by the device manufacturer used to identify the revision number of the device.

uint8 LatencyTimer

Defines the minimum amount of time, in PCI clock cycles, that the bus master can retain ownership of the bus.

uint16 SubsystemVendorID

Subsystem vendor ID. ID information is reported from a PCIDevice through protocol-specific requests. The correct place in the CIM Schema for this information is in CIM_Physical Element (the Manufacturer property) for hardware, and CIM_Product (the Vendor property) if the information is related to Product acquisition. This data is also reported here, because it is part of the standard output from the Device and is an optimization.

uint8 FunctionNumber

The function number for this PCI device.

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

uint16 CommandRegister

Current contents of the register that provides basic control over the ability of the device to respond to or perform PCI accesses.

uint16 DeviceSelectTiming

The slowest device-select timing for a target device.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Fast

		3
		Medium

		4
		Slow

		5
		Reserved

string PCIDeviceName

Name of the device

uint16 SubsystemID

Subsystem identifier code.

uint32 ExpansionROMBaseAddress

Doubleword Expansion ROM-base memory address.

string VendorName

Name of the vendor

uint8 CacheLineSize

Specifies the system cache line size in doubleword increments (for example, a 486-based system would store the value 04h, indicating a cache line size of four doublewords.

uint8 BusNumber

The bus number where this PCI device resides.

uint8 ClassCode

Register of 8 bits that identifies the basic function of the PCI device. This property is only the upper byte (offset 0Bh) of the 3-byte ClassCode field. Note that the ValueMap array of the property specifies the decimal representation of this information.

		ValueMap
		Values

		0
		Pre 2.0

		1
		Mass Storage

		2
		Network

		3
		Display

		4
		Multimedia

		5
		Memory

		6
		Bridge

		7
		Simple Communications

		8
		Base Peripheral

		9
		Input

		10
		Docking Station

		11
		Processor

		12
		Serial Bus

		13
		Wireless

		14
		Intelligent I/O

		15
		Satellite Communication

		16
		Encryption/Decryption

		17
		Data Acquisition and Signal Processing

		18..254
		PCI Reserved

		255
		Other

uint8 DeviceNumber

The device number assigned to this PCI device for this bus.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint32[] BaseAddress

Array of doubleword base-memory addresses.

string SystemCreationClassName

The CreationClassName of the scoping system.

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

Local methods

None

Inherited properties

uint16 PrimaryStatus

uint16 RequestedState

uint16 HealthState

uint16 CommunicationStatus

boolean SelfTestEnabled

datetime TimeOfLastStateChange

string Description

uint16 Availability

string Status

string[] StatusDescriptions

datetime InstallDate

uint16 TransitioningToState

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

boolean PowerManagementSupported

string[] CapabilityDescriptions

uint16 OperatingStatus

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string OtherEnabledState

uint8 MaxLatency

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint32 MaxNumberControlled

uint64 PowerOnHours

uint16 ProtocolSupported

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string ProtocolDescription

datetime TimeOfLastReset

string[] IdentifyingDescriptions

uint16 LocationIndicator

uint16[] OperationalStatus

uint32 LastErrorCode

uint8 MinGrantTime

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

BISTExecution

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DiskPartitionConfigurationCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DiskPartitionConfigurationCapabilities

Class reference

Subclass of CIM_Capabilities

DiskPartitionConfigurationCapabilities instances describe a partition style supported by the platform. An instance of this class is associated with a volume (or partition) when a partition table is installed (see DiskPartitionConfigurationService.SetPartitionStyle.

Key properties

InstanceID

Local properties

uint32 PartitionTableSize

The number of block occupied by the partition table and other metadata. The effective block size for partitions is the StorageExtent’s ConsumableBlocks minus this size.

uint16 PartitionStyle

The partition style (i.e partition table type) associated with this capabilities instance.

		ValueMap
		Values

		2
		MBR

		3
		GPT

		4
		VTOC

uint16[] ValidSubPartitionStyles

Some partitions can act as a container for other partitions. If sub partitions are not supported, this should be set to NULL.

		ValueMap
		Values

		1
		Other

		2
		MBR

		3
		VTOC

		4
		GPT

boolean OverlapAllowed

The platform supports partitions with overlapping address ranges.

uint16 MaxNumberOfPartitions

The maximum number of partitions that can be BasedOn the Underlying extent.

uint16 Version

The version number associated with this partition style.

uint16[] SupportedSynchronousActions

Enumeration indicating what operations will be executed synchronously. If an operation is included in this property then the underlying implementation is indicating that it supports the operation without the creation of a job.

		ValueMap
		Values

		2
		SetPartitionStyle

		3
		CreateOrModifyPartition

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint64 MaxCapacity

The largest partition size (in blocks) of this style supported on this platform.

string[] OtherValidSubPartitionStyles

A string describing the partition style if the corresponding entry in ValidSubPartitionStyles is ‘Other’.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

string Caption

uint64 Generation

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_OrderedComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_OrderedComponent

Class reference

Subclass of CIM_Component

CIM_OrderedComponent is a generic association used to establish ‘part of’ relationships between ManagedElements. It arranges the PartComponents in a specific assigned order. The semantics of the order depends on the context and use by the referencing classes. For example, if this association is used to arrange settings in a hierarchical order, then this specifies the sequence in which the settings are applied.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

uint64 AssignedSequence

AssignedSequence is an unsigned integer ‘n’ that indicates the relative order of ManagedElement instances. When ‘n’ is a positive integer, it indicates a place in the sequence of members, with smaller integers indicating earlier positions in the sequence. The special value ‘0’ indicates ‘don’t care’. If two or more members have the same non-zero sequence number, then the ordering between those members is irrelevant, but they must all be ordered at the appropriate place in the overall sequence.

A series of examples will make ordering of members clearer:

If all members have the same sequence number,

regardless of whether it is ‘0’ or non-zero, any

order is acceptable.

o The values:

1:MEMBER A

2:MEMBER B

1:MEMBER C

3:MEMBER D

indicate two acceptable orders: A,C,B,D or C,A,B,D,

since A and C can be ordered in either sequence, but

only at the ‘1’ position.

Note that the non-zero sequence numbers need not start with ‘1’, and they need not be consecutive. All that matters is their relative magnitude.

Local methods

None

Inherited properties

CIM_ManagedElement GroupComponent

CIM_ManagedElement PartComponent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageExtent

Class reference

Subclass of CIM_StorageExtent

This is generic class describing block devices available on the system, i.e. in machine’s /dev/ directory.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

boolean Primordial

If true, “Primordial” indicates that the containing System does not have the ability to create or delete this operational element. This is important because StorageExtents are assembled into higher-level abstractions using the BasedOn association. Although the higher-level abstractions can be created and deleted, the most basic, (i.e. primordial), hardware-based storage entities cannot. They are physically realized as part of the System, or are actually managed by some other System and imported as if they were physically realized. In other words, a Primordial StorageExtent exists in, but is not created by its System and conversely a non-Primordial StorageExtent is created in the context of its System. For StorageVolumes, this property will generally be false. One use of this property is to enable algorithms that aggregate StorageExtent.ConsumableSpace across all, StorageExtents but that also want to distinquish the space that underlies Primordial StoragePools. Since implementations are not required to surface all Component StorageExtents of a StoragePool, this information is not accessible in any other way.

boolean NoSinglePointOfFailure

Indicates whether or not there exists no single point of failure.

string DeviceBusType

Name of bus, used to connect the block device, such as USB, SCSI or ATA. This property is available mostly for disk block devices, not for their descendants like partitions, logical volumes and so on. Note that the list of values may not be complete and is not guaranteed to be stable.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Usually it is name of the device, i.e. ‘sda’ in case of /dev/sda block device or ‘myraid’ in case of /dev/md/myraid or name of a Logical Volume. Subclasses may define its own ElementName format.

uint16 NameNamespace

The preferred source SCSI for volume names is SCSI VPD Page 83 responses. Page 83 returns a list of identifiers for various device elements. The metadata for each identifier includes an Association field, identifiers with association of 0 apply to volumes. Page 83 supports several namespaces specified in the Type field in the identifier metadata. See SCSI SPC-3 specification.

2 = VPD Page 83, Type 3 NAA (NameFormat SHOULD be NAA)

3 = VPD Page 83, Type 2 EUI64 (NameFormat EUI)

4 = VPD Page 83, Type 1 T10 Vendor Identification

(NameFormat T10)

Less preferred volume namespaces from other interfaces:

5 = VPD page 80, Serial number (NameFormat SHOULD be Other)

6 = FC NodeWWN (NameFormat SHOULD be NAA or EUI)

7 = Serial Number/Vendor/Model (NameFormat SHOULD be SNVM)

The preferred namespace for LogigicalDisk names is platform specific device namespace; see LogigicalDIsk Description.

8 = OS Device Namespace.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83Type3

		3
		VPD83Type2

		4
		VPD83Type1

		5
		VPD80

		6
		NodeWWN

		7
		SNVM

		8
		OS Device Namespace

uint16 NameFormat

The list here applies to all StorageExtent subclasses. Please look at the Description in each subclass for guidelines on the approriate values for that subclass. Note that any of these formats could apply to a CompositeExtent.

Note - this property originally touched on two concepts that are now separated into this property and NameNamespace. Values 2,3,4,5,6, and 8 are retained for backwards compatibility but are deprecated in lieu of the corresponding values in CIM_StorageExtent.NameNamespace.

For example, the preferred source for SCSI virtual (RAID) disk names is from Inquiry VPD page 83 response, type 3 identifiers. These will have NameFormat set to ‘NAA’ and NameNamespace to ‘VPD83Type3’.

Format of the Name property. Values for extents representing SCSI volumes are (per SCSI SPC-3):

2 = VPD Page 83, NAA IEEE Registered Extended (VPD83NAA6)

(DEPRECATED)

3 = VPD Page 83, NAA IEEE Registered (VPD83NAA5)

(DEPRECATED)

4 = VPD Page 83, (VPD83Type2) (DEPRECATED)

5 = VPD Page 83,

T10 Vendor Identification (VPD83Type1) (DEPRECATED)

6 = VPD Page 83, Vendor Specific (VPD83Type0) (DEPRECATED)

7 = Serial Number/Vendor/Model (SNVM) SNVM is 3 strings representing the vendor name, product name within the vendor namespace, and the serial number within the model namespace. Strings are delimited with a ‘+’. Spaces may be included and are significant. The serial number is the text representation of the serial number in hexadecimal upper case. This represents the vendor and model ID from SCSI Inquiry data; the vendor field MUST be 8 characters wide and the product field MUST be 16 characters wide. For example,

‘ACME____+SUPER DISK______+124437458’ (_ is a space character)

8 = Node WWN (for single LUN/controller) (NodeWWN)

(DEPRECATED)

9 = NAA as a generic format. See

http://standards.ieee.org/regauth/oui/tutorials/fibrecomp_id.html. Formatted as 16 or 32 unseparated uppercase hex characters (2 per binary byte). For example ‘21000020372D3C73’

10 = EUI as a generic format (EUI64) See

http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

Formatted as 16 unseparated uppercase hex characters (2 per binary byte)

11 = T10 vendor identifier format as returned by SCSI Inquiry VPD page 83, identifier type 1. See T10 SPC-3 specification. This is the 8-byte ASCII vendor ID from the T10 registry followed by a vendor specific ASCII identifier; spaces are permitted. For non SCSI volumes, ‘SNVM’ may be the most appropriate choice. 12 = OS Device Name (for LogicalDisks). See LogicalDisk Name description for details.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		VPD83NAA6

		3
		VPD83NAA5

		4
		VPD83Type2

		5
		VPD83Type1

		6
		VPD83Type0

		7
		SNVM

		8
		NodeWWN

		9
		NAA

		10
		EUI64

		11
		T10VID

		12
		OS Device Name

uint64 ExtentStripeLength

If not null, then IsComposite shall be true. Number of contiguous underlying StorageExtents counted before looping back to the first underlying StorageExtent of the current stripe. It is the number of StorageExtents forming the user data stripe.

string Name

A unique identifier for the Extent.

uint64 BlockSize

Size in bytes of the blocks which form this StorageExtent. If variable block size, then the maximum block size in bytes should be specified. If the block size is unknown or if a block concept is not valid (for example, for AggregateExtents, Memory or LogicalDisks), enter a 1.

boolean IsComposite

True indicates that the data is a composition of various StorageExtents that are associated to this StorageExtent via a CIM_BasedOn. Composition models the distribution of user data across one or more underlying StorageExtents, which may or not be protected by some redundancy mechanism. Composite extents represent a contiguous range of logical blocks. Composite extents may overlap, however, the underlying StorageExtents within the overlap shall not contain any check data. Distribution of check data may be specified using the CompositeExtentBasedOn association.

string[] ExtentDiscriminator

An array of strings used to discriminate the association context in which this StorageExtent is instantiated. Each element of the array should be prefixed by a well known organization name followed by a colon and followed by a string defined by that organization. For example, SNIA SMI-S compliant instances might contain one or more of the following values:

‘SNIA:Pool Component’ - A StorageExtent (or CompositeExtent) that represents storage of a StoragePool and has an AssociatedComponentExtent to its StoragePool, but is not a remaining extent.

‘SNIA:Remaining’ - A StorageExtent that has an AssociatedRemainingExtent to a StoragePool (representing free storage in the StoragePool).

‘SNIA:Intermediate’ - A StorageExtent (or CompositeExtent) that is neither a Pool Component nor a Remaining Extent (it does not represent storage in the pool, remaining or otherwise).

‘SNIA:Composite’ - A StorageExtent that is a CompositeExtent.

‘SNIA:DiskDrive’ - A StorageExtent that is the media on a Disk Drive.

‘SNIA:Imported’ - A StorageExtent that is imported from an external source.

‘SNIA:Allocated’ - A StorageExtent that is subclassed to StorageVolume or LogicalDisk, and has an AllocatedFromStoragePool association from a Concrete StoragePool.

‘SNIA:Shadow’ - A StorageExtent (or subclass) that represents a StorageExtent in another autonomous profile (e.g., the StorageVirtualizer has StorageVolumes (Shadow) that represent StorageVolumes exported by Arrays).

‘SNIA:Spare’ - A StorageExtent that acts as a spare for other StorageExtents (and has the IsSpare association).

‘SNIA:Reserved’ - A StorageExtent that is reserved for some system use within the autonomous profile (e.g., in NAS profiles, an Allocated LogicalDisk is reserved for holding Filesystems).

uint16 PackageRedundancy

How many physical packages can currently fail without data loss. For example, in the storage domain, this might be disk spindles.

uint16 DataRedundancy

Number of complete copies of data currently maintained.

uint64 NumberOfBlocks

Total number of logically contiguous blocks, of size Block Size, which form this Extent. The total size of the Extent can be calculated by multiplying BlockSize by NumberOfBlocks. If the BlockSize is 1, this property is the total size of the Extent.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] Names

All names, under which this device is known. All these names are symlinks to one block device.

uint16[] ExtentStatus

StorageExtents have additional status information beyond that captured in the OperationalStatus and other properties, inherited from ManagedSystemElement. This additional information (for example, “Protection Disabled”, value=9) is captured in the ExtentStatus property.

‘In-Band Access Granted’ says that access to data on an extent is granted to some consumer and is only valid when ‘Exported’ is also set. It is set as a side effect of PrivilegeManagementService.ChangeAccess or equivalent interfaces.

‘Imported’ indicates that the extent is used in the current system, but known to be managed by some other system. For example, a server imports volumes from a disk array.

‘Exported’ indicates the extent is meant to be used by some comsumer. A disk array’s logical units are exported.

Intermediate composite extents may be neither imported nor exported.

‘Relocating’ indicates the extent is being relocated.

		ValueMap
		Values

		0
		Other

		1
		Unknown

		2
		None/Not Applicable

		3
		Broken

		4
		Data Lost

		5
		Dynamic Reconfig

		6
		Exposed

		7
		Fractionally Exposed

		8
		Partially Exposed

		9
		Protection Disabled

		10
		Readying

		11
		Rebuild

		12
		Recalculate

		13
		Spare in Use

		14
		Verify In Progress

		15
		In-Band Access Granted

		16
		Imported

		17
		Exported

		18
		Relocating

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint64 ConsumableBlocks

The maximum number of blocks, of size BlockSize, which are available for consumption when layering StorageExtents using the BasedOn association. This property only has meaning when this StorageExtent is an Antecedent reference in a BasedOn relationship. For example, a StorageExtent could be composed of 120 blocks. However, the Extent itself may use 20 blocks for redundancy data. If another StorageExtent is BasedOn this Extent, only 100 blocks would be available to it. This information (‘100 blocks is available for consumption’) is indicated in the ConsumableBlocks property.

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

uint16[] ClientSettableUsage

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

string SystemName

boolean ErrorCleared

uint16 Usage

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

uint64 Generation

datetime InstallDate

string OtherNameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

uint16 StatusInfo

string DeviceID

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

uint32 LastErrorCode

string ErrorMethodology

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstModification.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstModification

Class reference

Subclass of CIM_InstIndication

CIM_InstModification notifies when an instance is modified.

Key properties

Local properties

string[] ChangedPropertyNames

This property lists the names of those properties of the object embedded in the SourceInstance whose change generated the indication.

Each property name shall be included at most once.

If the infrastructure cannot reliably determine which properties have changed, this property shall be NULL.

Notes:

tKey properties do not change, so will not be listed.

tRead-only property values can change, so might be listed.

tBecause of the protocol dependent serialization EmbeddedObjects, properties that transition from or to NULL are not necessarily listed in the EmbeddedObject of the corresponding PreviousInstance or SourceInstance.

string PreviousInstance

The property values of the object embedded in PreviousInstance shall reflect the consistent state of that object before the change that is reported in the indication.

Local methods

None

Inherited properties

string OtherSeverity

string SourceInstanceHost

string IndicationFilterName

datetime IndicationTime

sint64 SequenceNumber

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string IndicationIdentifier

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SystemStorageDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SystemStorageDevice

Class reference

Subclass of CIM_SystemDevice

This association connects CIM_System with all storage devices available on it.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

None

Local methods

None

Inherited properties

CIM_System GroupComponent

CIM_LogicalDevice PartComponent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DHCPSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DHCPSettingData

Class reference

Subclass of CIM_IPAssignmentSettingData

This class represents the desired configuration settings for the DHCPProtocolEndpoint (i.e. DHCP client configuration.

Key properties

InstanceID

Local properties

uint32 RequestedLeaseTime

This property is used in a client request (DHCPREQUEST) to allow the client to request a lease time for the IP address. The value shall be specified as an interval at a granularity of seconds. This value corresponds to the value for code 51 as defined in RFC2132.

uint16[] IPv6RequestedOptions

The list of requested DHCP options which the client is capable of interpreting but not necessarily required for the client to operate properly. This list of DHCP options is for IPv6. The values of this property shall be the opcodes specified in RFC3315, Section 22.

uint16[] RequiredOptions

The list of DHCP options required for the client to operate properly. This list of DHCP options is for IPv4.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Pad

		3
		Subnet Mask

		4
		Time Offset

		5
		Router Option

		6
		Time Server

		7
		Name Server

		8
		Domain Name Server

		9
		Log Server

		10
		Cookie Server

		11
		LPR Server

		12
		Impress Server

		13
		Resource Location Server

		14
		Host Name

		15
		Boot File Size

		16
		Merit Dump File

		17
		Domain Name

		18
		Swap Server

		19
		Root Path

		20
		Extensions Path

		21
		IP Forwarding Enable/Disable

		22
		Non-Local Source Routing Enable/Disable

		23
		Policy Filter

		24
		Maximum Datagram Reassembly Size

		25
		Default IP Time-to-live

		26
		Path MTU Aging Timeout

		27
		Path MTU Plateau Table

		28
		Interface MTU

		29
		All Subnets are Local

		30
		Broadcast Address

		31
		Perform Subnet Mask Discovery

		32
		Mask Supplier

		33
		Perform Router Discovery

		34
		Router Solicitation Address

		35
		Static Route

		36
		Trailer Encapsulation

		37
		ARP Cache Timeout

		38
		Ethernet Encapsulation

		39
		TCP Default TTL

		40
		TCP Keepalive Interval

		41
		TCP Keepalive Garbage

		42
		Network Information Service Domain

		43
		Network Information Servers

		44
		Network Time Protocol Servers

		45
		Vendor Specific Information

		46
		NetBIOS over TCP/IP Name Server

		47
		NetBIOS over TCP/IP Datagram Distribution Server

		48
		NetBIOS over TCP/IP Node Type

		49
		NetBIOS over TCP/IP Scope

		50
		X Window System Font Server

		51
		X Window System Display Manager

		52
		Requested IP Address

		53
		Lease Time

		54
		Option Overload

		55
		Message Type

		56
		Server Identifier

		57
		Parameter Request List

		58
		Error Message

		59
		Maximum Message Size

		60
		Renewal (T1) Time

		61
		Rebinding (T2) Time

		62
		Vendor Class Identifier

		63
		Client Identifier

		64
		DMTF Reserved

		65
		DMTF Reserved

		66
		Network Information Service+ Domain

		67
		Network Information Service+ Servers

		68
		TFTP Server Name

		69
		Bootfile Name

		70
		Mobile IP Home Agent

		71
		Simple Mail Transport Protocol (SMTP) Server

		72
		Post Office Protocol (POP3) Server

		73
		Network News Transport Protocol (NNTP) Server

		74
		Default World Wide Web (WWW) Server

		75
		Default Finger Server

		76
		Default Internet Relay Chat (IRC) Server

		77
		StreetTalk Server

		78
		StreetTalk Directory Assistance (STDA) Server

		79
		User Class

		80
		SLP Directory Agent

		81
		SLP Service Scope

		82..83
		DMTF Reserved

		84
		Relay Agent Information

		85..118
		DMTF Reserved

		119
		Name Service Search

		120
		Subnet Selection

		121..122
		DMTF Reserved

		123
		Classless Route

		124..256
		DMTF Reserved

		257
		End

		258..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

uint16[] IPv6RequiredOptions

The list of DHCP required for the client to operate properly. This list of options is for IPv6. The values of this property shall be the option-codes specified in RFC3315, Section 22.

string RequestedIPv6Address

The IPv6Address that this DHCPSettingData is requesting.

string VendorClassIdentifier

This property is used by DHCP clients to optionally identify the vendor type and configuration of a DHCP client. This corresponds to DHCP Option Code 60 as defined in RFC2132. While this is value is an option and therefore could be expressed using the RequestedOption property, it differs from other properties in that it includes a value when specified from the client.

uint16[] RequestedOptions

The list of requested DHCP options which the client is capable of interpreting but not necessarily required for the client to operate properly. This list of DHCP options is for IPv4.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Pad

		3
		Subnet Mask

		4
		Time Offset

		5
		Router Option

		6
		Time Server

		7
		Name Server

		8
		Domain Name Server

		9
		Log Server

		10
		Cookie Server

		11
		LPR Server

		12
		Impress Server

		13
		Resource Location Server

		14
		Host Name

		15
		Boot File Size

		16
		Merit Dump File

		17
		Domain Name

		18
		Swap Server

		19
		Root Path

		20
		Extensions Path

		21
		IP Forwarding Enable/Disable

		22
		Non-Local Source Routing Enable/Disable

		23
		Policy Filter

		24
		Maximum Datagram Reassembly Size

		25
		Default IP Time-to-live

		26
		Path MTU Aging Timeout

		27
		Path MTU Plateau Table

		28
		Interface MTU

		29
		All Subnets are Local

		30
		Broadcast Address

		31
		Perform Subnet Mask Discovery

		32
		Mask Supplier

		33
		Perform Router Discovery

		34
		Router Solicitation Address

		35
		Static Route

		36
		Trailer Encapsulation

		37
		ARP Cache Timeout

		38
		Ethernet Encapsulation

		39
		TCP Default TTL

		40
		TCP Keepalive Interval

		41
		TCP Keepalive Garbage

		42
		Network Information Service Domain

		43
		Network Information Servers

		44
		Network Time Protocol Servers

		45
		Vendor Specific Information

		46
		NetBIOS over TCP/IP Name Server

		47
		NetBIOS over TCP/IP Datagram Distribution Server

		48
		NetBIOS over TCP/IP Node Type

		49
		NetBIOS over TCP/IP Scope

		50
		X Window System Font Server

		51
		X Window System Display Manager

		52
		Requested IP Address

		53
		Lease Time

		54
		Option Overload

		55
		Message Type

		56
		Server Identifier

		57
		Parameter Request List

		58
		Error Message

		59
		Maximum Message Size

		60
		Renewal (T1) Time

		61
		Rebinding (T2) Time

		62
		Vendor Class Identifier

		63
		Client Identifier

		64
		DMTF Reserved

		65
		DMTF Reserved

		66
		Network Information Service+ Domain

		67
		Network Information Service+ Servers

		68
		TFTP Server Name

		69
		Bootfile Name

		70
		Mobile IP Home Agent

		71
		Simple Mail Transport Protocol (SMTP) Server

		72
		Post Office Protocol (POP3) Server

		73
		Network News Transport Protocol (NNTP) Server

		74
		Default World Wide Web (WWW) Server

		75
		Default Finger Server

		76
		Default Internet Relay Chat (IRC) Server

		77
		StreetTalk Server

		78
		StreetTalk Directory Assistance (STDA) Server

		79
		User Class

		80
		SLP Directory Agent

		81
		SLP Service Scope

		82..83
		DMTF Reserved

		84
		Relay Agent Information

		85..118
		DMTF Reserved

		119
		Name Service Search

		120
		Subnet Selection

		121..122
		DMTF Reserved

		123
		Classless Route

		124..256
		DMTF Reserved

		257
		End

		258..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string ClientIdentifier

This property is used by DHCP clients to specify their unique identifier. DHCP servers use this value to index their database of address bindings. This value is expected to be unique for all clients in an administrative domain. This corresponds to DHCP Option Code 61 as defined in RFC2132.

While this value is an option and therefore could be expressed using the RequestedOption property, it differs from other properties in that it includes a value when specified from the client.

string RequestedIPv4Address

A previously allocated IPv4 address for which the client is requesting re-allocation. This property is used in a client request (DHCPREQUEST) as the value of the ciaddr field. For AddressOrigin other than 4, this property shall be NULL.

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint.

A value of 4 indicates that the values will be assigned via DHCP. See RFC 2131 and related.

A value of 7 “DHCPv6” shall indicate the values will be assigned using DHCPv6. See RFC 3315.

		ValueMap
		Values

		4
		DHCP

		7
		DHCPv6

		
		DMTF Reserved

		32768..
		Vendor Reserved

Local methods

None

Inherited properties

string InstanceID

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

string ElementName

uint16 AddressPrefixOrigin

uint16 AddressSuffixOrigin

string Description

string SoID

string Caption

uint16 ChangeableType

uint64 Generation

string[] ComponentSetting

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MethodResult

Class reference

Subclass of CIM_MethodResult

Jobs are sometimes used to represent extrinsic method invocations that execute for times longer than the length of time is reasonable to require a client to wait. The method executing continues beyond the method return to the client. The class provides the result of the execution of a Job that was itself started by the side-effect of this extrinsic method invocation.

The indication instances embedded an instance of this class shall be the same indications delivered to listening clients or recorded, all or in part, to logs. Basically, this approach is a corollary to the functionality provided by an instance of ListenerDestinationLog (as defined in the Interop Model). The latter provides a comprehensive, persistent mechanism for recording Job results, but is also more resource-intensive and requires supporting logging functionality. Both the extra resources and logging may not be available in all environments (for example, embedded environments). Therefore, this instance-based approach is also provided.

The MethodResult instances shall not exist after the associated ConcreteJob is deleted.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

instance PostCallIndication

uint64 Generation

instance PreCallIndication

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ConcreteJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ConcreteJob

Class reference

Subclass of CIM_ConcreteJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

uint16 JobState

JobState is an integer enumeration that indicates the operational state of a Job. It can also indicate transitions between these states, for example, ‘Shutting Down’ and ‘Starting’. Following is a brief description of the states:

New (2) indicates that the job has never been started.

Starting (3) indicates that the job is moving from the ‘New’, ‘Suspended’, or ‘Service’ states into the ‘Running’ state.

Running (4) indicates that the Job is running.

Suspended (5) indicates that the Job is stopped, but can be restarted in a seamless manner.

Shutting Down (6) indicates that the job is moving to a ‘Completed’, ‘Terminated’, or ‘Killed’ state.

Completed (7) indicates that the job has completed normally.

Terminated (8) indicates that the job has been stopped by a ‘Terminate’ state change request. The job and all its underlying processes are ended and can be restarted (this is job-specific) only as a new job.

Killed (9) indicates that the job has been stopped by a ‘Kill’ state change request. Underlying processes might have been left running, and cleanup might be required to free up resources.

Exception (10) indicates that the Job is in an abnormal state that might be indicative of an error condition. Actual status might be displayed though job-specific objects.

Service (11) indicates that the Job is in a vendor-specific state that supports problem discovery, or resolution, or both.

Query pending (12) waiting for a client to resolve a query

		ValueMap
		Values

		2
		New

		3
		Starting

		4
		Running

		5
		Suspended

		6
		Shutting Down

		7
		Completed

		8
		Terminated

		9
		Killed

		10
		Exception

		11
		Service

		12
		Query Pending

		13..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

datetime TimeOfLastStateChange

The date or time when the state of the Job last changed. If the state of the Job has not changed and this property is populated, then it must be set to a 0 interval value. If a state change was requested, but rejected or not yet processed, the property must not be updated.

uint16 PercentComplete

The percentage of the job that has completed at the time that this value is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run data can be stored in this single-valued property.

Note that the value 101 is undefined and will be not be allowed in the next major revision of the specification.

uint16 LocalOrUtcTime

This property indicates whether the times represented in the RunStartInterval and UntilTime properties represent local times or UTC times. Time values are synchronized worldwide by using the enumeration value 2, “UTC Time”.

		ValueMap
		Values

		1
		Local Time

		2
		UTC Time

datetime TimeBeforeRemoval

The amount of time that the Job is retained after it has finished executing, either succeeding or failing in that execution. The job must remain in existence for some period of time regardless of the value of the DeleteOnCompletion property.

The default is five minutes.

string Name

The user-friendly name for this instance of a Job. In addition, the user-friendly name can be used as a property for a search or query. (Note: Name does not have to be unique within a namespace.)

boolean DeleteOnCompletion

Indicates whether or not the job should be automatically deleted upon completion. Note that the ‘completion’ of a job includes when the Job is terminated by manual intervention.

If this property is set to false and the job completes, then the intrinsic method DeleteInstance must be used to delete the job instead of updating this property.

If this property is set to true and the job completes, then the job may be deleted after the TimeBeforeRemoval interval.

If there is a CIM_DiagnosticServiceJobCapabilities associated to the service that spawned the job, then the DeleteOnCompletion should be TRUE if CIM_DiagnosticServiceJobCapabilities.DeleteJobSupported is FALSE. If DeleteOnCompletion is FALSE, then CIM_DiagnosticServiceJobCapabilities.CleanupInterval should be non-NULL.

datetime ElapsedTime

The time interval that the Job has been executing or the total execution time if the Job is complete. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run time can be stored in this single-valued property.

datetime TimeSubmitted

The time that the Job was submitted to execute. A value of all zeroes indicates that the owning element is not capable of reporting a date and time. Therefore, the ScheduledStartTime and StartTime are reported as intervals relative to the time their values are requested.

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

datetime StartTime

The time that the Job was actually started. This time can be represented by an actual date and time, or by an interval relative to the time that this property is requested. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run time can be stored in this single-valued property.

Local methods

uint32 RequestStateChange (uint16 RequestedState, datetime TimeoutPeriod)

Requests that the state of the job be changed to the value specified in the RequestedState parameter. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost.

If 0 is returned, then the task completed successfully. Any other return code indicates an error condition.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Can NOT complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Transition Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 RequestedState

		RequestStateChange changes the state of a job. The possible values are as follows:

Start (2) changes the state to ‘Running’.

Suspend (3) stops the job temporarily. The intention is to subsequently restart the job with ‘Start’. It might be possible to enter the ‘Service’ state while suspended. (This is job-specific.)

Terminate (4) stops the job cleanly, saving data, preserving the state, and shutting down all underlying processes in an orderly manner.

Kill (5) terminates the job immediately with no requirement to save data or preserve the state.

Service (6) puts the job into a vendor-specific service state. It might be possible to restart the job.

		ValueMap
		Values

		2
		Start

		3
		Suspend

		4
		Terminate

		5
		Kill

		6
		Service

		7..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

		IN datetime TimeoutPeriod

		A timeout period that specifies the maximum amount of time that the client expects the transition to the new state to take. The interval format must be used to specify the TimeoutPeriod. A value of 0 or a null parameter indicates that the client has no time requirements for the transition.

If this property does not contain 0 or null and the implementation does not support this parameter, a return code of ‘Use Of Timeout Parameter Not Supported’ must be returned.

uint32 GetError (string Error)

GetError is deprecated because Error should be an array,not a scalar.

When the job is executing or has terminated without error, then this method returns no CIM_Error instance. However, if the job has failed because of some internal problem or because the job has been terminated by a client, then a CIM_Error instance is returned.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Access Denied

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT string Error

		If the OperationalStatus on the Job is not “OK”, then this method will return a CIM Error instance. Otherwise, when the Job is “OK”, null is returned.

uint32 GetErrors (string[] Errors)

If JobState is “Completed” and Operational Status is “Completed” then no instance of CIM_Error is returned.

If JobState is “Exception” then GetErrors may return intances of CIM_Error related to the execution of the procedure or method invoked by the job.

If Operatational Status is not “OK” or “Completed”then GetErrors may return CIM_Error instances related to the running of the job.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Access Denied

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT string[] Errors

		If the OperationalStatus on the Job is not “OK”, then this method will return one or more CIM Error instance(s). Otherwise, when the Job is “OK”, null is returned.

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

string Description

sint8 RunDay

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 DetailedStatus

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

string Caption

string JobStatus

string MethodName

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16 OperatingStatus

string Notify

string Owner

Inherited methods

ResumeWithAction

KillJob

ResumeWithInput

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedSoftwareInstallationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedSoftwareInstallationService

Class reference

Subclass of CIM_HostedService

CIM_HostedService is an association between a Service and the System on which the functionality is located. The cardinality of this association is one-to-many. A System can host many Services. Services are weak with respect to their hosting System. Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the Service are located. The model does not represent Services hosted across multiple systems. The model is as an ApplicationSystem that acts as an aggregation point for Services that are each located on a single host.

Key properties

Dependent

Antecedent

Local properties

LMI_SoftwareInstallationService Dependent

The Service hosted on the System.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkJob

Class reference

Subclass of LMI_ConcreteJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint32 Priority

uint16 CommunicationStatus

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

uint16 JobState

string Description

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 ErrorCode

uint16 RecoveryAction

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

boolean DeleteOnCompletion

datetime ElapsedTime

string Caption

string JobStatus

datetime TimeSubmitted

string MethodName

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_UnixDirectory.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_UnixDirectory

Class reference

Subclass of CIM_Directory

UnixDirectory is a type of File that logically groups UnixFiles ‘contained’ in it.

Key properties

FSCreationClassName

Name

CSName

CSCreationClassName

CreationClassName

FSName

Local properties

uint64 FileSizeBits

Minimum number of bits needed to represent the maximum size of a Unix file allowed in the specified directory, as a signed integer value. Thus, a value of 32 indicates a maximum size of 2**31 bytes.

Local methods

None

Inherited properties

boolean Executable

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

string CSName

boolean Readable

uint16 HealthState

string Status

uint16 CommunicationStatus

string EncryptionMethod

datetime LastAccessed

string FSCreationClassName

string ElementName

string Description

uint64 InUseCount

datetime LastModified

string CompressionMethod

boolean Writeable

string Name

datetime InstallDate

string Caption

uint16 PrimaryStatus

string FSName

uint64 Generation

string CSCreationClassName

uint16[] OperationalStatus

uint16 OperatingStatus

uint64 FileSize

string CreationClassName

datetime CreationDate

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_NumericSensor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_NumericSensor

Class reference

Subclass of CIM_Sensor

A Numeric Sensor is capable of returning numeric readings and optionally supports thresholds settings.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16[] SupportedThresholds

An array representing the thresholds supported by this Sensor.

		ValueMap
		Values

		0
		LowerThresholdNonCritical

		1
		UpperThresholdNonCritical

		2
		LowerThresholdCritical

		3
		UpperThresholdCritical

		4
		LowerThresholdFatal

		5
		UpperThresholdFatal

sint32 LowerThresholdCritical

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If the CurrentReading is between LowerThresholdCritical and Lower ThresholdFatal, then the CurrentState is Critical.

uint16[] EnabledThresholds

An array representing the thresholds that are currently enabled for this Sensor.

		ValueMap
		Values

		0
		LowerThresholdNonCritical

		1
		UpperThresholdNonCritical

		2
		LowerThresholdCritical

		3
		UpperThresholdCritical

		4
		LowerThresholdFatal

		5
		UpperThresholdFatal

uint16 ValueFormulation

Indicates the method used by the sensor to produce its reading. 2 “Measured” shall indicate the value is measured directly by the sensor.

3 “Derived” shall indicate the value is derived from other measured values that are not reported discretely by this sensor.

		ValueMap
		Values

		0
		Unknown

		2
		Measured

		3
		Derived

		
		DMTF Reserved

		32768..65535
		Vendor Reserved

sint32 UnitModifier

The unit multiplier for the values returned by this Sensor. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). For example, if BaseUnits is Volts and the Unit Modifier is -6, then the units of the values returned are MicroVolts. However, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier.

sint32 MinReadable

MinReadable indicates the smallest value of the measured property that can be read by the NumericSensor.

sint32 LowerThresholdNonCritical

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If Current Reading is between LowerThresholdNonCritical and Upper ThresholdNonCritical, then the Sensor is reporting a normal value. If CurrentReading is between LowerThresholdNonCritical and LowerThresholdCritical, then the CurrentState is NonCritical.

sint32 Tolerance

Deprecated!
This property is being deprecated in lieu of using the Resolution and Accuracy properties.

Indicates the tolerance of the Sensor for the measured property. Tolerance, along with Resolution and Accuracy, is used to calculate the actual value of the measured physical property. Tolerance may vary depending on whether the Device is linear over its dynamic range.

uint16 BaseUnits

The base unit of the values returned by this Sensor. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). For example, if BaseUnits is Volts and the UnitModifier is -6, then the units of the values returned are MicroVolts. However, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Degrees C

		3
		Degrees F

		4
		Degrees K

		5
		Volts

		6
		Amps

		7
		Watts

		8
		Joules

		9
		Coulombs

		10
		VA

		11
		Nits

		12
		Lumens

		13
		Lux

		14
		Candelas

		15
		kPa

		16
		PSI

		17
		Newtons

		18
		CFM

		19
		RPM

		20
		Hertz

		21
		Seconds

		22
		Minutes

		23
		Hours

		24
		Days

		25
		Weeks

		26
		Mils

		27
		Inches

		28
		Feet

		29
		Cubic Inches

		30
		Cubic Feet

		31
		Meters

		32
		Cubic Centimeters

		33
		Cubic Meters

		34
		Liters

		35
		Fluid Ounces

		36
		Radians

		37
		Steradians

		38
		Revolutions

		39
		Cycles

		40
		Gravities

		41
		Ounces

		42
		Pounds

		43
		Foot-Pounds

		44
		Ounce-Inches

		45
		Gauss

		46
		Gilberts

		47
		Henries

		48
		Farads

		49
		Ohms

		50
		Siemens

		51
		Moles

		52
		Becquerels

		53
		PPM (parts/million)

		54
		Decibels

		55
		DbA

		56
		DbC

		57
		Grays

		58
		Sieverts

		59
		Color Temperature Degrees K

		60
		Bits

		61
		Bytes

		62
		Words (data)

		63
		DoubleWords

		64
		QuadWords

		65
		Percentage

		66
		Pascals

sint32 Accuracy

Deprecated!
Indicates the accuracy of the Sensor for the measured property. Its value is recorded as plus/minus hundredths of a percent. Accuracy, along with Resolution, is used to calculate the actual value of the measured physical property. Accuracy may vary depending on whether the Device is linear over its dynamic range.

uint16[] SettableThresholds

An array representing the writable thresholds supported by Sensor.

		ValueMap
		Values

		0
		LowerThresholdNonCritical

		1
		UpperThresholdNonCritical

		2
		LowerThresholdCritical

		3
		UpperThresholdCritical

		4
		LowerThresholdFatal

		5
		UpperThresholdFatal

sint32 CurrentReading

The current value indicated by the Sensor.

uint32 Hysteresis

Indicates the margin built around the thresholds. This margin prevents unnecessary state changes when the Sensor reading may fluctuate very close to its thresholds. This could be due to the Sensor’s tolerance/accuracy/resolution or due to environmental factors. Once a threshold is crossed, the state of the Sensor should change. However, the state should not fluctuate between the old and new states unless the Sensor’s change in the reading exceeds the hysteresis value. The units for this measurement are determined by BaseUnit*UnitModifier/RateUnit.

sint32 NormalMax

NormalMax provides guidance for the user as to the normal maximum range for the NumericSensor.

sint32 LowerThresholdFatal

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If the CurrentReading is below LowerThresholdFatal, then the Current State is Fatal.

string AccuracyUnits

Identifies the specific units in which the accuracy is expressed. The value of this property shall be a legal value of the Programmatic Units qualifier as defined in Appendix C.1 of DSP0004 V2.4 or later where the base unit is “percent”.

uint16 RateUnits

Specifies if the units returned by this Sensor are rate units. All the values returned by this Sensor are represented in the units obtained by (BaseUnits * 10 raised to the power of the UnitModifier). This is true unless this property (RateUnits) has a value different than “None”. For example, if BaseUnits is Volts and the UnitModifier is -6, then the units of the values returned are MicroVolts. But, if the RateUnits property is set to a value other than “None”, then the units are further qualified as rate units. In the above example, if RateUnits is set to “Per Second”, then the values returned by the Sensor are in MicroVolts/Second. The units apply to all numeric properties of the Sensor, unless explicitly overridden by the Units qualifier. Any implementation of CurrentReading should be qualified with either a Counter or a Gauge qualifier, depending on the characteristics of the sensor being modeled.

		ValueMap
		Values

		0
		None

		1
		Per MicroSecond

		2
		Per MilliSecond

		3
		Per Second

		4
		Per Minute

		5
		Per Hour

		6
		Per Day

		7
		Per Week

		8
		Per Month

		9
		Per Year

sint32 NormalMin

NormalMin provides guidance for the user as to the normal minimum range for the NumericSensor.

sint32 UpperThresholdNonCritical

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If the CurrentReading is between LowerThresholdNonCritical and UpperThresholdNonCritical, then the Sensor is reporting a normal value. If the CurrentReading is between UpperThreshold NonCritical and UpperThresholdCritical, then the CurrentState is NonCritical.

sint32 UpperThresholdFatal

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If the CurrentReading is above UpperThresholdFatal, then the Current State is Fatal.

uint32 Resolution

Resolution indicates the ability of the Sensor to resolve differences in the measured property. The units for this measurement are determined by BaseUnit*UnitModifier/RateUnit.

boolean IsLinear

Indicates that the Sensor is linear over its dynamic range.

sint32 MaxReadable

MaxReadable indicates the largest value of the measured property that can be read by the NumericSensor.

sint32 NominalReading

NominalReading indicates the ‘normal’ or expected value for the NumericSensor.

uint32 ProgrammaticAccuracy

Indicates the accuracy of the Sensor for the measured property. The accuracy is expressed as the value of theProgrammaticAccuracy property in the units specified by the by the AccuracyUnits property. ProgrammaticAccuracy, along with Resolution, is used to calculate the actual value of the measured physical property. ProgrammaticAccuracy may vary depending on whether the Device is linear over its dynamic range.

sint32 UpperThresholdCritical

The Sensor’s threshold values specify the ranges (min and max values) for determining whether the Sensor is operating under Normal, NonCritical, Critical or Fatal conditions. If the CurrentReading is between UpperThresholdCritical and Upper ThresholdFatal, then the CurrentState is Critical.

Local methods

uint32 GetNonLinearFactors (sint32 SensorReading, sint32 Accuracy, uint32 Resolution, sint32 Tolerance, uint32 Hysteresis)

Deprecated!
The use of this method is being deprecated, since Current senor reading can be retrieved through the GetInstance operation.

For a non-linear Sensor, the resolution, accuracy, tolerance and hysteresis vary as the current reading moves. This method can be used to get these factors for a given reading. It returns 0 if successful, 1 if unsupported, and any other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN sint32 SensorReading

		The sensor reading to get information for.

		OUT sint32 Accuracy

		The accuracy of the reading.

		OUT uint32 Resolution

		The resolution of the reading.

		OUT sint32 Tolerance

		The tolerance of the reading.

		OUT uint32 Hysteresis

		The Hysteresis of the reading.

uint32 RestoreDefaultThresholds ()

This method resets the values of the thresholds to hardware defaults. This method returns 0 if successful, 1 if unsupported and any other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

None

Inherited properties

uint16 PrimaryStatus

uint16 HealthState

boolean PowerManagementSupported

string CreationClassName

uint16 SensorType

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string CurrentState

string Status

string ElementName

string[] StatusDescriptions

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

string InstanceID

uint16[] OperationalStatus

string OtherSensorTypeDescription

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16[] AvailableRequestedStates

uint16 EnabledState

uint16[] AdditionalAvailability

uint16 OperatingStatus

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

string[] PossibleStates

string SensorContext

string Description

uint64 PollingInterval

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint16 RequestedState

string OtherEnabledState

uint32 LastErrorCode

string Name

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ServiceSAPDependency.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ServiceSAPDependency

Class reference

Subclass of CIM_Dependency

CIM_ServiceSAPDependency is an association between a Service and a ServiceAccessPoint that indicates that the referenced SAP is utilized by the Service to provide its functionality. For example, Boot Services can invoke BIOS Disk Services (interrupts) in order to function.

Key properties

Dependent

Antecedent

Local properties

CIM_Service Dependent

The Service that is dependent on an underlying SAP.

CIM_ServiceAccessPoint Antecedent

The required ServiceAccessPoint.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDDomain.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDDomain

Class reference

Subclass of CIM_ManagedElement

SSSD domain.

Key properties

Name

Local properties

boolean IsSubdomain

True if this is an autodiscovered subdomain.

string Realm

The Kerberos realm this domain is configured with.

string Name

Name of the domain.

string[] BackupServers

List of backup servers for this domain.

string ParentDomain

Name of the parent domain. It is not set if this domain is on top of the domain hierarchy.

string FullyQualifiedNameFormat

Format of fully qualified name this domain uses.

boolean UseFullyQualifiedNames

True if objects from this domain can be accessed only via fully qualified name.

uint32 MinId

Minimum UID and GID value for this domain.

string Provider

Main provider for this domain.

string[] PrimaryServers

List of primary servers for this domain.

string Forest

The domain forest this domain belongs to.

boolean Enumerate

True if this domain supports enumeration.

uint32 MaxId

Maximum UID and GID value for this domain.

string LoginFormat

The login format this domain expects.

Local methods

None

Inherited properties

string Caption

uint64 Generation

string ElementName

string Description

string InstanceID

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SystemSpecificCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SystemSpecificCollection

Class reference

Subclass of CIM_Collection

SystemSpecificCollection represents the general concept of a collection that is scoped (or contained) by a System. It represents a Collection that has meaning only in the context of a System, a Collection whose elements are restricted by the definition of the System, or both of these types of Collections. This meaning is explicitly described by the (required) association, HostedCollection.

An example of a SystemSpecificCollection is a Fibre Channel zone that collects network ports, port groupings, and aliases (as required by a customer) in the context of an AdminDomain. The Collection is not a part of the domain, but merely an arbitrary grouping of the devices and other Collections in the domain. In other words, the context of the Collection is restricted to the domain, and its members are also limited by the domain.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> must include a unique name. It can be a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID. Or, it could be a registered ID that is assigned to the business entity by a recognized global authority.(This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity must ensure that the resulting InstanceID is not re-used as any of InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the ‘preferred’ algorithm must be used with the <OrgID> set to ‘CIM’.

Local methods

None

Inherited properties

string Caption

string ElementName

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DirectoryContainsFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DirectoryContainsFile

Class reference

Subclass of CIM_DirectoryContainsFile

Specifies the hierarchical arrangement of LogicalFiles in a Directory.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

None

Local methods

None

Inherited properties

CIM_Directory GroupComponent

CIM_LogicalFile PartComponent

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/hardware/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Hardware scripts’s documentation

Contents:

		Hardware command line reference
		hwinfo

		Hardware Script python reference
		Hardware Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Account.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Account

Class reference

Subclass of CIM_Account

Class representing Linux Account

Key properties

SystemName

Name

CreationClassName

SystemCreationClassName

Local properties

string HomeDirectory

User’s home directory

datetime AccountExpiration

The date of expiration of the account.

datetime PasswordLastChange

The date when was password last changed

string[] UserPassword

In the case of an LDAP-derived instance, the UserPassword property may contain an encrypted password used to access the person’s resources in a directory.

When an instance of CIM_Account is retrieved and the underlying account has a valid password, the value of the CIM_Account.UserPassword property shall be an array of length zero to indicate that the account has a password configured.

When the underlying account does not have a valid password, the CIM_Account.UserPassword property shall be NULL.

string LoginShell

User’s login shell

datetime PasswordPossibleChange

Minimum number of days between password change

datetime PasswordExpirationWarning

Number of days of warning before password expires

datetime PasswordInactivation

Maximum number of days between password change

Local methods

uint32 DeleteUser (boolean DontDeleteHomeDirectory, boolean DontDeleteGroup, boolean Force)

Delete the user. Along with the user, the home directory and user’s primary group are deleted. If the user is not owner of the home directory it is not deleted. However this directory can be deleted if force parameter is set to True. If the home directory couldn’t be deleted, no error is returned to be able to remove the user even when its home directory is inaccessible (e.g. unreachable NFS mount).

		ValueMap
		Values

		0
		Operation completed successfully

		1
		Failed

		
		DMTF Reserved

		4096
		Non existing user

		4097
		Unable to delete Home Direcotry (currently unused)

		4098
		Unable to remove user, home directory removed

		4099
		Unable to remove group, user and home directory removed

Parameters

		IN boolean DontDeleteHomeDirectory

		By default the user’s home directory is deleted. Set to true to not delete the home directory.

		IN boolean DontDeleteGroup

		By default the user’s private group, if the user has one, is deleted. Set to true to not delete the group.

		IN boolean Force

		Force the deletion of user’s home directory, even if the user is not an owner.

uint32 ChangePassword (string Password)

Change the user’s password.

		ValueMap
		Values

		0
		Operation completed successfully

		1
		Failed

Parameters

		IN string Password

		Plaintext string to which set the password; provider will encrypt the string using the default crypto algorithm

Inherited properties

uint16 PrimaryStatus

uint16 RequestedState

uint16 HealthState

string[] OrganizationName

string[] StatusDescriptions

string InstanceID

string UserID

uint16 MaximumSuccessiveLoginFailures

uint16 CommunicationStatus

datetime InactivityTimeout

string SystemName

datetime TimeOfLastStateChange

datetime LastLogin

uint16 UserPasswordEncryptionAlgorithm

string[] SeeAlso

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] ObjectClass

uint16[] ComplexPasswordRulesEnforced

uint16[] AvailableRequestedStates

string[] Host

string[] LocalityName

uint16 EnabledState

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

string[] UserCertificate

string Caption

uint32 UserPasswordEncoding

string OtherUserPasswordEncryptionAlgorithm

string CreationClassName

string[] OU

datetime PasswordExpiration

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string[] Descriptions

uint16 PasswordHistoryDepth

string SystemCreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_LogicalDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_LogicalDevice

Class reference

Subclass of CIM_EnabledLogicalElement

An abstraction or emulation of a hardware entity, that might or might not be Realized in physical hardware. Any characteristics of a LogicalDevice that are used to manage its operation or configuration are contained in, or associated with, the LogicalDevice object. Examples of the operational properties of a Printer would be paper sizes supported or detected errors. Examples of the configuration properties of a Sensor Device would be threshold settings. Various configurations could exist for a LogicalDevice. These configurations could be contained in Setting objects and associated with the LogicalDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean PowerManagementSupported

Note: The use of this property has been deprecated. Instead, the existence of an associated PowerManagementCapabilities class (associated using the ElementCapabilities relationship) indicates that power management is supported. Deprecated description: Boolean that indicates that the Device can use power management.

string SystemName

The System Name of the scoping system.

string[] IdentifyingDescriptions

An array of free-form strings providing explanations and details behind the entries in the OtherIdentifyingInfo array. Note that each entry of this array is related to the entry in OtherIdentifyingInfo that is located at the same index.

boolean ErrorCleared

Deprecated!
Note: The use of this method is deprecated.

Deprecated description: ErrorCleared is a Boolean property that indicates that the error reported in LastErrorCode is now cleared.

uint16 LocationIndicator

An integer that reflects the state of an indicator (e.g., LED) that is part of a device. Reading the value gives the current state. Writing the value with ‘On’/’Off’ turns the indicator on/off, other values may not be written.

		ValueMap
		Values

		0
		Unknown

		2
		On

		3
		Off

		4
		Not Supported

string[] OtherIdentifyingInfo

OtherIdentifyingInfo captures data, in addition to DeviceID information, that could be used to identify a LogicalDevice. For example, you could use this property to hold the operating system’s user-friendly name for the Device.

uint64 PowerOnHours

Note: The use of this method is deprecated.

Deprecated description: The number of consecutive hours that this Device has been powered on since its last power cycle.

uint16[] AdditionalAvailability

Additional availability and status of the Device in addition to that specified in the Availability property. The Availability property denotes the primary status and availability of the Device. In some cases, this property will not be sufficient to denote the complete status of the Device. In those cases, the AdditionalAvailability property can be used to provide further information. For example, the primary Availability of a device might be “Off line” (value=8) or in a low-power state (AdditionalAvailability value=14), or the Device could be running Diagnostics (AdditionalAvailability value=5, “In Test”).

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Running/Full Power

		4
		Warning

		5
		In Test

		6
		Not Applicable

		7
		Power Off

		8
		Off Line

		9
		Off Duty

		10
		Degraded

		11
		Not Installed

		12
		Install Error

		13
		Power Save - Unknown

		14
		Power Save - Low Power Mode

		15
		Power Save - Standby

		16
		Power Cycle

		17
		Power Save - Warning

		18
		Paused

		19
		Not Ready

		20
		Not Configured

		21
		Quiesced

uint16 StatusInfo

Note: The use of this method is deprecated in lieu of a more clearly named property (EnabledState) that is inherited from ManagedSystemElement and that has additional enumerated values.

Deprecated description: The StatusInfo property indicates whether the Logical Device is in an enabled state (value=3), disabled state (value=4), some other state (value=1), or an unknown state (value=2). If this property does not apply to the LogicalDevice, the value 5 (“Not Applicable”) should be used. If a Device is (“Enabled”)(value=3), it has been powered up and is configured and operational. The Device might or might not be functionally active, depending on whether its Availability (or AdditionalAvailability) indicates that it is (“Running/Full Power”)(value=3) or (“Off line”) (value=8). In an enabled but offline mode, a Device might be performing out-of-band requests, such as running Diagnostics. If StatusInfo is (“Disabled”) (value=4), a Device can only be “enabled” or powered off. In a personal computer environment, (“Disabled”) means that the driver of the device is not available in the stack. In other environments, a Device can be disabled by removing its configuration file. A disabled device is physically present in a System and consuming resources, but it cannot be communicated with until a driver is loaded, a configuration file is loaded, or some other “enabling” activity has occurred.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Enabled

		4
		Disabled

		5
		Not Applicable

string DeviceID

An address or other identifying information used to uniquely name the LogicalDevice.

uint16[] PowerManagementCapabilities

Deprecated!
Note: The use of this property has been deprecated. Instead, use the PowerCapabilites property in an associated PowerManagementCapabilities class. Deprecated description: An enumerated array describing the power management capabilities of the Device.

		ValueMap
		Values

		0
		Unknown

		1
		Not Supported

		2
		Disabled

		3
		Enabled

		4
		Power Saving Modes Entered Automatically

		5
		Power State Settable

		6
		Power Cycling Supported

		7
		Timed Power On Supported

uint64 MaxQuiesceTime

Deprecated!
Note: The use of this property has been deprecated. When evaluating the use of Quiesce, it was determined that this single property is not adequate for describing when a device will automatically exit a quiescent state. In fact, the most likely scenario for a device to exit a quiescent state was determined to be based on the number of outstanding requests queued rather than on a maximum time. This decision will be re-evaluated and repositioned later.

Deprecated description: Maximum time, in milliseconds, that a Device can run in a “Quiesced” state. The state is defined in its Availability and AdditionalAvailability properties, where “Quiesced” is conveyed by the value 21. What occurs at the end of the time limit is device-specific. The Device can unquiesce, can be offline, or can take other actions. A value of 0 indicates that a Device can remain quiesced indefinitely.

uint64 TotalPowerOnHours

Note: The use of this method is deprecated.

Deprecated description: The total number of hours that this Device has been powered on.

string ErrorDescription

Deprecated!
Note: The use of this method is deprecated.

Deprecated description: ErrorDescription is a free-form string that supplies more information about the error recorded in LastErrorCode and information on any corrective actions that can be taken.

uint32 LastErrorCode

Deprecated!
Note: The use of this method is deprecated.

Deprecated description: LastErrorCode captures the last error code reported by the LogicalDevice.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

uint16 Availability

Note: The use of this property has been deprecated.

Deprecated description: The primary availability and status of the Device. (Additional status information can be specified using the Additional Availability array property.) For example, the Availability property indicates that the Device is running and has full power (value=3), or is in a warning (4), test (5), degraded (10) or power save state (values 13-15 and 17). The Power Save states are defined as follows: Value 13 (“Power Save - Unknown”) indicates that the Device is known to be in a power save mode, but its exact status in this mode is unknown; value 14 (“Power Save - Low Power Mode”) indicates that the Device is in a power save state but still functioning, and might exhibit degraded performance; value 15 (“Power Save - Standby”) indicates that the Device is not functioning but could be brought to full power ‘quickly’; and value 17 (“Power Save - Warning”) indicates that the Device is in a warning state, but is also in a power save mode.

		ValueMap
		Values

		1
		Other

		2
		Unknown

		3
		Running/Full Power

		4
		Warning

		5
		In Test

		6
		Not Applicable

		7
		Power Off

		8
		Off Line

		9
		Off Duty

		10
		Degraded

		11
		Not Installed

		12
		Install Error

		13
		Power Save - Unknown

		14
		Power Save - Low Power Mode

		15
		Power Save - Standby

		16
		Power Cycle

		17
		Power Save - Warning

		18
		Paused

		19
		Not Ready

		20
		Not Configured

		21
		Quiesced

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

uint32 Reset ()

Requests a reset of the LogicalDevice. The return value should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

		None

		

uint32 SetPowerState (uint16 PowerState, datetime Time)

Deprecated!
Note: The use of this method has been deprecated. Instead, use the SetPowerState method in the associated PowerManagementService class. Deprecated description: Sets the power state of the Device.

Parameters

		IN uint16 PowerState

		The power state to set.

		ValueMap
		Values

		1
		Full Power

		2
		Power Save - Low Power Mode

		3
		Power Save - Standby

		4
		Power Save - Other

		5
		Power Cycle

		6
		Power Off

		IN datetime Time

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received).

uint32 QuiesceDevice (boolean Quiesce)

Deprecated!
Note: The use of this method has been deprecated in lieu of the more general RequestStateChange method that directly overlaps with the functionality provided by this method.

Deprecated description: Requests that the LogicalDevice cleanly cease all activity (“Quiesce” input parameter=TRUE) or resume activity (=FALSE). For this method to quiesce a Device, that Device should have an Availability (or Additional Availability) of “Running/Full Power” (value=3) and an EnabledStatus/StatusInfo of “Enabled”. For example, if quiesced, a Device can then be taken offline for diagnostics, or disabled for power off and hot swap. For the method to “unquiesce” a Device, that Device should have an Availability (or AdditionalAvailability) of “Quiesced” (value=21) and an EnabledStatus or StatusInfo of “Enabled”. In this case, the Device would be returned to an “Enabled” and “Running/Full Power” status.

The return code of the method should indicate the success or failure of the quiesce. It should return 0 if successful, 1 if the request is not supported at all, 2 if the request is not supported due to the current state of the Device, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

		IN boolean Quiesce

		If set to TRUE, then cleanly cease all activity. If FALSE, resume activity.

uint32 EnableDevice (boolean Enabled)

Deprecated!
Note: The use of this method has been deprecated in lieu of the more general RequestStateChange method that directly overlaps with the functionality provided by this method.

Deprecated description: Requests that the LogicalDevice be enabled (“Enabled” input parameter=TRUE) or disabled (=FALSE). If successful, the StatusInfo or EnabledState properties of the Device should reflect the desired state (enabled or disabled). Note that this function overlaps with the RequestedState property. RequestedState was added to the model to maintain a record (for example, a persisted value) of the last state request. Invoking the EnableDevice method should set the RequestedState property appropriately.

The return code should be 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred. In a subclass, the set of possible return codes could be specified by using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

		IN boolean Enabled

		If TRUE, enable the device. If FALSE, disable the device.

uint32 OnlineDevice (boolean Online)

Note: The use of this method has been deprecated in lieu of the more general RequestStateChange method that directly overlaps with the functionality provided by this method.

Deprecated description: Requests that the LogicalDevice be brought online (“Online” input parameter=TRUE) or taken offline (=FALSE). “Online” indicates that the Device is ready to accept requests, and is operational and fully functioning. In this case, the Availability property of the Device would be set to a value of 3 (“Running/Full Power”). “Offline” indicates that a Device is powered on and operational, but is not processing functional requests. In an offline state, a Device might be capable of running diagnostics or generating operational alerts. For example, when the “Offline” button is pushed on a Printer, the Device is no longer available to process print jobs, but it could be available for diagnostics or maintenance.

If this method is successful, the Availability and AdditionalAvailability properties of the Device should reflect the updated status. If a failure occurs when you try to bring the Device online or offline, it should remain in its current state. The request, if unsuccessful, should not leave the Device in an indeterminate state. When bringing a Device back “Online” from an “Offline” mode, the Device should be restored to its last “Online” state, if at all possible. Only a Device that has an EnabledState or StatusInfo of “Enabled” and has been configured can be brought online or taken offline.

OnlineDevice should return 0 if successful, 1 if the request is not supported at all, 2 if the request is not supported due to the current state of the Device, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Note that the function of this method overlaps with the RequestedState property. RequestedState was added to the model to maintain a record (for example, a persisted value) of the last state request. Invoking the OnlineDevice method should set the RequestedState property appropriately.

Parameters

		IN boolean Online

		If TRUE, take the device online. If FALSE, take the device offline.

uint32 SaveProperties ()

Deprecated!
Note: The use of this method is deprecated. Its function is handled more generally by the ConfigurationData subclass of SettingData.

Deprecated description: Requests that the Device capture its current configuration, setup or state information, or both in a backing store.

The information returned by this method could be used at a later time (using the RestoreProperties method) to return a Device to its present “condition”. This method might not be supported by all Devices. The method should return 0 if successful, 1 if the request is not supported, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

		None

		

uint32 RestoreProperties ()

Note: The use of this method is deprecated. Its function is handled more generally by the ConfigurationData subclass of SettingData.

Requests that the Device re-establish its configuration, setup or state information, or both from a backing store. The information would have been captured at an earlier time (using the SaveProperties method). This method might not be supported by all Devices. The method should return 0 if successful, 1 if the request is not supported, and some other value if any other error occurred. In a subclass, the set of possible return codes could be specified using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ can also be specified in the subclass as a Values array qualifier.

Parameters

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

uint16 CommunicationStatus

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16[] AvailableRequestedStates

string OtherEnabledState

uint16[] OperationalStatus

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SystemSoftwareCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SystemSoftwareCollection

Class reference

Subclass of CIM_SystemSpecificCollection

SystemSpecificCollection represents the general concept of a collection that is scoped (or contained) by a System. It represents a Collection that has meaning only in the context of a System, a Collection whose elements are restricted by the definition of the System, or both of these types of Collections. This meaning is explicitly described by the (required) association, HostedCollection.

An example of a SystemSpecificCollection is a Fibre Channel zone that collects network ports, port groupings, and aliases (as required by a customer) in the context of an AdminDomain. The Collection is not a part of the domain, but merely an arbitrary grouping of the devices and other Collections in the domain. In other words, the context of the Collection is restricted to the domain, and its members are also limited by the domain.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> must include a unique name. It can be a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID. Or, it could be a registered ID that is assigned to the business entity by a recognized global authority.(This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity must ensure that the resulting InstanceID is not re-used as any of InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF-defined instances, the ‘preferred’ algorithm must be used with the <OrgID> set to ‘CIM’.

string Caption

The Caption property is a short textual description (one- line string) of the object.

Local methods

None

Inherited properties

string ElementName

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_NetworkElementCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_NetworkElementCapabilities

Class reference

Subclass of CIM_ElementCapabilities

ElementCapabilities represents the association between ManagedElements and their Capabilities. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provides the context for the Capabilities.

Key properties

Capabilities

Capabilities

ManagedElement

Local properties

uint16[] Characteristics

Characteristics provides descriptive information about the Capabilities. When the value 2 Default is specified, the associated Capabilities shall represent the default capabilities of the associated Managed Element.

When the value 2 Default is not specified, the Capabilities instance may represent the default capabilities of the Managed Element.

When the value 3 Current is specified, the associated Capabilities shall represent the current capabilities of the associated Managed Element

When the value 3 Current is not specified, the Capabilities instance may represent the current capabilities of the Managed Element.

		ValueMap
		Values

		2
		Default

		3
		Current

LMI_NetworkEnabledLogicalElementCapabilities Capabilities

The Capabilities object associated with the element.

CIM_ManagedElement ManagedElement

The managed element.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Capabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Capabilities

Class reference

Subclass of CIM_ManagedElement

Capabilities is an abstract class whose subclasses describe abilities and/or potential for use. For example, one may describe the maximum number of VLANs that can be supported on a system using a subclass of Capabilities. Capabilities are tied to the elements which they describe using the ElementCapabilities association. Note that the cardinality of the ManagedElement reference is Min(1). This cardinality mandates the instantiation of the ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities describes the existence requirements for the referenced instance of ManagedElement. Specifically, the ManagedElement MUST exist and provide the context for the Capabilities. Note that Capabilities do not indicate what IS configured or operational, but what CAN or CANNOT exist, be defined or be used. Note that it is possible to describe both supported and excluded abilities and functions (both capabilities and limitations) using this class.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

string ElementName

The user friendly name for this instance of Capabilities. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

Local methods

uint16 CreateGoalSettings (string[] TemplateGoalSettings, string[] SupportedGoalSettings)

Method to create a set of supported SettingData elements, from two sets of SettingData elements, provided by the caller.

CreateGoal should be used when the SettingData instances that represents the goal will not persist beyond the execution of the client and where those instances are not intended to be shared with other, non-cooperating clients.

Both TemplateGoalSettings and SupportedGoalSettings are represented as strings containing EmbeddedInstances of a CIM_SettingData subclass. These embedded instances do not exist in the infrastructure supporting this method but are maintained by the caller/client.

This method should return CIM_Error(s) representing that a single named property of a setting (or other) parameter (either reference or embedded object) has an invalid value or that an invalid combination of named properties of a setting (or other) parameter (either reference or embedded object) has been requested.

If the input TemplateGoalSettings is NULL or the empty string, this method returns a default SettingData element that is supported by this Capabilities element.

If the TemplateGoalSettings specifies values that cannot be supported, this method shall return an appropriate CIM_Error and should return a best match for a SupportedGoalSettings.

The client proposes a goal using the TemplateGoalSettings parameter and gets back Success if the TemplateGoalSettings is exactly supportable. It gets back “Alternative Proposed” if the output SupportedGoalSettings represents a supported alternative. This alternative should be a best match, as defined by the implementation.

If the implementation is conformant to a RegisteredProfile, then that profile may specify the algorithms used to determine best match. A client may compare the returned value of each property against the requested value to determine if it is left unchanged, degraded or upgraded.

Otherwise, if the TemplateGoalSettings is not applicable an “Invalid Parameter” error is returned.

When a mutually acceptable SupportedGoalSettings has been achieved, the client may use the contained SettingData instances as input to methods for creating a new object ormodifying an existing object. Also the embedded SettingData instances returned in the SupportedGoalSettings may be instantiated via CreateInstance, either by a client or as a side-effect of the execution of an extrinsic method for which the returned SupportedGoalSettings is passed as an embedded instance.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		Alternative Proposed

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string[] TemplateGoalSettings

		If provided, TemplateGoalSettings are elements of class CIM_SettingData, or a derived class, that is used as the template to be matched. .

At most, one instance of each SettingData subclass may be supplied.

All SettingData instances provided by this property are interpreted as a set, relative to this Capabilities instance.

SettingData instances that are not relevant to this instance are ignored.

If not provided, it shall be set to NULL. In that case, a SettingData instance representing the default settings of the associated ManagedElement is used.

		IN, OUT string[] SupportedGoalSettings

		SupportedGoalSettings are elements of class CIM_SettingData, or a derived class.

At most, one instance of each SettingData subclass may be supplied.

All SettingData instances provided by this property are interpreted as a set, relative to this Capabilities instance.

To enable a client to provide additional information towards achieving the TemplateGoalSettings, an input set of SettingData instances may be provided. If not provided, this property shall be set to NULL on input.. Note that when provided, what property values are changed, and how, is implementation dependent and may be the subject of other standards.

If provided, the input SettingData instances must be ones that the implementation is able to support relative to the ManagedElement associated via ElementCapabilities. Typically, the input SettingData instances are created by a previous instantiation of CreateGoalSettings.

If the input SupportedGoalSettings is not supported by the implementation, then an “Invalid Parameter” (5) error is returned by this call. In this case, a corresponding CIM_ERROR should also be returned.

On output, this property is used to return the best supported match to the TemplateGoalSettings.

If the output SupportedGoalSettings matches the input SupportedGoalSettings, then the implementation is unable to improve further towards meeting the TemplateGoalSettings.

Inherited properties

string Caption

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_OwningJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_OwningJobElement

Class reference

OwningJobElement represents an association between a Job and the ManagedElement responsible for the creation of the Job. This association may not be possible, given that the execution of jobs can move between systems and that the lifecycle of the creating entity may not persist for the total duration of the job. However, this can be very useful information when available. This association defines a more specific ‘owner’ than is provided by the CIM_Job.Owner string.

Key properties

OwningElement

OwnedElement

Local properties

CIM_ManagedElement OwningElement

The ManagedElement responsible for the creation of the Job.

CIM_Job OwnedElement

The Job created by the ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AffectedJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AffectedJobElement

Class reference

AffectedJobElement represents an association between a Job and the ManagedElement(s) that may be affected by its execution. It may not be feasible for the Job to describe all of the affected elements. The main purpose of this association is to provide information when a Job requires exclusive use of the ‘affected’ ManagedElment(s) or when describing that side effects may result.

Key properties

AffectedElement

AffectingElement

Local properties

string[] OtherElementEffectsDescriptions

Provides details for the ‘effect’ at the corresponding array position in ElementEffects. This information is required whenever ElementEffects contains the value 1 (“Other”).

CIM_ManagedElement AffectedElement

The ManagedElement affected by the execution of the Job.

uint16[] ElementEffects

An enumeration describing the ‘effect’ on the ManagedElement. This array corresponds to the OtherElementEffectsDescriptions array, where the latter provides details related to the high-level ‘effects’ enumerated by this property. Additional detail is required if the ElementEffects array contains the value 1, “Other”.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Exclusive Use

		3
		Performance Impact

		4
		Element Integrity

		5
		Create

CIM_Job AffectingElement

The Job that is affecting the ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_JournalMessageLog.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_JournalMessageLog

Class reference

Subclass of CIM_MessageLog

MessageLog represents any type of event, error or informational register or chronicle. The object describes the existence of the log and its characteristics. Several methods are defined for retrieving, writing and deleting log entries, and maintaining the log. This type of log uses iterators to access the log records, whereas its peer class, RecordLog, uses more abstracted access mechanisms.

Key properties

CreationClassName

Name

Name

CreationClassName

Local properties

uint16[] Capabilities

An array of integers indicating the Log capabilities. Information such as “Write Record Supported” (value= 2) or “Variable Length Records Supported” (8) is specified in this property.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Write Record Supported

		3
		Delete Record Supported

		4
		Can Move Backward in Log

		5
		Freeze Log Supported

		6
		Clear Log Supported

		7
		Supports Addressing by Ordinal Record Number

		8
		Variable Length Records Supported

		9
		Variable Formats for Records

		10
		Can Flag Records for Overwrite

datetime TimeOfLastChange

When a change is made to the Log, the date/time of that modification is captured. This property could be used to event against any update to the MessageLog.

string Name

The inherited Name serves as part of the key (a unique identifier) for the MessageLog instance.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

uint32 PositionToLastRecord (string IterationIdentifier)

Requests that an iteration of the MessageLog be established and that the iterator be set to the last entry in the Log. An identifier for the iterator is returned as an output parameter of the method.

The return value from PositionToFirstRecord is 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred.

		ValueMap
		Values

		0
		Success

		1
		Not supported

		2
		Failed

Parameters

		OUT string IterationIdentifier

		An identifier for the iterator.

uint32 GetRecord (string IterationIdentifier, boolean PositionToNext, uint64 RecordNumber, uint8[] RecordData)

Requests that the record indicated by the IterationIdentifier be retrieved from the MessageLog. After retrieval, the IterationIdentifier may be advanced to the next record by setting the PositionToNext input parameter to TRUE. Two output parameters are defined for the method - RecordData which holds the contents of the Log entry (as an array of bytes that can be recast to an appropriate format), and RecordNumber which returns the current record number addressed via the Iteration Identifier. The RecordNumber parameter is only defined/valid when the Capabilities array indicates that ordinal record number addressing is supported (a value of 7). For LMI_JournalMessageLog, this stays unset.

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from GetRecord is 0 if the request was successfully executed, 1 if the request is not supported, and some other value if an error occurred.

		ValueMap
		Values

		0
		Success

		1
		Not supported

		2
		Failed

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean PositionToNext

		Boolean indicating that the Iteration Identifier should be advanced to the next record, after retrieving the current Log entry.

		OUT uint64 RecordNumber

		The record number, unused in LMI_JournalMessageLog.

		OUT uint8[] RecordData

		The record data. This array carries a UTF-8 encoded string in array of uint8 as defined by the model. Users are supposed to recast this free-form data to get a readable representation.

uint32 CancelIteration (string IterationIdentifier)

Requests that an iteration of the Log, identified by the IterationIdentifier input parameter, be stopped. The return value from CancelIteration is 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred.

		ValueMap
		Values

		0
		Success

		1
		Not supported

		2
		Failed

Parameters

		IN string IterationIdentifier

		An identifier for the iterator.

uint32 PositionAtRecord (string IterationIdentifier, boolean MoveAbsolute, sint64 RecordNumber)

Requests that the Log’s iteration identifier be advanced or retreated a specific number of records, or set to the entry at a specified numeric location. These two different behaviors are accomplished using the input parameters of the method. Advancing or retreating is achieved by setting the MoveAbsolute boolean to FALSE, and then specifying the number of entries to advance or retreat as positive or negative values in the RecordNumber parameter. Moving to a specific record number is accomplished by setting the MoveAbsolute input parameter to TRUE, and then placing the record number into the RecordNumber parameter. This can only be done if the Capabilities array includes a value of 7, “Supports Addressing by Ordinal Record Number”.

After the method completes and if ordinal record numbers are supported (the Capabilities array includes a 7), the current record number is returned in the RecordNumber output parameter. Otherwise, the value of the parameter is undefined.

Note that only relative movement is supported in LMI_JournalMessageLog for the moment.

IterationIdentifier is defined as an Input/Output method parameter to allow the Log to embed state information in the Identifier and potentially let the identifier be maintained by the using application.

The return value from PositionAtRecord is 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. If the request is not supported, check the Capabilities array regarding support for ordinal record number addressing and backward movement in the Log (values 7 and 4, respectively).

		ValueMap
		Values

		0
		Success

		1
		Not supported

		2
		Failed

Parameters

		IN, OUT string IterationIdentifier

		An identifier for the iterator.

		IN boolean MoveAbsolute

		Advancing or retreating the IterationIdentifier is achieved by setting the MoveAbsolute boolean to FALSE, and specifying the number of entries to advance or retreat as positive or negative values in the RecordNumber parameter. Moving to a specific record number is accomplished by setting the MoveAbsolute parameter to TRUE, and placing the record number into the RecordNumber parameter.For LMI_JournalMessageLog, the only supported value is FALSE.

		IN, OUT sint64 RecordNumber

		The relative or absolute record number.

uint32 PositionToFirstRecord (string IterationIdentifier)

Requests that an iteration of the MessageLog be established and that the iterator be set to the first entry in the Log. An identifier for the iterator is returned as an output parameter of the method.

Regarding iteration, you have 2 choices: 1) Embed iteration data in the method call, and allow implementations to track/ store this data manually; or, 2) Iterate using a separate object (for example, class ActiveIterator) as an iteration agent. The first approach is used here for interoperability. The second requires an instance of the Iterator object for EACH iteration in progress. 2’s functionality could be implemented underneath 1.

The return value from PositionToFirstRecord is 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred.

		ValueMap
		Values

		0
		Success

		1
		Not supported

		2
		Failed

Parameters

		OUT string IterationIdentifier

		An identifier for the iterator.

Inherited properties

uint16 RequestedState

uint16 HealthState

string RecordHeaderFormat

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

uint64 MaxNumberOfRecords

uint8 PercentageNearFull

string OtherPolicyDescription

uint16 LogState

string Status

string ElementName

uint64 MaxRecordSize

string Description

uint64 SizeOfHeader

string HeaderFormat

uint16 CharacterSet

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16[] OperationalStatus

uint64 CurrentNumberOfRecords

datetime TimeWhenOutdated

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint64 SizeOfRecordHeader

string Caption

boolean IsFrozen

uint16[] AvailableRequestedStates

uint64 Generation

uint16 OverwritePolicy

uint16 TransitioningToState

uint64 RecordLastChanged

string OtherEnabledState

uint16 LastChange

string[] CapabilitiesDescriptions

uint16 OperatingStatus

uint64 MaxLogSize

Inherited methods

RequestStateChange

DeleteRecord

ClearLog

FreezeLog

FlagRecordForOverwrite

WriteRecord

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SAPAvailableForElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SAPAvailableForElement

Class reference

CIM_SAPAvailableForElement conveys the semantics of a Service Access Point that is available for a ManagedElement. When CIM_SAPAvailableForElement is not instantiated, then the SAP is assumed to be generally available. If instantiated, the SAP is available only for the associated ManagedElements. For example, a device might provide management access through a URL. This association allows the URL to be advertised for the device.

Key properties

ManagedElement

AvailableSAP

Local properties

CIM_ServiceAccessPoint AvailableSAP

The Service Access Point that is available.

CIM_ManagedElement ManagedElement

The ManagedElement for which the SAP is available.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_HostedDependency.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_HostedDependency

Class reference

Subclass of CIM_Dependency

HostedDependency defines a ManagedElement in the context of another ManagedElement in which it resides.

Key properties

Dependent

Antecedent

Local properties

CIM_ManagedElement Dependent

The hosted ManagedElement.

CIM_ManagedElement Antecedent

The scoping ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Service.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Service

Class reference

Subclass of CIM_Service

Class representing Linux Service

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 ReloadOrRestartService ()

Reload the service if it supports it. If not, restart the service instead. If the service is not running yet, it will be started.

Parameters

		None

		

uint32 ReloadService ()

Reload configuration of the service.

Parameters

		None

		

uint32 StopService ()

Deprecated!
Stop (deactivate) the service.

Parameters

		None

		

uint32 TurnServiceOn ()

Enable the service persistently. The service will start on the next boot of the system. Note that this method does not have the effect of also starting the service being enabled. If this is desired, a separate StartService method call must be invoked for the service.

Parameters

		None

		

uint32 TurnServiceOff ()

Disable the service. The service will not start on the next boot of the system. Note that this method does not implicitly stop the service that is being disabled. If this is desired, an additional StopService method call command should be executed afterwards.

Parameters

		None

		

uint32 TryRestartService ()

Restart the service if the service is running. This does nothing if the service is not running.

Parameters

		None

		

uint32 ReloadOrTryRestartService ()

Reload the service if it supports it. If not, restart the service instead. This does nothing if the service is not running.

Parameters

		None

		

uint32 StartService ()

Deprecated!
Start (activate) the service.

Parameters

		None

		

uint32 CondRestartService ()

Equivalent to the TryRestartService() method.

Parameters

		None

		

uint32 RestartService ()

Restart the service. If the service is not running yet, it will be started.

Parameters

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

ChangeAffectedElementsAssignedSequence

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BondingSlaveSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BondingSlaveSettingData

Class reference

Subclass of LMI_IPAssignmentSettingData

Slave SettingData for bonding

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string SoOrgID

string SoID

uint16 AddressPrefixOrigin

string OtherAddressSuffixOriginDescription

string OtherAddressPrefixOriginDescription

uint16 ChangeableType

uint16 ProtocolIFType

string InstanceID

string[] ComponentSetting

string ElementName

string Description

string Caption

string ConfigurationName

uint16 IPv6Type

uint64 Generation

uint16 AddressSuffixOrigin

uint16 AddressOrigin

uint16 IPv4Type

Inherited methods

LMI_AddStaticIPRoute

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_FileSystemConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_FileSystemConfigurationService

Class reference

Subclass of CIM_Service

This service allows the active management of a NAS Head or other FileSystem Server. It allows jobs to be started for the creation, modification, and deletion of FileSystems (that derive from CIM_LocalFileSystem).

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 ModifyFileSystem (string ElementName, CIM_ConcreteJob Job, string Goal, CIM_FileSystem TheElement, uint16 InUseOptions, uint32 WaitTime)

Start a job to modify a previously created FileSystem. If the operation completes successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to modify the element. A Reference to the ConcreteJob will be returned in the output parameter Job. If any other value is returned, either the job will not be started, or if started, no action will be taken.

This method MUST return a CIM_Error representing that a single named property of a setting (or other) parameter (either reference or embedded object) has an invalid value or that an invalid combination of named properties of a setting (or other) parameter (either reference or embedded object) has been requested.

The parameter TheElement specifies the FileSystem to be modified. This element MUST be associated via ElementSettingData with a FileSystemSetting which is in turn associated via SettingGeneratedByCapabilities to a FileSystemCapabilities supported by this FileSystemConfigurationService.

The desired settings for the FileSystem are specified by the Goal parameter. Goal is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded instance parameter; this allows the client to specify the properties desired for the file system. The Goal parameter includes information that can be used by the vendor to compute the required size of the FileSystem. If the operation would result in a change in the size of the file system, the StorageExtent identified by the ResidesOnExtent association will be used to determine how to implement the change. If the StorageExtent cannot be expanded to support the goal size, an appropriate error value will be returned, and no action will be taken. If the operation succeeds, the ResidesOnExtent association might reference a different StorageExtent.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		FileSystem In Use, cannot Modify

		7
		Cannot satisfy new Goal.

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the FileSystem being modified. If NULL, then the name will not be changed. If not NULL, this parameter will supply a new name for the FileSystem element.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN string Goal

		The requirements for the FileSystem element to maintain. This is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded instance parameter; this allows the client to specify the properties desired for the file system. If NULL or the empty string, the FileSystem service attributes will not be changed. If not NULL, this parameter will supply new settings that replace or are merged with the current settings of the FileSystem element.

		IN CIM_FileSystem TheElement

		The FileSystem element to modify.

		IN uint16 InUseOptions

		An enumerated integer that specifies the action to take if the FileSystem is still in use when this request is made. This option is only relevant if the FileSystem must be made unavailable while the request is being executed.

		ValueMap
		Values

		2
		Do Not Execute Request

		3
		Wait for specified time, then Execute Request Immediately

		4
		Try to Quiesce for specified time, then Execute Request Immediately

		
		DMTF Reserved

		0x1000..0xFFFF
		Vendor Defined

		IN uint32 WaitTime

		An integer that indicates the time (in seconds) that the provider must wait before performing the request on this FileSystem. If WaitTime is not zero, the method will create a job, if supported by the provider, and return immediately. If the provider does not support asynchronous jobs, there is a possibility that the client could time-out before the job is completed.

The combination of InUseOptions = ‘4’ and WaitTime =‘0’ (the default) is interpreted as ‘Wait (forever) until Quiescence, then Execute Request’ and will be performed asynchronously if possible.

uint32 DeleteFileSystem (CIM_ConcreteJob Job, CIM_ManagedElement TheFileSystem, uint16 InUseOptions, uint32 WaitTime)

Start a job to delete a FileSystem. If the FileSystem cannot be deleted, no action will be taken, and the Return Value will be 4097/0x1001. If the method completed successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to delete the FileSystem. A Reference to the ConcreteJob will be returned in the output parameter Job.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed, Unspecified Reasons

		5
		Invalid Parameter

		6
		FileSystem in use, Failed

		
		DMTF Reserved

		0x1000
		Method Parameters Checked - Job Started

		0x1001..0x7FFF
		Method Reserved

		0x8000..
		Vendor Specific

Parameters

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN CIM_ManagedElement TheFileSystem

		An element or association that uniquely identifies the FileSystem to be deleted.

		IN uint16 InUseOptions

		An enumerated integer that specifies the action to take if the FileSystem is still in use when this request is made.

		ValueMap
		Values

		2
		Do Not Delete

		3
		Wait for specified time, then Delete Immediately

		4
		Attempt Quiescence for specified time, then Delete Immediately

		
		DMTF Reserved

		0x1000..0xFFFF
		Vendor Defined

		IN uint32 WaitTime

		An integer that indicates the time (in seconds) that the provider must wait before deleting this FileSystem. If WaitTime is not zero, the method will create a job, if supported by the provider, and return immediately. If the provider does not support asynchronous jobs, there is a possibility that the client could time-out before the job is completed.

The combination of InUseOptions = ‘4’ and WaitTime =‘0’ (the default) is interpreted as ‘Wait (forever) until Quiescence, then Delete Filesystem’ and will be performed asynchronously if possible.

uint32 CreateFileSystem (string ElementName, CIM_ConcreteJob Job, string Goal, CIM_StorageExtent InExtent, CIM_FileSystem TheElement)

Start a job to create a FileSystem on a StorageExtent. If the operation completes successfully and did not require a long-running ConcreteJob, it will return 0. If 4096/0x1000 is returned, a ConcreteJob will be started to create the element. A Reference to the ConcreteJob will be returned in the output parameter Job. If any other value is returned, the job will not be started, and no action will be taken.

This method MUST return a CIM_Error representing that a single named property of a setting (or other) parameter (either reference or embedded object) has an invalid value or that an invalid combination of named properties of a setting (or other) parameter (either reference or embedded object) has been requested.

The parameter TheElement will contain a Reference to the FileSystem if this operation completed successfully.

The StorageExtent to use is specified by the InExtent parameter. If this is NULL, a default StorageExtent will be created in a vendor-specific way and used. One way to create the default StorageExtent is to use one of the canned settings supported by the StorageConfigurationService hosted by the host hosting the FileSystemConfigurationService.

The desired settings for the FileSystem are specified by the Goal parameter. Goal is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded object parameter; this allows the client to specify the properties desired for the file system. The Goal parameter includes information that can be used by the vendor to compute the size of the FileSystem. If the StorageExtent specified here cannot support the goal size, an appropriate error value will be returned, and no action will be taken.

A ResidesOnExtent association is created between the created FileSystem and the StorageExtent used for it.

		ValueMap
		Values

		0
		Job Completed with No Error

		1
		Not Supported

		2
		Unknown

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		6
		StorageExtent is not big enough to satisfy the request.

		7
		StorageExtent specified by default cannot be created.

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4098..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN string ElementName

		A end user relevant name for the FileSystem being created. If NULL, a system-supplied default name can be used. The value will be stored in the ‘ElementName’ property for the created element.

		OUT CIM_ConcreteJob Job

		Reference to the job (may be null if job completed).

		IN string Goal

		The requirements for the FileSystem element to maintain. This is an element of class CIM_FileSystemSetting, or a derived class, encoded as a string-valued embedded instance parameter; this allows the client to specify the properties desired for the file system. If NULL or the empty string, the FileSystemConfigurationService will use a vendor-specific default Goal obtained by using the FileSystemCapabilities element specified by the DefaultElementCapabilities association to obtain a default FileSystemSetting element.

		IN CIM_StorageExtent InExtent

		The StorageExtent on which the created FileSystem will reside. If this is NULL, a default StorageExtent will be created in a vendor-specific way and used. One way to create the default StorageExtent is to use one of the default settings supported by the StorageConfigurationService on the same hosting ComputerSystem as the FileSystemConfigurationService.

		IN, OUT CIM_FileSystem TheElement

		The newly created FileSystem.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDFormat.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDFormat

Class reference

Subclass of LMI_DataFormat

This class represents MD RAID metadata present on a StorageExtent. It can be part of existing MD RAID or it can be stray metadata of stopped MD RAID.

Key properties

Name

CSName

CSCreationClassName

CreationClassName

Local properties

string MDUUID

UUID of the MD RAID, which is the associated StorageExtent part of.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

string CSName

string FormatTypeDescription

uint16 CommunicationStatus

string Status

string ElementName

string Description

uint16 TransitioningToState

datetime TimeOfLastStateChange

uint16[] AvailableRequestedStates

uint16 DetailedStatus

uint16 FormatType

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string Caption

uint16 PrimaryStatus

uint64 Generation

string CSCreationClassName

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

Inherited methods

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_ResourceForSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_ResourceForSoftwareIdentity

Class reference

Subclass of CIM_SAPAvailableForElement

CIM_SAPAvailableForElement conveys the semantics of a Service Access Point that is available for a ManagedElement. When CIM_SAPAvailableForElement is not instantiated, then the SAP is assumed to be generally available. If instantiated, the SAP is available only for the associated ManagedElements. For example, a device might provide management access through a URL. This association allows the URL to be advertised for the device.

Key properties

ManagedElement

AvailableSAP

Local properties

LMI_SoftwareIdentityResource AvailableSAP

The Service Access Point that is available.

LMI_SoftwareIdentity ManagedElement

The ManagedElement for which the SAP is available.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_BlockStatisticsCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_BlockStatisticsCapabilities

Class reference

Subclass of CIM_StatisticsCapabilities

A specialization of the StatisticsCapabilities class that describes the capabilities of a BlockStatisticsService, which provides statistical data for instances of BlockStatisticalData.

Key properties

InstanceID

Local properties

uint16[] SynchronousMethodsSupported

The synchronous mechanisms supported for retrieving statistics and defining and modifying filters for statistics retrieval.

		ValueMap
		Values

		2
		Execute Query

		3
		Query Collection

		4
		GetStatisticsCollection

		5
		Manifest Creation

		6
		Manifest Modification

		7
		Manifest Removal

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] ElementTypesSupported

The list of element types for which statistical data is available. The values of this array correspond to the values defined for the ElementType property of the BlockStatisticalData class.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] AsynchronousMethodsSupported

The asychronous mechanisms supported for retrieving statistics.

		ValueMap
		Values

		2
		GetStatisticsCollection

		3
		Indications

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] SupportedFeatures

SupportedFeatures is an array identifying features supported by the implementation. The valid values are “2” (none) or “3” (Client Defined Sequence). If “2” is specified, then no other entry may be included. If “3” is specified, it indicates client may define, in the manifest, the sequence in which the requested properties are returned.

		ValueMap
		Values

		2
		none

		3
		Client Defined Sequence

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint64 ClockTickInterval

An internal clocking interval for all timers in the subsystem, measured in microseconds (Unit of measure in the timers, measured in microseconds). Time counters are monotanically increasing counters that contain ‘ticks’. Each tick represents one ClockTickInterval. If ClockTickInterval contained a value of 32 then each time counter tick would represent 32 microseconds.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_OwningSoftwareJobElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_OwningSoftwareJobElement

Class reference

Subclass of LMI_OwningJobElement

OwningJobElement represents an association between a Job and the ManagedElement responsible for the creation of the Job. This association may not be possible, given that the execution of jobs can move between systems and that the lifecycle of the creating entity may not persist for the total duration of the job. However, this can be very useful information when available. This association defines a more specific ‘owner’ than is provided by the CIM_Job.Owner string.

Key properties

OwningElement

OwnedElement

Local properties

LMI_SoftwareInstallationService OwningElement

The ManagedElement responsible for the creation of the Job.

LMI_SoftwareJob OwnedElement

The Job created by the ManagedElement.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxElement.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxElement

Class reference

Subclass of CIM_ManagedElement

Common superclass for all SELinux classes.

Key properties

InstanceID

Local properties

string InstanceID

InstanceID is an optional property that may be used to opaquely and uniquely identify an instance of this class within the scope of the instantiating Namespace. Various subclasses of this class may override this property to make it required, or a key. Such subclasses may also modify the preferred algorithms for ensuring uniqueness that are defined below.

To ensure uniqueness within the NameSpace, the value of InstanceID should be constructed using the following “preferred” algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon (:), and where <OrgID> must include a copyrighted, trademarked, or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID or that is a registered ID assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness, <OrgID> must not contain a colon (:). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be reused to identify different underlying (real-world) elements. If not null and the above “preferred” algorithm is not used, the defining entity must assure that the resulting InstanceID is not reused across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

If not set to null for DMTF-defined instances, the “preferred” algorithm must be used with the <OrgID> set to CIM.

Local methods

None

Inherited properties

string Caption

string ElementName

uint64 Generation

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/shell/man_page.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

Synopsis

lmishell [options] script [script-options]

Description

LMIShell provides a (non)interactive or interactive way how to access CIM
objects provided by OpenPegasus or sblim-sfcb CIMOM.

LMIShell is based on a python interpreter and added logic, therefore what is
possible to do in pure python, it is possible in LMIShell. There are classes
added to manipulate with CIM classes, instance names, instances, etc.
Additional classes are added to fulfill wrapper pattern and expose only those
methods, which are necessary for the purpose of a shell.

Options

The options may be given in any order before the first positional argument,
which stands for the script name.

		-h, –help

		Print summary of usage, command line options and exit.

		-i, –interact

		Enter interactive mode, when the script passed as the first positional
argument is executed.

		-v, –verbose

		Print log messages to stderr.

		-m, –more-verbose

		Print all log messages to stderr.

		-q, –quiet

		Do not print any log messages to stderr.

		-n, –noverify

		Do not verify server’s certificate, if SSL used. By default, the
certificate validity check will be performed.

By default, LMIShell prints out log messages with Error severity. Options
-v, -m and -q are mutually exclusive and can not be used together.

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DHCPSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DHCPSettingData

Class reference

Subclass of CIM_DHCPSettingData

This class represents the desired configuration settings for the DHCPProtocolEndpoint (i.e. DHCP client configuration.

Key properties

InstanceID

Local properties

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint.

A value of 4 DHCP indicates that the values will be assigned via DHCP. See RFC 2131 and related.

A value of 7 DHCPv6 shall indicate the values will be assigned using DHCPv6. See RFC 3315.

		ValueMap
		Values

		4
		DHCP

		7
		DHCPv6

Local methods

None

Inherited properties

uint32 RequestedLeaseTime

string InstanceID

uint16[] IPv6RequestedOptions

uint16[] RequiredOptions

uint16[] IPv6RequiredOptions

string RequestedIPv6Address

string VendorClassIdentifier

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

uint16[] RequestedOptions

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

string ElementName

uint16 AddressPrefixOrigin

uint16 AddressSuffixOrigin

string ClientIdentifier

string Description

string SoID

string Caption

uint16 ChangeableType

string RequestedIPv4Address

uint64 Generation

string[] ComponentSetting

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PhysicalPackage.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PhysicalPackage

Class reference

Subclass of CIM_PhysicalElement

The PhysicalPackage class represents PhysicalElements that contain or host other components. Examples are a Rack enclosure or an adapter Card.

Key properties

Tag

CreationClassName

Local properties

boolean HotSwappable

The use of this property is being deprecated. Instead RemovalConditions should be used. The RemovalConditions property addresses whether a PhysicalPackage is removable with or without power being applied.

A PhysicalPackage is HotSwappable if it is possible to replace the Element with a physically different but equivalent one while the containing Package has power applied to it (ie, is ‘on’). For example, a disk drive Package inserted using SCA connectors is both Removable and HotSwappable. All HotSwappable packages are inherently Removable and Replaceable.

real32 Width

The width of the PhysicalPackage in inches.

boolean Removable

The use of this property is being deprecated. Instead RemovalConditions should be used. The RemovalConditions property addresses whether a PhysicalPackage is removable with or without power being applied.

A PhysicalPackage is Removable if it is designed to be taken in and out of the physical container in which it is normally found, without impairing the function of the overall packaging. A Package can still be Removable if power must be ‘off’ in order to perform the removal. If power can be ‘on’ and the Package removed, then the Element is both Removable and HotSwappable. For example, an extra battery in a laptop is Removable, as is a disk drive Package inserted using SCA connectors. However, the latter is also HotSwappable. A laptop’s display is not Removable, nor is a non-redundant power supply. Removing these components would impact the function of the overall packaging or is impossible due to the tight integration of the Package.

uint16 RemovalConditions

The RemovalCapabilites property is used to describe the conditions under which a PhysicalPackage can be removed. Since all PhysicalPackages are not removable, this property defaults to 2, ‘Not Applicable’.

		ValueMap
		Values

		0
		Unknown

		2
		Not Applicable

		3
		Removable when off

		4
		Removable when on or off

boolean Replaceable

The use of this property is being deprecated because it is redundant with the FRU class and its associations. A PhysicalPackage is Replaceable if it is possible to replace (FRU or upgrade) the Element with a physically different one. For example, some ComputerSystems allow the main Processor chip to be upgraded to one of a higher clock rating. In this case, the Processor is said to be Replaceable. Another example is a power supply Package mounted on sliding rails. All Removable packages are inherently Replaceable.

string[] VendorCompatibilityStrings

An array of strings that identify the component that is compatible with, and can be inserted in a slot that reports this string as one of the array element in the VendorCompatibilityStrings This allows system administrators to determine whether it is appropriateto insert a package into a slot

In order to ensure uniqueness within the NameSpace, each value defined by the vendor for use in the VendorCompatibilityStrings property SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements.

real32 Depth

The depth of the PhysicalPackage in inches.

uint16 PackageType

Enumeration defining the type of the PhysicalPackage. Note that this enumeration expands on the list in the Entity MIB (the attribute, entPhysicalClass). The numeric values are consistent with CIM’s enum numbering guidelines, but are slightly different than the MIB’s values.

Unknown - indicates that the package type is not known.

Other - The package type does not correspond to an existing enumerated value. The value is specified using the OtherPackageType property.

The values “Rack” through “Port/Connector” are defined per the Entity-MIB (where the semantics of rack are equivalent to the MIB’s ‘stack’ value). The other values (for battery, processor, memory, power source/generator and storage media package) are self-explanatory.

A value of “Blade” should be used when the PhysicalPackage contains the operational hardware aspects of a ComputerSystem, without the supporting mechanicals such as power and cooling. For example, a Blade Server includes processor(s) and memory, and relies on the containing chassis to supply power and cooling. In many respects, a Blade can be considered a “Module/Card”. However, it is tracked differently by inventory systems and differs in terms of service philosophy. For example, a Blade is intended to be hot-plugged into a hosting enclosure without requiring additional cabling, and does not require a cover to be removed from the enclosure for installation. Similarly, a “Blade Expansion” has characteristics of a “Blade” and a “Module/Card”. However, it is distinct from both due to inventory tracking and service philosophy, and because of its hardware dependence on a Blade. A Blade Expansion must be attached to a Blade prior to inserting the resultant assembly into an enclosure.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Rack

		3
		Chassis/Frame

		4
		Cross Connect/Backplane

		5
		Container/Frame Slot

		6
		Power Supply

		7
		Fan

		8
		Sensor

		9
		Module/Card

		10
		Port/Connector

		11
		Battery

		12
		Processor

		13
		Memory

		14
		Power Source/Generator

		15
		Storage Media Package (e.g., Disk or Tape Drive)

		16
		Blade

		17
		Blade Expansion

real32 Weight

The weight of the PhysicalPackage in pounds.

real32 Height

The height of the PhysicalPackage in inches.

string OtherPackageType

A string describing the package when the instance’s PackageType property is 1 (“Other”).

Local methods

uint32 IsCompatible (CIM_PhysicalElement ElementToCheck)

This method is being deprecated. A PhysicalPackage cannot determine if it is compatible with another object. The IsCompatible method verifies whether the referenced PhysicalElement may be contained by or inserted into the PhysicalPackage. The return value should be 0 if the request was successfully executed, 1 if the request is not supported and some other value if an error occurred. In a subclass, the set of possible return codes could be specified, using a ValueMap qualifier on the method. The strings to which the ValueMap contents are ‘translated’ may also be specified in the subclass as a Values array qualifier.

Parameters

		IN CIM_PhysicalElement ElementToCheck

		The element to check for compatibility with this one.

Inherited properties

string SKU

uint16 HealthState

string[] StatusDescriptions

string UserTracking

string InstanceID

string VendorEquipmentType

string SerialNumber

datetime ManufactureDate

string Version

string PartNumber

string Status

string ElementName

boolean CanBeFRUed

string Description

uint16[] OperationalStatus

string Manufacturer

uint16 DetailedStatus

string OtherIdentifyingInfo

string Name

datetime InstallDate

boolean PoweredOn

string Caption

string Model

uint16 PrimaryStatus

uint16 CommunicationStatus

uint64 Generation

string Tag

uint16 OperatingStatus

string CreationClassName

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ElementAllocatedFromPool.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ElementAllocatedFromPool

Class reference

Subclass of CIM_AbstractElementAllocatedFromPool

ElementAllocatedFromPool associates an instance of CIM_LogicalElement representing an allocated Resource with the CIM_ResourcePool from which it was allocated.

Key properties

Dependent

Antecedent

Dependent

Antecedent

Local properties

CIM_LogicalElement Dependent

The allocated resource.

CIM_ResourcePool Antecedent

The resource pool.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LVStorageSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LVStorageSetting

Class reference

Subclass of LMI_StorageSetting

This class defines characteristics of LMI_LVStorageExtent which is created or modified by CreateOrModifyElementFromStoragePool method in the LMI_StorageConfigurationService.

Currently no properties are defined or supported, only simple Logical Volumes can be created. In future, this may be extended to support redundancy and stripping and thin volumes.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

uint64 InterconnectSpeed

uint16 InterconnectType

uint8 DeltaReservationGoal

uint16 DataRedundancyMin

uint16 UseReplicationBuffer

string InstanceID

uint16 LowSpaceWarningThreshold

uint16 DiskType

boolean NoSinglePointOfFailure

string SubsystemID

string Description

uint16 ParityLayout

uint16 DataOrganization

uint16 PackageRedundancyMax

uint64 UserDataStripeDepthMin

string EmulatedDevice

uint16 CompressionRate

uint16 ThinProvisionedPoolType

uint16 FormFactorType

string ConfigurationName

uint16 ExtentStripeLength

boolean CompressedElement

string CUImage

string SoOrgID

boolean PersistentReplica

uint16 InitialSynchronization

uint16 Encryption

uint16 StorageExtentInitialUsage

uint16 ExtentStripeLengthMin

string ElementName

uint64 ThinProvisionedInitialReserve

string Caption

uint16 DataRedundancyGoal

uint16 PortType

boolean IncrementalDeltas

uint16 StoragePoolInitialUsage

string SoID

uint16 ReplicationPriority

uint16 ChangeableType

uint8 DeltaReservationMin

uint64 Generation

uint32 RPM

uint64 UserDataStripeDepthMax

uint64 SpaceLimit

uint16 SpaceLimitWarningThreshold

uint16 ExtentStripeLengthMax

string[] ComponentSetting

uint16 PackageRedundancyGoal

uint8 DeltaReservationMax

uint16 DataRedundancyMax

uint64 UserDataStripeDepth

uint16 PackageRedundancyMin

Inherited methods

CloneSetting

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MDRAIDStorageExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MDRAIDStorageExtent

Class reference

Subclass of LMI_StorageExtent

This class represents MD RAID devices on the managed system.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

string ElementName

Name of the device, i.e. ‘myraid’ in case of /dev/md/myraid device or ‘md0’ in case of /dev/md0 device.

uint16 Level

RAID level.

		ValueMap
		Values

		0
		RAID0

		1
		RAID1

		4
		RAID4

		5
		RAID5

		6
		RAID6

		10
		RAID10

string UUID

UUID of the RAID.

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

string InstanceID

uint64 ExtentStripeLength

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string DeviceBusType

uint64 Generation

datetime InstallDate

string OtherNameNamespace

uint16 NameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint16[] ClientSettableUsage

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16 TransitioningToState

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string[] Names

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPhysicalPackageContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPhysicalPackageContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_DiskPhysicalPackage PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_VTOCDiskPartition.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_VTOCDiskPartition

Class reference

Subclass of CIM_GenericDiskPartition

VTOC is a partitioning scheme used on Sun Solaris and some other OSes based on BSD Unix. VTOC partitions are also known as slices. VTOC allows partitions to overlap. A VTOC disk always contains 8 slices, but not all need to be in use.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16[] Flags

The VTOC partition flags.

		ValueMap
		Values

		1
		Unmountable

		10
		Read Only

string AsciiLabel

A string value generated by the format utility based on the disk vendor and product IDs and the capacity.

uint16 Tag

The VTOC tag. This is selected by the user to provide a about the content of the partition. These are the names and values already used in the VTOC definitions.

		ValueMap
		Values

		0
		Unassigned

		1
		Boot

		2
		Root

		3
		Swap

		4
		USR

		5
		Backup

		6
		Stand

		7
		Var

		8
		Home

		9
		Alternate Sector

		10
		CacheFS

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean Allocatable

string[] StatusDescriptions

boolean PowerManagementSupported

uint16[] ClientSettableUsage

string[] ExtentDiscriminator

string[] OtherIdentifyingInfo

string CreationClassName

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

string SignatureAlgorithm

string Status

string ElementName

datetime InstallDate

string OtherNameNamespace

uint64 ExtentInterleaveDepth

string[] IdentifyingDescriptions

uint64 Generation

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

uint16 EnabledDefault

string InstanceID

boolean IsConcatenated

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

boolean IsBasedOnUnderlyingRedundancy

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

boolean Extendable

boolean IsCompressed

string Name

uint16[] PowerManagementCapabilities

boolean Bootable

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

uint16 NameNamespace

boolean IsComposite

string DeviceID

string Signature

uint16 PackageRedundancy

uint64 PowerOnHours

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint16 CompressionRate

uint16[] OperationalStatus

string OtherEnabledState

uint32 LastErrorCode

string ErrorMethodology

uint16 StatusInfo

uint16[] ExtentStatus

string SignatureState

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareIdentity

Class reference

Subclass of CIM_SoftwareIdentity

SoftwareIdentity provides descriptive information about a software component for asset tracking and/or installation dependency management. When the IsEntity property has the value TRUE, the instance of SoftwareIdentity represents an individually identifiable entity similar to Physical Element. SoftwareIdentity does NOT indicate whether the software is installed, executing, etc. This extra information may be provided through specialized associations to Software Identity. For instance, both InstalledSoftwareIdentity and ElementSoftwareIdentity may be used to indicate that the software identified by this class is installed. SoftwareIdentity is used when managing the software components of a ManagedElement that is the management focus. Since software may be acquired, SoftwareIdentity can be associated with a Product using the ProductSoftwareComponent relationship. The Application Model manages the deployment and installation of software via the classes, SoftwareFeatures and SoftwareElements. SoftwareFeature and SoftwareElement are used when the software component is the management focus. The deployment/installation concepts are related to the asset/identity one. In fact, a SoftwareIdentity may correspond to a Product, or to one or more SoftwareFeatures or SoftwareElements - depending on the granularity of these classes and the deployment model. The correspondence of Software Identity to Product, SoftwareFeature or SoftwareElement is indicated using the ConcreteIdentity association. Note that there may not be sufficient detail or instrumentation to instantiate ConcreteIdentity. And, if the association is instantiated, some duplication of information may result. For example, the Vendor described in the instances of Product and SoftwareIdentity MAY be the same. However, this is not necessarily true, and it is why vendor and similar information are duplicated in this class.

Note that ConcreteIdentity can also be used to describe the relationship of the software to any LogicalFiles that result from installing it. As above, there may not be sufficient detail or instrumentation to instantiate this association.

Key properties

InstanceID

Local properties

string InstanceID

Unique identifier for installed or available package. It’s composed of OrgID and LocalID separated by ‘:’, where <OrgID> is LMI and LocalID is PKG:<PKG_NEVRA>. <PKG_NEVRA> is a string representing rpm package. Letters in NEVRA stand for name, epoch, version, release and architecture.

uint32 Epoch

Package’s epoch.

string Version

Package’s version.

string[] TargetTypes

An array of strings that describes the compatible installer(s). The purpose of the array elements is to establish compatibility between a SoftwareIdentity and a SoftwareInstallationService that can install the SoftwareIdentity by comparing the values of the array elements of this property to the values of SoftwareInstallationServiceCapabilities.SupportedTargetTypes[] property’s array elements.

string ElementName

Package’s NEVRA string. That is also part of InstanceID.

string Description

Package’s description.

boolean IsEntity

The IsEntity property is used to indicate whether the SoftwareIdentity corresponds to a discrete copy of the software component or is being used to convey descriptive and identifying information about software that is not present in the management domain.A value of TRUE shall indicate that the SoftwareIdentity instance corresponds to a discrete copy of the software component. A value of FALSE shall indicate that the SoftwareIdentity instance does not correspond to a discrete copy of the Software.

uint16[] Classifications

An array of enumerated integers that classify this software. For example, the software MAY be instrumentation (value=5) or firmware and diagnostic software (10 and 7). The use of value 6, Firmware/BIOS, is being deprecated. Instead, either the value 10 (Firmware) and/or 11 (BIOS/FCode) SHOULD be used. The value 13, Software Bundle, identifies a software package consisting of multiple discrete software instances that can be installed individually or together.

Each contained software instance is represented by an instance of SoftwareIdentity that is associated to this instance of SoftwareIdentityinstance via a Component association.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Driver

		3
		Configuration Software

		4
		Application Software

		5
		Instrumentation

		6
		Firmware/BIOS

		7
		Diagnostic Software

		8
		Operating System

		9
		Middleware

		10
		Firmware

		11
		BIOS/FCode

		12
		Support/Service Pack

		13
		Software Bundle

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string Name

Name of package. This does not uniquely identify package installed on computer system.

datetime InstallDate

A datetime value that indicates when the object was installed. Lack of a value does not indicate that the object is not installed.

string Caption

Package’s summary.

string Architecture

Package’s architecture.

string Release

Package’s release.

string VersionString

Package’s EVRA, in format: <epoch>:<version>-<release>.<architecture>

Local methods

None

Inherited properties

uint16 HealthState

uint16 DetailedStatus

uint16[] TargetOSTypes

uint16 ExtendedResourceType

string SerialNumber

string[] Languages

uint16 MinExtendedResourceTypeMajorVersion

string[] StatusDescriptions

string[] TargetOperatingSystems

uint64 LargeBuildNumber

boolean IsLargeBuildNumber

uint16 MinExtendedResourceTypeMinorVersion

datetime ReleaseDate

string[] ClassificationDescriptions

string[] IdentityInfoType

string Manufacturer

string Status

string OtherExtendedResourceTypeDescription

uint16 MinExtendedResourceTypeBuildNumber

uint16 PrimaryStatus

uint16 MinorVersion

uint16 MajorVersion

uint16 CommunicationStatus

uint64 Generation

uint16 MinExtendedResourceTypeRevisionNumber

string[] IdentityInfoValue

uint16 BuildNumber

uint16[] OperationalStatus

uint16 OperatingStatus

uint16 RevisionNumber

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDAvailableComponent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDAvailableComponent

Class reference

All available SSSD components.

Key properties

Component

SSSD

Local properties

LMI_SSSDComponent Component

LMI_SSSDService SSSD

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DeviceSAPImplementation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DeviceSAPImplementation

Class reference

Subclass of CIM_Dependency

An association between a ServiceAccessPoint (SAP) and how it is implemented. The cardinality of this association is many-to-many. A SAP can be provided by more than one LogicalDevice, operating in conjunction. And, any Device can provide more than one ServiceAccessPoint. When many LogicalDevices are associated with a single SAP, it is assumed that these elements operate in conjunction to provide the AccessPoint. If different implementations of a SAP exist, each of these implementations would result in individual instantiations of the ServiceAccessPoint object. These individual instantiations would then have associations to the unique implementations.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The ServiceAccessPoint implemented using the LogicalDevice.

CIM_LogicalDevice Antecedent

The LogicalDevice.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ForwardsAmong.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ForwardsAmong

Class reference

Subclass of CIM_ServiceSAPDependency

This association represents the dependency that exists between the ProtocolEndpoints that are used to forward data and the ForwardingService that is performing the forwarding of data.

Key properties

Dependent

Antecedent

Local properties

CIM_ForwardingService Dependent

The service that is forwarding the data.

CIM_ProtocolEndpoint Antecedent

The ProtocolEndpoints that are used to forward the data.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_SwitchPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_SwitchPort

Class reference

Subclass of CIM_ProtocolEndpoint

Switch Port from which frames are received and out which they are transmitted. This endpoint is associated with its networking interface (such as Ethernet) via the EndpointIdentity relationship.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint16 PortNumber

Numeric identifier for a switch port.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

string Description

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 ProtocolIFType

uint16 EnabledDefault

uint16 EnabledState

string Caption

string OtherTypeDescription

uint16[] AvailableRequestedStates

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_DNSSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_DNSSettingData

Class reference

Subclass of CIM_IPAssignmentSettingData

DNSSettingData defines the DNSconfiguration settings for a single IP network connection. With the exception of the the DNSServerAddresses and the hostname in use, the configuration of a DNSProtocolEndpoint is indicated by the properties of an associated instance of DNSSettingData.

Key properties

InstanceID

Local properties

string DomainName

The domain to use for this client connection.

boolean RegisterThisConnectionsAddress

Whether or not this connection’s address should be registered in DNS.

uint16[] DHCPOptionsToUse

One or more DHCP options that the DNS client should utilise if they are returned during a DHCP bind operation.

		ValueMap
		Values

		8
		Domain Name Server

		14
		Host Name

		17
		Domain Name

		18..32767
		DMTF Reserved

		32768..65535
		Vendor Reserved

string[] DNSServerAddresses

The DNS servers to contact. The array ordering correlates to the order in which the DNS servers will be contacted. The RemoteServiceAccessPoints associated with the DNSProtocolEndpoint with the value of the AccessContext property being “DNS Server” represent the actual DNS Servers being utilized by the DNS client.

boolean UseSuffixWhenRegistering

Whether or not the suffix should be appended before registering the client name with the DNS server.

string RequestedHostname

The Hostname requested for this client connection.

uint16 AddressOrigin

AddressOrigin identifies the method by which the IP Address, Subnet Mask, and Gateway were assigned to the IPProtocolEndpoint. This is independent of the DNS configuration, thus this property has the value of 2 (“Not Applicable”)

		ValueMap
		Values

		0..1
		DMTF Reserved

		2
		Not Applicable

		3..32767
		DMTF Reserved

		32768..
		Vendor Reserved

Local methods

None

Inherited properties

string InstanceID

string ElementName

string OtherAddressPrefixOriginDescription

string ConfigurationName

string SoOrgID

string OtherAddressSuffixOriginDescription

uint16 ProtocolIFType

uint16 AddressPrefixOrigin

uint16 AddressSuffixOrigin

string Description

string SoID

string Caption

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FileSystemSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FileSystemSetting

Class reference

Subclass of CIM_FileSystemSetting

The FileSystemSetting describes the attribute values set when creating a FileSystem by a FileSystemConfigurationService. These settings can be associated via the ElementSettingData association with the created FileSystem. If the setting is associated via SettingAssociatedToCapabilities to a FileSystemCapabilities, it is one of the canned settings supported by this capabilities instance. A setting can also be an embedded instance parameter to a method (for instance, when used as a Goal parameter).

A NULL value for a property in a canned setting indicates support for a vendor-specific default. A NULL value for a property when the setting is used as a Goal parameter to a method indicates that the client does not care what value that property will have on creation and will accept any vendor-supplied default. When used with a FileSystem, a NULL value for a property must be interpreted as “Unknown”. The ActualFileSystemType property cannot have a default value in any context. If this Setting is associated with a FileSystemCapabilities element via SettingAssociatedToCapabilities, the value of ActualFileSystemType in the Setting and the Capabilities MUST match.

This class also supports persistence and recoverability of a FileSystem and its contained elements as defined in CIM 2.8 for the use of DatabaseStorageArea.

Key properties

InstanceID

Local properties

uint16[] FilenameLengthMax

An array of integers that specify the maximum number of characters in a filename corresponding to an entry in the FilenameFormats property.

An entry of ‘0xFFFF’ (the largest 16-bit integer) is interpreted as an indefinite length.

uint64[] ObjectSizeMax

An array of integers that specifies the maximum size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific maximum associated with this setting.

uint16[] FilenameFormats

An array of enumerated values that specify the filename formats supported on this FileSystem for naming files. Some common formats are:

		DOS 8.3

		VMS ‘name.extension;version’ where the extension specifies a file type

		Unix name (file type is not specified in the name)

		Windows ‘name{.ext}*’ where any of the exts can specify a file type

For each entry in this array there is an associated maximum length for the name and an associated reserved set of characters.

The interpretation of the maximum length of the name as well as the FilenameReservedCharacterSet string is vendor-specific.

		ValueMap
		Values

		1
		DOS8.3

		2
		Unix

		3
		VMS

		4
		Windows LongNames

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 DataExtentsSharing

An enumerated value that specifies if the FileSystem supports or enforces sharing of data extents between objects.

		ValueMap
		Values

		0
		Unknown

		1
		No Sharing

		2
		Sharing Possible/Optional

		3
		Sharing Enforced

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16[] ObjectTypes

An array of enumerated values that specifies the set of object types that this FileSystem supports. This array is associated with a number of correspondingly indexed properties that specify the size and number of such objects.

When used as a goal, the client needs to specify only the subset of objects that they wish to specify; when used in a Setting associated with the FileSystem, this should contain all the types that the provider knows about; when used in a Setting associated with a Capabilities, this may only contain the types that the client can modify.

“inodes” indicates that the number of required inodes is specified.”files” indicates that the number of required files is specified.”directories” indicates that the number of required directories is specified.”links” indicates that the number of required links is specified.”devices” indicates that the number of required devices is specified.”files/directories” indicates that the number of required files and directories is specified.”blocks” indicates that the size of required storage in client-specific storage units is specified. This represents the desired size of available space in the filesystem, exclusive of space reserved for meta-data and for other system functions. If “blocks” is specified, the corresponding ObjectSize properties must all be the same and must specify the intended size of the blocks in bytes.

		ValueMap
		Values

		2
		inodes

		3
		files

		4
		directories

		5
		links

		6
		devices

		7
		files/directories

		8
		Blocks

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint16 FilenameCaseAttributes

An enumerated value that specifies how this FileSystem supports the case of characters in the Filename. Note that the host and the service may support multiple conflicting features, but each FileSystem must be configured with only one of the supported features.

		ValueMap
		Values

		0
		Unknown

		1
		Case-sensitive

		2
		Case-forced to upper case

		3
		Case-forced to lower-case

		4
		Case-indifferent but lost

		5
		Case-indifferent but preserved

		
		DMTF Reserved

		0x8000..
		Vendor Defined

uint64[] ObjectSizeMin

An array of integers that specifies the minimum size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific minimum associated with this setting.

uint64[] NumberOfObjects

An array of integers that specifies the number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific number associated with this setting. When the Setting is associated with a FileSystemCapabilities element, this is the default; When the Setting is associated with a FileSystem element, this is the expected value; When the Setting is used as an embedded parameter to a method this is the goal.

uint64[] NumberOfObjectsMin

An array of integers that specifies the minimum number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem MUST be able to contain. A value of 0 implies that there is no specific minimum associated with this setting.

uint64[] NumberOfObjectsMax

An array of integers that specifies the maximum number of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem MUST be able to contain. A value of 0 implies that there is no specific maximum associated with this setting.

uint16 ActualFileSystemType

An enumerated value that indicates the file system implementation type supported by this Setting. This property MUST exist and have a value.

		ValueMap
		Values

		0
		Unknown

		2
		UFS

		3
		HFS

		4
		FAT

		5
		FAT16

		6
		FAT32

		7
		NTFS4

		8
		NTFS5

		9
		XFS

		10
		AFS

		11
		EXT2

		12
		EXT3

		13
		REISERFS

		
		DMTF Reserved

		32769
		EXT4

		32770
		BTRFS

		32771
		JFS

		32772
		TMPFS

		32773
		VFAT

uint64[] ObjectSize

An array of integers that specifies the size of objects (corresponding to the entry in the ObjectTypes array) that this FileSystem will “normally” contain. A value of 0 implies that there is no specific number associated with this setting. When the Setting is associated with a FileSystemCapabilities element, this is the default; When the Setting is associated with a FileSystem element, this is the expected value; When the Setting is used as an embedded parameter to a method this is the goal.

uint16[] PersistenceTypes

An array of enumerated values representing the persistence attributes of the FileSystem. A value of “Persistent” indicates that the FileSystem supports persistence, can be preserved through an orderly shutdown and could be protected. A value of “Temporary” indicates that the FileSystem supports non-persistence, may not be protected and may not survive a shutdown. A value of “External” indicates that the FileSystem could controlled outside of the operating environment and may need to be protected by specialized means. A value of “Other” is provided to allow for additional persistence types, to be described in the corresponding entry of the OtherPersistenceTypes property, and is expected to be rarely, if ever, used.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Persistent

		3
		Temporary

		4
		External

		5..
		DMTF Reserved

Local methods

None

Inherited properties

uint16[] FilenameStreamFormats

string InstanceID

string ElementName

string Description

uint16 CopyTarget

uint16[] SupportedAuthorizationProtocols

string ConfigurationName

uint16[] SupportedAuthenticationProtocols

string SoOrgID

string[] FilenameReservedCharacterSet

uint16[] SupportedLockingSemantics

string[] OtherPersistenceTypes

string Caption

string SoID

uint16 ChangeableType

string[] ComponentSetting

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareInstallationServiceCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareInstallationServiceCapabilities

Class reference

Subclass of CIM_SoftwareInstallationServiceCapabilities

A subclass of capabilities that defines the capabilities of a SoftwareInstallationService. A single instance of SoftwareInstallationServiceCapabilities is associated with a SoftwareInstallationService using ElementCapabilities.

Key properties

InstanceID

Local properties

string[] SupportedTargetTypes

An array containing a list of SoftwareIdentity.TargetType properties that this service ‘knows’ how to install. TargetType is an application specific string which is invariant across version or name changes of the SoftwareIdentity and so can be used by a client to select Software Identities compatible with this service.

If the service is generic (for example an OS installer), this array will be empty.

string Description

The Description property provides a textual description of the object.

uint16[] SupportedInstallOptions

An enumeration indicating the specific install related optionssupported by this service. Since this is an array, multiple values may be specified. See the InstallOptions parameter of theSoftwareInstallationService.InstallFromSoftwareIdentity method for the description of these values.

		ValueMap
		Values

		2
		Defer target/system reset

		3
		Force installation

		4
		Install

		5
		Update

		6
		Repair

		7
		Reboot

		8
		Password

		9
		Uninstall

		10
		Log

		11
		SilentMode

		12
		AdministrativeMode

		13
		ScheduleInstallAt

		
		DMTF Reserved

		32768..65535
		Vendor Specific

boolean CanAddToCollection

This property indicates whether SoftwareInstallationService.InstallFromSoftwareIdentity supports adding a SoftwareIdentity to a Collection.

uint16[] SupportedURISchemes

This property lists the URI schemes supported by the SoftwareInstallationService.

		ValueMap
		Values

		2
		data

		3
		file

		4
		ftp

		5
		http

		6
		https

		7
		nfs

		8
		tftp

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Specific

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

uint16[] SupportedAsynchronousActions

Enumeration indicating what operations will be executed as asynchronous jobs. If an operation is included in both this and SupportedSynchronousActions then the underlying implementation is indicating that it may or may not create a job. If a Job is created, then the methods in SoftwareInstallationService return a reference to that Job as the Job parameter.

		ValueMap
		Values

		2
		None supported

		3
		Install From Software Identity

		4
		Install from ByteStream

		5
		Install from URI

		10000
		Verify Software Identity

uint16[] SupportedSynchronousActions

Enumeration indicating what operations will be executed without the creation of a job. If an operation is included in both this and SupportedAsynchronousActions then the underlying instrumentation is indicating that it may or may not create a job.

		ValueMap
		Values

		2
		None supported

		3
		Install From Software Identity

		4
		Install from ByteStream

		5
		Install from URI

		10000
		Verify Software Identity

Local methods

None

Inherited properties

uint16[] SupportedExtendedResourceTypes

uint16[] SupportedExtendedResourceTypesMajorVersions

string Caption

uint16[] SupportedExtendedResourceTypesBuildNumbers

string ElementName

string[] OtherSupportedExtendedResourceTypeDescriptions

uint64 Generation

uint16[] SupportedExtendedResourceTypesRevisionNumbers

uint16[] SupportedExtendedResourceTypesMinorVersions

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskDriveSoftwareIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskDriveSoftwareIdentity

Class reference

Subclass of CIM_SoftwareIdentity

SoftwareIdentity provides descriptive information about a software component for asset tracking and/or installation dependency management. When the IsEntity property has the value TRUE, the instance of SoftwareIdentity represents an individually identifiable entity similar to Physical Element. SoftwareIdentity does NOT indicate whether the software is installed, executing, etc. This extra information may be provided through specialized associations to Software Identity. For instance, both InstalledSoftwareIdentity and ElementSoftwareIdentity may be used to indicate that the software identified by this class is installed. SoftwareIdentity is used when managing the software components of a ManagedElement that is the management focus. Since software may be acquired, SoftwareIdentity can be associated with a Product using the ProductSoftwareComponent relationship. The Application Model manages the deployment and installation of software via the classes, SoftwareFeatures and SoftwareElements. SoftwareFeature and SoftwareElement are used when the software component is the management focus. The deployment/installation concepts are related to the asset/identity one. In fact, a SoftwareIdentity may correspond to a Product, or to one or more SoftwareFeatures or SoftwareElements - depending on the granularity of these classes and the deployment model. The correspondence of Software Identity to Product, SoftwareFeature or SoftwareElement is indicated using the ConcreteIdentity association. Note that there may not be sufficient detail or instrumentation to instantiate ConcreteIdentity. And, if the association is instantiated, some duplication of information may result. For example, the Vendor described in the instances of Product and SoftwareIdentity MAY be the same. However, this is not necessarily true, and it is why vendor and similar information are duplicated in this class.

Note that ConcreteIdentity can also be used to describe the relationship of the software to any LogicalFiles that result from installing it. As above, there may not be sufficient detail or instrumentation to instantiate this association.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

string Description

The Description property provides a textual description of the object.

boolean IsEntity

The IsEntity property is used to indicate whether the SoftwareIdentity corresponds to a discrete copy of the software component or is being used to convey descriptive and identifying information about software that is not present in the management domain.A value of TRUE shall indicate that the SoftwareIdentity instance corresponds to a discrete copy of the software component. A value of FALSE shall indicate that the SoftwareIdentity instance does not correspond to a discrete copy of the Software.

boolean IsLargeBuildNumber

The IsLargeBuildNumber property is used to indicate if the BuildNumber of LargeBuildNumber property contains the value of the software build. A value of TRUE shall indicate that the build number is represented by the LargeBuildNumber property. A value of FALSE shall indicate that the build number is represented by the BuildNumber property.

string Manufacturer

Manufacturer of this software.

uint16[] Classifications

An array of enumerated integers that classify this software. For example, the software MAY be instrumentation (value=5) or firmware and diagnostic software (10 and 7). The use of value 6, Firmware/BIOS, is being deprecated. Instead, either the value 10 (Firmware) and/or 11 (BIOS/FCode) SHOULD be used. The value 13, Software Bundle, identifies a software package consisting of multiple discrete software instances that can be installed individually or together.

Each contained software instance is represented by an instance of SoftwareIdentity that is associated to this instance of SoftwareIdentityinstance via a Component association.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Driver

		3
		Configuration Software

		4
		Application Software

		5
		Instrumentation

		6
		Firmware/BIOS

		7
		Diagnostic Software

		8
		Operating System

		9
		Middleware

		10
		Firmware

		11
		BIOS/FCode

		12
		Support/Service Pack

		13
		Software Bundle

		
		DMTF Reserved

		0x8000..0xFFFF
		Vendor Reserved

string Name

The Name property defines the label by which the object is known. When subclassed, the Name property can be overridden to be a Key property.

string Caption

The Caption property is a short textual description (one- line string) of the object.

string VersionString

A string representing the complete software version information - for example, ‘12.1(3)T’. This string and the numeric major/minor/revision/build properties are complementary. Since vastly different representations and semantics exist for versions, it is not assumed that one representation is sufficient to permit a client to perform computations (i.e., the values are numeric) and a user to recognize the software’s version (i.e., the values are understandable and readable). Hence, both numeric and string representations of version are provided.

Local methods

None

Inherited properties

uint16 HealthState

uint16 DetailedStatus

uint16[] TargetOSTypes

uint16 ExtendedResourceType

string SerialNumber

string[] Languages

uint16 MinExtendedResourceTypeMajorVersion

string[] TargetTypes

string[] StatusDescriptions

string[] TargetOperatingSystems

uint64 LargeBuildNumber

uint16 MinExtendedResourceTypeMinorVersion

datetime ReleaseDate

string[] ClassificationDescriptions

string[] IdentityInfoType

string Status

datetime InstallDate

string[] IdentityInfoValue

string OtherExtendedResourceTypeDescription

uint16 MinExtendedResourceTypeBuildNumber

uint16 PrimaryStatus

uint16 MinorVersion

uint16 MajorVersion

uint16 CommunicationStatus

uint64 Generation

uint16 MinExtendedResourceTypeRevisionNumber

uint16 BuildNumber

uint16[] OperationalStatus

uint16 OperatingStatus

uint16 RevisionNumber

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BindsToLANEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BindsToLANEndpoint

Class reference

Subclass of CIM_BindsToLANEndpoint

This association makes explicit the dependency of a SAP or ProtocolEndpoint on an underlying LANEndpoint, on the same system.

Key properties

Dependent

Antecedent

Local properties

CIM_ServiceAccessPoint Dependent

The AccessPoint or ProtocolEndpoint dependent on the LANEndpoint.

CIM_LANEndpoint Antecedent

The underlying LANEndpoint, which is depended upon.

uint16 FrameType

This describes the framing method for the upper layer SAP or Endpoint that is bound to the LANEndpoint.

		ValueMap
		Values

		1
		Ethernet

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_StorageMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_StorageMethodResult

Class reference

Subclass of LMI_MethodResult

Jobs are sometimes used to represent extrinsic method invocations that execute for times longer than the length of time is reasonable to require a client to wait. The method executing continues beyond the method return to the client. The class provides the result of the execution of a Job that was itself started by the side-effect of this extrinsic method invocation.

The indication instances embedded an instance of this class shall be the same indications delivered to listening clients or recorded, all or in part, to logs. Basically, this approach is a corollary to the functionality provided by an instance of ListenerDestinationLog (as defined in the Interop Model). The latter provides a comprehensive, persistent mechanism for recording Job results, but is also more resource-intensive and requires supporting logging functionality. Both the extra resources and logging may not be available in all environments (for example, embedded environments). Therefore, this instance-based approach is also provided.

The MethodResult instances shall not exist after the associated ConcreteJob is deleted.

Key properties

InstanceID

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

string InstanceID

instance PostCallIndication

uint64 Generation

instance PreCallIndication

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SystemSlotContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SystemSlotContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_Chassis GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_SystemSlot PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDBackendProvider.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDBackendProvider

Class reference

Data provider modules configured for given backend.

Key properties

Provider

Backend

Local properties

LMI_SSSDBackend Backend

LMI_SSSDProvider Provider

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_UnixFile.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_UnixFile

Class reference

Subclass of CIM_LogicalElement

The UnixFile class holds properties that are valid for various subclasses of LogicalFile, in a Unix environment. This is defined as a separate and unique class since it is applicable to Unix files, directories, etc. It is associated via a FileIdentity relationship to these subclasses of LogicalFile. Unless this approach of creating and associating a separate class is used, it is necessary to subclass each of the inheritance hierarchies under LogicalFile, duplicating the properties in this class. The referenced _PC* and _POSIX* constants are defined in unistd.h. Some properties indicate whether the UNIX implementation support a feature such as asynchronous I/O or priority I/O. If supported, sysconf returns the value as defined in the appropriate header file such as unistd.h. If a feature is not supported, then pathconf returns a -1. In this case, the corresponding property should be returned without any value.

Key properties

CSName

FSCreationClassName

LFCreationClassName

FSName

LFName

CSCreationClassName

Local properties

boolean SetUid

Indicates whether the associated file has setuid permissions.

string CSName

The scoping ComputerSystem’s Name.

string UserID

An Identifer that uniquely describes the owner of this file.

uint64 PosixAsyncIo

Indicates whether asynchronous input or output operations may be performed for the associated file.

uint64 NameMax

Maximum number of bytes in a filename, not including terminating null.

string FSCreationClassName

The scoping FileSystem’s CreationClassName.

uint64 PosixSyncIo

Indicates whether synchronised input or output operations may be performed for the associated file.

string LFCreationClassName

The scoping LogicalFile’s CreationClassName.

string GroupID

An identifier that describes the group that owns this file.

uint64 PosixPrioIo

Indicates whether prioritized input or output operations may be performed for the associated file.

string FSName

The scoping FileSystem’s Name.

boolean SetGid

Indicates whether the associated file has setgid permissions.

string LFName

The scoping LogicalFile’s Name.

uint64 PathMax

Maximum number of bytes in a pathname, including the terminating null character.

uint64 LinkCount

Count of the number of names for this file.

uint64 LinkMax

Maximum number of links to a single file.

uint64 PosixNoTrunc

Indicates whether pathname components longer than NameMax generate an error.

string FileInodeNumber

File Inode number, as printed by “ls -i”.

datetime LastModifiedInode

The time that the Inode was last modified. This includes the Inode creation time, state modification, and etc.

string CSCreationClassName

The scoping ComputerSystem’s CreationClassName.

uint64 PosixChownRestricted

The use of chown() is restricted to a process with appropriate privileges. chown() is used to change the group ID of a file. The group ID can be changed to the effective group ID or one of its supplementary group IDs.

boolean SaveText

Indicates restricted deletion for directories, or possible implementation defined properties for executable files. For directories this is known as the sticky bit.

Local methods

None

Inherited properties

uint16 HealthState

uint16 DetailedStatus

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string Description

string ElementName

uint16 PrimaryStatus

string Status

string Name

datetime InstallDate

string Caption

uint64 Generation

uint16[] OperationalStatus

uint16 OperatingStatus

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PhysicalMemoryContainer.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PhysicalMemoryContainer

Class reference

Subclass of CIM_Container

The Container association represents the relationship between a contained and a containing PhysicalElement. A containing object must be a PhysicalPackage.

Key properties

GroupComponent

PartComponent

GroupComponent

PartComponent

Local properties

LMI_MemoryPhysicalPackage GroupComponent

The PhysicalPackage that contains other PhysicalElements, including other Packages.

LMI_PhysicalMemory PartComponent

The PhysicalElement which is contained in the Package.

Local methods

None

Inherited properties

string LocationWithinContainer

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountedFileSystemCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountedFileSystemCapabilities

Class reference

Subclass of CIM_Capabilities

This class describes capabilities of associated LMI_MountConfigurationService. It can also be used to create new LMI_MountedFileSystemSetting.

Key properties

InstanceID

Local properties

uint16[] SupportedAsynchronousMethods

		ValueMap
		Values

		0
		CreateMount

		1
		ModifyMount

		2
		DeleteMount

Local methods

uint32 CreateSetting (LMI_MountedFileSystemSetting MountSetting)

Method to create and populate an LMI_MountedFileSystemSetting instance. This removes the need to populate default settings and other settings in the context of each LMI_MountedFileSystemCapabilities (which could be numerous).

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		2
		Unspecified Error

		3
		Timeout

		4
		Failed

		5
		Invalid Parameter

		
		DMTF Reserved

		32768..65535
		Vendor Specific

Parameters

		OUT LMI_MountedFileSystemSetting MountSetting

		Reference to the created setting instance.

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AbstractElementStatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AbstractElementStatisticalData

Class reference

CIM_AbstractElementStatisticalData is an association that relates a ManagedElement (or a view of a ManagedElement) to its StatisticalData.

Key properties

Stats

ManagedElement

Local properties

CIM_StatisticalData Stats

The statistic information/object.

CIM_ManagedElement ManagedElement

The ManagedElement (or view of the ManagedElement) for which statistical or metric data is defined.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStorageStatisticalData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStorageStatisticalData

Class reference

Subclass of CIM_BlockStorageStatisticalData

A subclass of StatisticalData which identifies individual statistics for an element of a block storage system. This class defines the metrics that MAY be kept for managed elements of the system.

Key properties

InstanceID

Local properties

datetime StartStatisticTime

The time, relative to managed element where the statistic was collected, when the first measurement was taken. If the statistic is reset, the StartStatisticTime is the time when the reset was performed.

uint64 IdleTimeCounter

The cumulative elapsed idle time using ClockTickInterval units (Cumulative Number of Time Units for all idle time in the array).

uint64 KBytesRead

The cumulative count of data read in Kbytes (1024bytes = 1KByte).

string ElementName

The user friendly name for this instance of StatisticalData. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

uint64 TotalIOs

The cumulative count of I/Os for the object.

uint64 KBytesTransferred

The cumulative count of data transferred in Kbytes (1024bytes = 1KByte).

uint64 ReadIOs

The cumulative count of all reads.

datetime StatisticTime

The time the most recent measurement was taken, relative to the managed element where the statistic was collected.

uint16 ElementType

Defines the role that the element played for which this statistics record was collected. If the metered element is a system or a component of a system associated to a RegisteredProfile, then that profile may provide a more specialized definition and additional usage information for this property.

Generally, the ElementTypes defined here have the following meaning in the context of this class: 2, “Computer System”: Cumulative statistics for the storage system. In the case of a complex system with multiple component Computer Systems, these are the statistics for the top-level aggregate Computer System. 3, “Front-end Computer System”: Statistics for a component computer system that communicate with systems that initiate IO requests. 4, “Peer Computer System”: Statistics for a component computer system that communicates with peer storage systems e.g. to provide remote mirroring of a volume. 5, “Back-end Computer System”: Statistics for a component computer system that communicates with back-end storage. 6, “Front-end Port”: Statistics for a port that communicates with systems that initiate IO requests. 7, “Back-end Port”: Statistics for a port that initiates IO requests to storage devices. 8, “Volume”: Statistics for an exposable storage extent, such as a StorageVolume or LogicalDisk. 9, “Extent”: Statistics for an intermediate storage extent, i.e. an extent that is neither a volume or a disk. 10, “Disk Drive: Statistics for a StorageExtent that is associated to a DiskDrive through the MediaPresent association. 11, “Arbitrary LUs”: Statistics that derive from access to Logical Units that are NOT StorageVolumes (e.g., controller commands). 12, “Remote Replica Group”: Statistics for control IOs between an array and a remote mirror across a Network. Note that statistics for the actual movement of data to the remote mirror are attributed to the targeted StorageVolume (or LogicalDisk). Note that a particular element could be associated to multiple BlockStorageStatisticalData instances if it had multiple roles. For example, a storage array could contain redundant component computer systems that communicate both with hosts on the front end and disks on the back end. Such a device could have one BlockStorageStatisticalData instance where ElementType=3 and another instance where ElementType=5.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint64 KBytesWritten

The cumulative count of data written in Kbytes (1024bytes = 1KByte).

uint64 IOTimeCounter

The cumulative elapsed I/O time (number of Clock Tick Intervals) for all I/Os as defined in ‘Total I/Os’. I/O response time is added to this counter at the completion of each measured I/O using ClockTickInterval units. This value can be divided by number of IOs to obtain an average response time.

datetime SampleInterval

Some statistics are sampled at consistent time intervals. This property provides the sample interval so that client applications can determine the minimum time that new statistics should be pulled. If the statistics are not sampled at consistent time intervals, this property must be set to a zero time interval.

uint64 WriteIOs

The cumulative count of all writes.

Local methods

None

Inherited properties

string InstanceID

uint64 WriteHitIOTimeCounter

uint64 ReadHitIOTimeCounter

uint64 ReadIOTimeCounter

uint64 MaintTimeCounter

uint64 ReadHitIOs

string Description

uint64 WriteIOTimeCounter

string Caption

uint64 Generation

uint64 MaintOp

uint64 WriteHitIOs

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_FanAssociatedSensor.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_FanAssociatedSensor

Class reference

Subclass of CIM_AssociatedSensor

The CIM_AssociatedCooling relationship indicates what ManagedSystemElement(s) the fan or cooling device is providingcooling for.

Key properties

Dependent

Antecedent

Local properties

LMI_Fan Dependent

The ManagedSystemElement for which information is measured by the Sensor.

LMI_FanSensor Antecedent

The Sensor.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SoftwareJob.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SoftwareJob

Class reference

Subclass of LMI_ConcreteJob

A concrete version of Job. This class represents a generic and instantiable unit of work, such as a batch or a print job.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> must include a copyrighted, trademarked or otherwise unique name that is owned by the business entity that is creating or defining the InstanceID, or that is a registered ID that is assigned to the business entity by a recognized global authority. (This requirement is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> must not contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID must appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and should not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity must assure that the resulting InstanceID is not re-used across any InstanceIDs produced by this or other providers for the NameSpace of this instance.

For DMTF defined instances, the ‘preferred’ algorithm must be used with the <OrgID> set to ‘CIM’.

uint32 Priority

Indicates the urgency or importance of execution of the Job. The lower the number, the higher the priority. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the setting information that would influence the results of a job.

uint16 CommunicationStatus

CommunicationStatus indicates the ability of the instrumentation to communicate with the underlying ManagedElement. CommunicationStatus consists of one of the following values: Unknown, None, Communication OK, Lost Communication, or No Contact.

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“Not Available” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Communication OK ” indicates communication is established with the element, but does not convey any quality of service.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the Managed Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Communication OK

		3
		Lost Communication

		4
		No Contact

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string MethodName

If not NULL, the name of the intrinsic operation or extrinsic method for which this Job represents an invocation.

When not NULL, and if an extrinsic method, the format shall be <classPath>.MethodName, where classPath is a WBEM-URI-TypedClassPath or a WBEM-URI-UntypedClassPath as defined by DSP0207. And where methodName is a method of that class.

When not NULL, and if an intrinsic operation, the format shall be <namespacePath>.OperationName, where namespacePath is a WBEM-URI-TypedNamespacePath or a WBEM-URI-UntypedNamespacePath as defined by DSP0207. And where OperationName is either the name of a generic operation as defined in DSP0223 or is the name of a protocol specific operation as defined for the protocol used to retrieve the instance.

string Description

The Description property provides a textual description of the object.

uint16 ErrorCode

A vendor-specific error code. The value must be set to zero if the Job completed without error. Note that this property is also present in the JobProcessingStatistics class. This class is necessary to capture the processing information for recurring Jobs, because only the ‘last’ run error can be stored in this single-valued property.

uint16 RecoveryAction

Describes the recovery action to be taken for an unsuccessfully run Job. The possible values are:

0 = “Unknown”, meaning it is unknown as to what recovery action to take

1 = “Other”, indicating that the recovery action will be specified in the OtherRecoveryAction property

2 = “Do Not Continue”, meaning stop the execution of the job and appropriately update its status

3 = “Continue With Next Job”, meaning continue with the next job in the queue

4 = “Re-run Job”, indicating that the job should be re-run

5 = “Run Recovery Job”, meaning run the Job associated using the RecoveryJob relationship. Note that the recovery Job must already be in the queue from which it will run.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		Do Not Continue

		3
		Continue With Next Job

		4
		Re-run Job

		5
		Run Recovery Job

string JobStatus

A free-form string that represents the status of the job. The primary status is reflected in the inherited OperationalStatus property. JobStatus provides additional, implementation-specific details.

string Caption

The Caption property is a short textual description (one- line string) of the object.

Local methods

None

Inherited properties

uint16 HealthState

string[] StatusDescriptions

string JobOutParameters

uint32 JobRunTimes

string OtherRecoveryAction

string Status

datetime UntilTime

sint8 RunDay

datetime TimeOfLastStateChange

uint8 RunMonth

uint16 PercentComplete

uint16 LocalOrUtcTime

datetime TimeBeforeRemoval

uint16 DetailedStatus

string Name

datetime InstallDate

sint8 RunDayOfWeek

string ElementName

datetime ElapsedTime

boolean DeleteOnCompletion

datetime TimeSubmitted

uint16 JobState

uint16 PrimaryStatus

string JobInParameters

string ErrorDescription

datetime RunStartInterval

uint64 Generation

datetime ScheduledStartTime

uint16[] OperationalStatus

uint16 OperatingStatus

string Notify

datetime StartTime

string Owner

Inherited methods

RequestStateChange

ResumeWithAction

GetError

KillJob

ResumeWithInput

GetErrors

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_MountPoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_MountPoint

Class reference

Subclass of CIM_Dependency

This association connects LMI_MountedFileSystem to directory where it is mounted.

Key properties

Dependent

Antecedent

Local properties

LMI_MountedFileSystem Dependent

The mounted filesystem.

CIM_Directory Antecedent

Mountpoint. A directory where the mounted filesystem is attached at.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_PackageInConnector.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_PackageInConnector

Class reference

Subclass of CIM_ElementInConnector

Adapter cards and other ‘packaging’ are plugged into System Connectors for power and/or to transfer data. This relationship is defined by PackageInConnector. For example, it would be used to describe the insertion of a daughtercard onto another Card. Various subclasses of PackageInConnector are also defined. PackageInSlot and its subclass, CardInSlot, are two examples of subclasses.

Key properties

Dependent

Antecedent

Local properties

CIM_PhysicalPackage Dependent

The Package in the Connector.

CIM_PhysicalConnector Antecedent

The Connector into which the Package is inserted.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_RealmdService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_RealmdService

Class reference

Subclass of CIM_Service

Access to the Realmd Service. Realmd is used to discover realms available for joining as well as providing a mechanism for joining and leaving a realm.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

string Domain

The name of the domain that this computer is a member of or NULL if not a member of any domain.

Local methods

uint32 LeaveDomain (string Domain, string User, string Password, string[] OptionNames, string[] OptionValues)

Make the computer leave its joined domain.

Parameters

		IN string Domain

		The name of the domain to join.

		IN string User

		The administrative user who is authorizing joining the domain. Or NULL for a one time password based join.

		IN string Password

		Either NULL for an automatic join, a one time password, or the password for the administrative user in the User parameter.

		IN string[] OptionNames

		This array is correlated with the OptionValues array. Each entry is related to the entries in the other array located at the same index. In this way a (name,value) tuple can be constructed.

		IN string[] OptionValues

		This array is correlated with the OptionNames array. Each entry is related to the entries in the other array located at the same index. In this way a (name,value) tuple can be constructed.

uint32 JoinDomain (string Domain, string User, string Password, string[] OptionNames, string[] OptionValues)

Join the computer to a domain.

Parameters

		IN string Domain

		The name of the domain to join.

		IN string User

		The administrative user who is authorizing joining the domain. Or NULL for a one time password based join.

		IN string Password

		Either NULL for an automatic join, a one time password, or the password for the administrative user in the User parameter.

		IN string[] OptionNames

		This array is correlated with the OptionValues array. Each entry is related to the entries in the other array located at the same index. In this way a (name,value) tuple can be constructed.

		IN string[] OptionValues

		This array is correlated with the OptionNames array. Each entry is related to the entries in the other array located at the same index. In this way a (name,value) tuple can be constructed.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstCreation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstCreation

Class reference

Subclass of CIM_InstIndication

CIM_InstCreation notifies when a new instance is created.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_BlockStatisticsCapabilities.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_BlockStatisticsCapabilities

Class reference

Subclass of CIM_BlockStatisticsCapabilities

A specialization of the StatisticsCapabilities class that describes the capabilities of a BlockStatisticsService, which provides statistical data for instances of BlockStatisticalData.

Key properties

InstanceID

Local properties

uint16[] SynchronousMethodsSupported

The synchronous mechanisms supported for retrieving statistics and defining and modifying filters for statistics retrieval.

		ValueMap
		Values

		2
		Execute Query

		3
		Query Collection

		4
		GetStatisticsCollection

		5
		Manifest Creation

		6
		Manifest Modification

		7
		Manifest Removal

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] ElementTypesSupported

The list of element types for which statistical data is available. The values of this array correspond to the values defined for the ElementType property of the BlockStatisticalData class.

		ValueMap
		Values

		2
		Computer System

		3
		Front-end Computer System

		4
		Peer Computer System

		5
		Back-end Computer System

		6
		Front-end Port

		7
		Back-end Port

		8
		Volume

		9
		Extent

		10
		Disk Drive

		11
		Arbitrary LUs

		12
		Remote Replica Group

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] AsynchronousMethodsSupported

The asychronous mechanisms supported for retrieving statistics.

		ValueMap
		Values

		2
		GetStatisticsCollection

		3
		Indications

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint16[] SupportedFeatures

SupportedFeatures is an array identifying features supported by the implementation. The valid values are “2” (none) or “3” (Client Defined Sequence). If “2” is specified, then no other entry may be included. If “3” is specified, it indicates client may define, in the manifest, the sequence in which the requested properties are returned.

		ValueMap
		Values

		2
		none

		3
		Client Defined Sequence

		
		DMTF Reserved

		0x8000..
		Vendor Specific

uint64 ClockTickInterval

An internal clocking interval for all timers in the subsystem, measured in microseconds (Unit of measure in the timers, measured in microseconds). Time counters are monotanically increasing counters that contain ‘ticks’. Each tick represents one ClockTickInterval. If ClockTickInterval contained a value of 32 then each time counter tick would represent 32 microseconds.

Local methods

None

Inherited properties

string ElementName

string Description

string InstanceID

uint64 Generation

string Caption

Inherited methods

CreateGoalSettings

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_Fan.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_Fan

Class reference

Subclass of CIM_Fan

Capabilities and management of a Fan CoolingDevice.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16 HealthState

Indicates the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. The possible values are 0 to 30, where 5 means the element is entirely healthy and 30 means the element is completely non-functional. The following continuum is defined:

“Non-recoverable Error” (30) - The element has completely failed, and recovery is not possible. All functionality provided by this element has been lost.

“Critical Failure” (25) - The element is non-functional and recovery might not be possible.

“Major Failure” (20) - The element is failing. It is possible that some or all of the functionality of this component is degraded or not working.

“Minor Failure” (15) - All functionality is available but some might be degraded.

“Degraded/Warning” (10) - The element is in working order and all functionality is provided. However, the element is not working to the best of its abilities. For example, the element might not be operating at optimal performance or it might be reporting recoverable errors.

“OK” (5) - The element is fully functional and is operating within normal operational parameters and without error.

“Unknown” (0) - The implementation cannot report on HealthState at this time.

DMTF has reserved the unused portion of the continuum for additional HealthStates in the future.

		ValueMap
		Values

		0
		Unknown

		5
		OK

		10
		Degraded/Warning

		15
		Minor failure

		20
		Major failure

		25
		Critical failure

		30
		Non-recoverable error

		
		DMTF Reserved

		32768..65535
		Vendor Specific

uint64 MaxSpeed

Maximum speed value.

string[] StatusDescriptions

Strings describing the various OperationalStatus array values. For example, if “Stopping” is the value assigned to OperationalStatus, then this property may contain an explanation as to why an object is being stopped. Note that entries in this array are correlated with those at the same array index in OperationalStatus.

boolean Beep

This indicates, whether a PC’s speaker should beep when an alarm occurs.

string SystemName

The System Name of the scoping system.

uint32 Divisor

Fan divisisor. It affects Minimum and Maximum speed value and accuracy of readings. The drivers account for the ‘fan divisor’ in their calculation of RPM. So changing the fan divisor will NOT change the nominal RPM reading, it will only affect the minimum and maximum readings and the accuracy of the readings. The actual formula is RPM = (60 * 22500) / (count * divisor)

string ElementName

A user-friendly name for the object. This property allows each instance to define a user-friendly name in addition to its key properties, identity data, and description information.

Note that the Name property of ManagedSystemElement is also defined as a user-friendly name. But, it is often subclassed to be a Key. It is not reasonable that the same property can convey both identity and a user-friendly name, without inconsistencies. Where Name exists and is not a Key (such as for instances of LogicalDevice), the same information can be present in both the Name and ElementName properties. Note that if there is an associated instance of CIM_EnabledLogicalElementCapabilities, restrictions on this properties may exist as defined in ElementNameMask and MaxElementNameLen properties defined in that class.

uint64 MinSpeed

Minimum speed value.

boolean MaxAlarm

ALARM warning indicating that current speed is above the critical level. This information is supplied by fan’s chip driver.

string[] IdentifyingDescriptions

An array of free-form strings providing explanations and details behind the entries in the OtherIdentifyingInfo array. Note that each entry of this array is related to the entry in OtherIdentifyingInfo that is located at the same index.

boolean MinAlarm

ALARM warning indicating that current speed is below the critical level. This information is supplied by fan’s chip driver.

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions.

OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“None” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Servicing” describes an element being configured, maintained, cleaned, or otherwise administered.

“Starting” describes an element being initialized.

“Stopping” describes an element being brought to an orderly stop.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Migrating” element is being moved between host elements.

“Immigrating” element is being moved to new host element.

“Emigrating” element is being moved away from host element.

“Shutting Down” describes an element being brought to an abrupt stop.

“In Test” element is performing test functions.

“Transitioning” describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable.

“In Service” describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		2
		Servicing

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		8
		Completed

		9
		Migrating

		10
		Emigrating

		11
		Immigrating

		12
		Snapshotting

		13
		Shutting Down

		14
		In Test

		15
		Transitioning

		16
		In Service

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

string[] OtherIdentifyingInfo

OtherIdentifyingInfo captures data, in addition to DeviceID information, that could be used to identify a LogicalDevice. For example, you could use this property to hold the operating system’s user-friendly name for the Device.

string Name

Name of fan provided by system.

boolean Alarm

ALARM warning indicating that current speed is out of range. This information is supplied by fan’s chip driver.

uint16[] AccessibleFeatures

Array of fan features that are exposed through system interface. In other words: those that are readible/writable.

		ValueMap
		Values

		1
		MinSpeed

		2
		MaxSpeed

		3
		Divisor

		4
		Pulses

		5
		Beep

		6
		Alarm

		7
		MinAlarm

		8
		MaxAlarm

string DeviceID

Uniquely identifies fan. It is a composition of SysPath and Name glued with slash (‘/’).

uint16 PrimaryStatus

PrimaryStatus provides a high level status value, intended to align with Red-Yellow-Green type representation of status. It should be used in conjunction with DetailedStatus to provide high level and detailed health status of the ManagedElement and its subcomponents.

PrimaryStatus consists of one of the following values: Unknown, OK, Degraded or Error. “Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“OK” indicates the ManagedElement is functioning normally.

“Degraded” indicates the ManagedElement is functioning below normal.

“Error” indicates the ManagedElement is in an Error condition.

		ValueMap
		Values

		0
		Unknown

		1
		OK

		2
		Degraded

		3
		Error

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint16[] OperationalStatus

Indicates the current statuses of the element. Various operational statuses are defined. Many of the enumeration’s values are self-explanatory. However, a few are not and are described here in more detail.

“Stressed” indicates that the element is functioning, but needs attention. Examples of “Stressed” states are overload, overheated, and so on.

“Predictive Failure” indicates that an element is functioning nominally but predicting a failure in the near future.

“In Service” describes an element being configured, maintained, cleaned, or otherwise administered.

“No Contact” indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.

“Lost Communication” indicates that the ManagedSystem Element is known to exist and has been contacted successfully in the past, but is currently unreachable.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Supporting Entity in Error” indicates that this element might be “OK” but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower-layer networking problems.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Power Mode” indicates that the element has additional power model information contained in the Associated PowerManagementService association.

“Relocating” indicates the element is being relocated.

OperationalStatus replaces the Status property on ManagedSystemElement to provide a consistent approach to enumerations, to address implementation needs for an array property, and to provide a migration path from today’s environment to the future. This change was not made earlier because it required the deprecated qualifier. Due to the widespread use of the existing Status property in management applications, it is strongly recommended that providers or instrumentation provide both the Status and OperationalStatus properties. Further, the first value of OperationalStatus should contain the primary status for the element. When instrumented, Status (because it is single-valued) should also provide the primary status of the element.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		OK

		3
		Degraded

		4
		Stressed

		5
		Predictive Failure

		6
		Error

		7
		Non-Recoverable Error

		8
		Starting

		9
		Stopping

		10
		Stopped

		11
		In Service

		12
		No Contact

		13
		Lost Communication

		14
		Aborted

		15
		Dormant

		16
		Supporting Entity in Error

		17
		Completed

		18
		Power Mode

		19
		Relocating

		
		DMTF Reserved

		0x8000..
		Vendor Reserved

uint32 Pulses

Number of tachometer pulses per fan revolution. Integer value, typically between 1 and 4. This value is a characteristic of the fan connected to the device’s input, so it has to be set in accordance with the fan model.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

string SystemCreationClassName

The CreationClassName of the scoping system.

Local methods

None

Inherited properties

uint16 RequestedState

boolean VariableSpeed

boolean PowerManagementSupported

uint16 CommunicationStatus

datetime TimeOfLastStateChange

string Status

uint16 TransitioningToState

uint64 Generation

boolean ErrorCleared

uint16[] AvailableRequestedStates

string InstanceID

uint16 DesiredControlMode

uint16 LocationIndicator

uint16 DetailedStatus

datetime InstallDate

uint16 EnabledDefault

uint16[] AdditionalAvailability

uint16[] ControlModesSupported

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint16 EnabledState

uint64 PowerOnHours

string Description

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string Caption

string ErrorDescription

uint32 LastErrorCode

uint64 DesiredSpeed

uint16 Availability

string OtherEnabledState

boolean ActiveCooling

uint16 ControlMode

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SetSpeed

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_InstalledPartitionTable.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_InstalledPartitionTable

Class reference

Subclass of CIM_Dependency

This association describes the attributes of a partition table installed in an extent. The attributes are in the capabilities class.

Key properties

Dependent

Antecedent

Local properties

CIM_StorageExtent Dependent

The extent ‘hosting’ the partitions

.

CIM_DiskPartitionConfigurationCapabilities Antecedent

The DiskPartitionConfigurationCapabilities describing the capabilities of partitions based on this extent.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SELinuxInstCreation.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SELinuxInstCreation

Class reference

Subclass of CIM_InstCreation

CIM_InstCreation notifies when a new instance is created.

Key properties

Local properties

None

Local methods

None

Inherited properties

string IndicationFilterName

string OtherSeverity

string SourceInstanceHost

sint64 SequenceNumber

datetime IndicationTime

string IndicationIdentifier

string SequenceContext

string SourceInstance

string[] CorrelatedIndications

uint16 PerceivedSeverity

string SourceInstanceModelPath

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_Group.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_Group

Class reference

Subclass of CIM_Collection

The Group class is used to collect ManagedElements that are intended to be conformant with an LDAP GroupOfNames, as defined by IETF RFC 2256. For other purposes, ConcreteCollection, or other subclasses of Collection, may be more appropriate.

This class is defined so as to incorporate commonly-used LDAP attributes to permit implementations to easily derive this information from LDAP-accessible directories. This class’s properties are a subset of a related class, OtherGroupInformation, which defines all the group properties and in array form for directory compatibility.

Key properties

CreationClassName

Name

Local properties

string Name

The Name property defines the label by which the object is known. In the case of an LDAP-derived instance, the Name property value may be set to the distinguished name of the LDAP-accessed object instance.

string BusinessCategory

The BusinessCategory property may be used to describe the kind of business activity performed by the members of the group.

string CommonName

A Common Name is a (possibly ambiguous) name by which the group is commonly known in some limited scope (such as an organization) and conforms to the naming conventions of the country or culture with which it is associated.

string CreationClassName

CreationClassName indicates the name of the class or the subclass used in the creation of an instance. When used with the other key properties of this class, this property allows all instances of this class and its subclasses to be uniquely identified.

Local methods

None

Inherited properties

string ElementName

string InstanceID

uint64 Generation

string Caption

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPConfigurationService

Class reference

Subclass of CIM_IPConfigurationService

CIM_IPConfigurationService provides management of the IP configuration associated with a LANEndpoint or IPProtocolEndpoint or IPNetworkConnection or the global IP configuration for the ComputerSystem.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 ApplySettingToLANEndpoint (CIM_IPAssignmentSettingData Configuration, CIM_LANEndpoint Endpoint, CIM_ConcreteJob Job)

Apply the configuration represented by the IPAssignmentSettingData to the specified LANEndpoint. This will result in the value of the IsCurrent property of the CIM_ElementSettingData which associates the specified CIM_IPAssignmentSettingData and specified CIM_LANEndpoint have a value of “true”. The IsCurrent property of any other instances of CIM_ElementSettingData which reference the specified CIM_LANEndpoint and an instance of CIM_IPAssignmentSettingData will have a value of “false”. Each instance of CIM_StaticIPAssignmentSettingData which is aggregated into the target CIM_IPAssignmentSettingData instance will result in the creation of an instance of CIM_IPProtocolEndpoint associated with the target CIM_LANEndpoint instance via an instance of the CIM_BindsTo association. The created CIM_IPProtocolEndpoint instance will have the values specified in the CIM_StaticIPAssignmentSettingData instance.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5
		Busy

		4096
		Method Parameters Checked - Job Started

Parameters

		IN CIM_IPAssignmentSettingData Configuration

		The IPAssignmentSettingData to apply.

		IN CIM_LANEndpoint Endpoint

		The LANEndpoint to which the configuration will be applied.

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (may be null if task completed).

uint32 ApplySettingToIPNetworkConnection (CIM_IPAssignmentSettingData SettingData, CIM_IPVersionSettingData IPVersionSettingData, CIM_IPNetworkConnection IPNetworkConnection, uint16 Mode, CIM_ConcreteJob Job)

Apply the IP setting respresented by the LMI_IPAssignmentSettingData to the specified IPNetworkConnection. The settings may take effect or disable immediately or may be set to take effect or disable in the next boot, depending on system, IPNetworkConnection, Setting and the value specified for Mode. This will reflect in the IsCurrent & IsNext property of instances of LMI_IPElementSettingData associating the SettingData with the IPNetworkConnection. For cases, enabling one setting can result in automatic disabling of another setting, it will be refelected in the properties of ElementSettingData associating those settings to the IPNetworkConnection. Refer the description for the Mode parameter for more details.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5
		Busy

		4096
		Method Parameters Checked - Job Started

Parameters

		IN CIM_IPAssignmentSettingData SettingData

		The IPAssignmentSettingData to apply.

		IN CIM_IPVersionSettingData IPVersionSettingData

		This value is always ignored, present only for API compatibility.

		IN CIM_IPNetworkConnection IPNetworkConnection

		The IPNetworkConnection to which the configuration will be applied

		IN uint16 Mode

		The mode in which the configuration need to be applied to the IPNetworkConnection.

		Mode 0 - implies use Mode 1 if allowed, else Mode 2.

		Mode 1 - Results in IsNext = 1 (Is Next), IsCurrent = 1 (Is Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection.

		Mode 2 - Results in IsNext = 1 (Is Next) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected.

		Mode 3 - implies use Mode 4 if allowed, else Mode 5.

		Mode 4 - Results in IsNext = 2 (Is Not Next), IsCurrent = 2 (Is Not Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection.

		Mode 5 - Results in IsNext = 2 (Is Not Next) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected.

		Mode 6 - Results in IsNext = 3 (Is Next For Single Use) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsCurrent will not be affected. To change the IsNext = 3 (Is Next For Single Use) for a Setting, invoke the method with any of the other values for the mode.- Mode 32768 - Results in IsCurrent = 1 (Is Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsNext will not be affected.

		Mode 32769 - Results in IsCurrent = 2 (Is Not Current) for the CIM_ElementSettingData associating the setting with IPNetworkConnection. The value of IsNext will not be affected.

		ValueMap
		Values

		0
		Mode 0

		1
		Mode 1

		2
		Mode 2

		3
		Mode 3

		4
		Mode 4

		5
		Mode 5

		6
		Mode 6

		32768
		Mode 32768

		32769
		Mode 32769

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. (may be null if task completed).

uint32 ApplySettingToIPProtocolEndpoint (CIM_IPAssignmentSettingData Configuration, CIM_IPProtocolEndpoint Endpoint, CIM_ConcreteJob Job)

Apply the configuration represented by the CIM_IPAssignmentSettingData to the specified IPProtocolEndpoint. This will result in the value of the IsCurrent property of the CIM_ElementSettingData which associates the specified CIM_IPAssignmentSettingData and specified CIM_IPProtocolEndpoint having a value of “true”. The IsCurrent property of any other instances of CIM_ElementSettingData which reference the specified CIM_IPProtocolEndpoint and an instance of CIM_IPAssignmentSettingData will have a value of “false”. Each instance of CIM_IPAssignmentSettingData which is aggregated into the target CIM_IPAssignmentSettingData instance will be applied to the CIM_ProtocolEndpoint to which it is associated via an instance of CIM_ElementSettingData where the CIM_ProtocolEndpoint is associated with the target CIM_IPProtocolEndpoint via an instance of CIM_EndpointIdentity.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown/Unspecified Error

		3
		Failed

		4
		Invalid Parameter

		5
		Busy

		4096
		Method Parameters Checked - Job Started

Parameters

		IN CIM_IPAssignmentSettingData Configuration

		The IPAssignmentSettingData to apply.

		IN CIM_IPProtocolEndpoint Endpoint

		The IPProtocolEndpoint to which the configuration will be applied.

		OUT CIM_ConcreteJob Job

		Reference to the job spawned if the operation continues after the method returns. This parameter MUST NOT be null if a value of 4096 is returned. This parameter MUST be null if any other value is returned by the method.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ApplySettingToComputerSystem

AddStaticIPv4Interface

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_AssociatedBlockStatisticsManifestCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_AssociatedBlockStatisticsManifestCollection

Class reference

Instances of this class associate a BlockStatisticsManifestCollection to the StatisticsCollection to which is is applied. The ManifestCollection contains the Manifests that are used to filter requests for the retrieval of statistics.

Key properties

ManifestCollection

Statistics

Local properties

CIM_BlockStatisticsManifestCollection ManifestCollection

The collection of Manifests applied to the StatisticsCollection.

CIM_StatisticsCollection Statistics

The collection of statistics filtered by the BlockStatisticsManifestCollection.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_CoolingDevice.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_CoolingDevice

Class reference

Subclass of CIM_LogicalDevice

Capabilities and management of CoolingDevices.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

boolean ActiveCooling

ActiveCooling is a Boolean that indicates that the Cooling Device provides active (as opposed to passive) cooling.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

boolean PowerManagementSupported

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Name

string Status

string ElementName

string Description

uint16 TransitioningToState

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

string[] OtherIdentifyingInfo

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

string DeviceID

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string CreationClassName

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SwitchesAmong.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SwitchesAmong

Class reference

Subclass of CIM_SwitchesAmong

A SwitchService switches frames between SwitchPorts. This association makes that relationship explicit.

Key properties

Dependent

Antecedent

Local properties

LMI_SwitchService Dependent

The switching service.

LMI_SwitchPort Antecedent

The switch port.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_LinkAggregationBindsTo.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LinkAggregationBindsTo

Class reference

Subclass of CIM_BindsTo

Association between Link Aggregation master port and the slave port

Key properties

Dependent

Antecedent

Local properties

LMI_LAGPort8023ad Dependent

Slave port of Link Aggregation

LMI_LinkAggregator8023ad Antecedent

Master port of Link Aggregation

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EthernetPortStatistics.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EthernetPortStatistics

Class reference

Subclass of CIM_EthernetPortStatistics

The EthernetPortStatistics class describes the statistics for the EthernetPort.

Key properties

InstanceID

Local properties

uint64 TotalRxErrors

The aggregated number of receive errors

string ElementName

The user friendly name for this instance of StatisticalData. In addition, the user friendly name can be used as a index property for a search of query. (Note: Name does not have to be unique within a namespace.)

string Description

Descriptive text for this element

uint64 TotalCollisions

The aggregated number of collisions

uint64 BytesTotal

The total number of bytes sent or received through the port

string Caption

A caption for this element

uint64 TotalTxErrors

The aggregated number of transmit errors

Local methods

None

Inherited properties

uint32 SQETestErrors

datetime StartStatisticTime

uint32 MultipleCollisionFrames

uint32 CarrierSenseErrors

uint32 LateCollisions

uint32 ExcessiveCollisions

uint32 DeferredTransmissions

uint32 SingleCollisionFrames

string InstanceID

uint64 BytesReceived

uint64 PacketsReceived

uint64 PacketsTransmitted

uint32 InternalMACReceiveErrors

uint32 InternalMACTransmitErrors

uint32 FrameTooLongs

datetime StatisticTime

uint64 Generation

uint32 FCSErrors

uint32 AlignmentErrors

datetime SampleInterval

uint64 BytesTransmitted

uint32 SymbolErrors

Inherited methods

ResetSelectedStats

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDDomainSubdomain.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDDomainSubdomain

Class reference

All subdomains associated with given parent domain.

Key properties

ParentDomain

Subdomain

Local properties

LMI_SSSDDomain ParentDomain

LMI_SSSDDomain Subdomain

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_DiskPartitionConfigurationSetting.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_DiskPartitionConfigurationSetting

Class reference

Subclass of CIM_SettingData

CIM_SettingData is used to represent configuration and and operational parameters for CIM_ManagedElement instances. There are a number of different uses of CIM_SettingData supported in the model today. Additional uses may be defined in the future.

Instances of CIM_SettingData may represent Aspects of a CIM_ManagedElement instance. This is modeled using the CIM_SettingsDefineState association. CIM_SettingData may be used to define capabilities when associated to an instance of CIM_Capabilities through the CIM_SettingsDefineCapabilities association.

Instances of CIM_SettingData may represent different types of configurations for a CIM_ManagedElement, including persistent configurations, in progress configuration changes, or requested configurations. The CIM_ElementSettingData association is used to model the relationship between a CIM_SettingData instance and the CIM_ManagedElement for which it is a configuration.

When an instance of CIM_SettingData represents a configuration, the current operational values for the parameters of the element are reflected by properties in the Element itself or by properties in its associations. These properties do not have to be the same values that are present in the SettingData object. For example, a modem might have a SettingData baud rate of 56Kb/sec but be operating at 19.2Kb/sec.

Note: The CIM_SettingData class is very similar to CIM_Setting, yet both classes are present in the model because many implementations have successfully used CIM_Setting. However, issues have arisen that could not be resolved without defining a new class. Therefore, until a new major release occurs, both classes will exist in the model. Refer to the Core White Paper for additional information. SettingData instances can be aggregated together into higher- level SettingData objects using ConcreteComponent associations.

Key properties

InstanceID

Local properties

boolean Bootable

Bootable flag of the partition. It should be enabled if you want to boot off the partition. The semantics vary between partition tables. For MS-DOS (MBR) partition table, only one partition can be bootable. If you are installing LILO on a partition that partition must be bootable. For PC98 partition table, all ext2 partitions must be bootable (this is enforced by this API).

boolean Hidden

Flag can be enabled to hide partitions from Microsoft operating systems.

uint16 PartitionType

Partition type of the partition which is going to be created/modified. It should be used only for MS-DOS (MBR/EMBR) partition tables.

		ValueMap
		Values

		0
		Unknown

		1
		Primary

		2
		Extended

		3
		Logical

Local methods

uint32 CloneSetting (CIM_StorageSetting Clone)

Create a copy of this instance. The resulting instance will have the same class and the same properties as the original instance except ChangeableType, which will be set to “Changeable - Transient” in the clone, and InstanceID.

		ValueMap
		Values

		0
		Success

		1
		Not Supported

		4
		Failed

Parameters

		OUT CIM_StorageSetting Clone

		Created copy.

Inherited properties

string SoOrgID

string SoID

string ElementName

string Description

uint16 ChangeableType

string[] ComponentSetting

string Caption

string InstanceID

string ConfigurationName

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_IPProtocolEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_IPProtocolEndpoint

Class reference

Subclass of CIM_IPProtocolEndpoint

Instance of LMI_IPProtocolEndpoint represents one IP address.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

string IPv6Address

The IPv6 address that this ProtocolEndpoint represents.

string SubnetMask

The mask for the IPv4 address of this ProtocolEndpoint, if one is defined.

uint16 ProtocolIFType

This property explicitly defines support for different versions of the IP protocol.

		ValueMap
		Values

		4096
		IPv4

		4097
		IPv6

string IPv4Address

The IPv4 address that this ProtocolEndpoint represents.

uint8 PrefixLength

The prefix length for the IPv6 address of this Protocol Endpoint, if one is defined.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

string Status

string ElementName

uint16 AddressType

string OtherAddressPrefixOriginDescription

uint16 TransitioningToState

uint64 Generation

string NameFormat

uint16 PrimaryStatus

string Address

uint16 IPv6AddressType

uint16 EnabledState

uint16 DetailedStatus

string OtherAddressSuffixOriginDescription

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 IPv6SubnetPrefixLength

uint16 AddressPrefixOrigin

string OtherTypeDescription

uint16 AddressSuffixOrigin

uint16[] AvailableRequestedStates

string Description

string Caption

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16 IPVersionSupport

uint16[] OperationalStatus

uint16 OperatingStatus

string CreationClassName

uint16 AddressOrigin

string SystemCreationClassName

Inherited methods

BroadcastReset

RequestStateChange

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_StatisticsService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_StatisticsService

Class reference

Subclass of CIM_Service

This is a Service that provides methods for statistics retrieval and BlockStatisticsManifest manipulation. The methods of the service that are supported by the provider can be determined from the SynchronousMethodsSupported and AsynchronousMethodsSupported properties of the StatisticsCapabilities associated to the service.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StartService

StopService

ChangeAffectedElementsAssignedSequence

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/storage/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Storage Scripts documentation

Contents:

		Storage command line reference
		Common options

		storage

		storage fs

		storage luks

		storage lv

		storage mount

		storage partition

		storage partition-table

		storage raid

		storage vg

		storage thinpool

		storage thinlv

		Storage Script python reference
		Common functions

		Partitioning

		LUKS Management

		Logical Volume Management

		MD RAID

		Filesystems and data formats

		Printing

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

openlmi-tools/scripts/commands/powermanagement/index.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

OpenLMI Networking Scripts documentation

Contents:

		Power Management command line reference
		power

		Power Management Script python reference
		Power Management Module API

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EndpointIdentity.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EndpointIdentity

Class reference

Subclass of CIM_EndpointIdentity

CIM_EndpointIdentity indicates that two ProtocolEndpoints represent different aspects of the same underlying address or protocol-specific ID. This association refines the CIM_LogicalIdentity superclass by restricting it to the Endpoint level and defining its use in well understood scenarios. One of these scenarios is to represent that an Endpoint has both ‘LAN’ and protocol-specific aspects. For example, an Endpoint could be both a LANEndpoint as well as a DHCPEndpoint.

Key properties

SameElement

SystemElement

Local properties

CIM_ProtocolEndpoint SameElement

SameElement represents an alternate aspect of the Endpoint.

CIM_ProtocolEndpoint SystemElement

SystemElement represents one aspect of the Endpoint.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_EncryptionExtent.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_EncryptionExtent

Class reference

Subclass of LMI_StorageExtent

Base class for all encryption extents. These extents represent block devices with clear-text data of some encrypted block device.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

None

Local methods

None

Inherited properties

uint8 DeltaReservation

uint16 RequestedState

uint16 HealthState

boolean IsBasedOnUnderlyingRedundancy

string[] StatusDescriptions

string InstanceID

uint16[] ClientSettableUsage

boolean IsCompressed

uint16 DataOrganization

uint16 Access

uint16 CommunicationStatus

boolean Primordial

string SystemName

boolean ErrorCleared

boolean NoSinglePointOfFailure

uint16 Usage

string Description

datetime TimeOfLastStateChange

uint64 PowerOnHours

string Status

string DeviceBusType

string ElementName

uint64 Generation

datetime InstallDate

string OtherNameNamespace

uint16 NameNamespace

string[] IdentifyingDescriptions

uint64 ExtentInterleaveDepth

string OtherNameFormat

uint16 NameFormat

uint16 PrimaryStatus

boolean PowerManagementSupported

boolean IsConcatenated

string Purpose

uint64 ExtentStripeLength

uint16 OperatingStatus

uint16 LocationIndicator

uint16 CompressionState

uint16 DetailedStatus

string[] OtherIdentifyingInfo

string Name

uint16[] PowerManagementCapabilities

uint16 EnabledDefault

uint64 BlockSize

uint16 EnabledState

boolean SequentialAccess

uint16[] AdditionalAvailability

string OtherUsageDescription

string Caption

boolean IsComposite

uint16 StatusInfo

string DeviceID

string[] ExtentDiscriminator

uint16 PackageRedundancy

uint16[] AvailableRequestedStates

uint16 DataRedundancy

uint64 NumberOfBlocks

uint64 MaxQuiesceTime

uint16 TransitioningToState

uint64 TotalPowerOnHours

string ErrorDescription

uint16 CompressionRate

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

string[] Names

string ErrorMethodology

string CreationClassName

uint16[] ExtentStatus

uint16 Availability

string SystemCreationClassName

uint64 ConsumableBlocks

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AssociatedStorageJobMethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AssociatedStorageJobMethodResult

Class reference

Subclass of LMI_AssociatedJobMethodResult

AssociatedJobMethodResult represents an association between a ConcreteJob and the MethodResult expressing the parameters for the Job when the job was created by side-effect of the execution of an extrinsic method.

Key properties

Job

JobParameters

Local properties

None

Local methods

None

Inherited properties

CIM_ConcreteJob Job

CIM_MethodResult JobParameters

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_images/partitions.png
extended partition

[devisda

Idevisdat

partition table

logical partition metadata

(TS]

Idevisdas

—>

LMI_DiskPartition

mof/LMI_LANEndpoint.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_LANEndpoint

Class reference

Subclass of CIM_LANEndpoint

A communication endpoint which, when its associated interface device is connected to a LAN, may send and receive data frames. LANEndpoints include Ethernet, Token Ring and FDDI interfaces.

Key properties

CreationClassName

SystemName

Name

SystemCreationClassName

Local properties

uint16 RequestedState

RequestedState is an integer enumeration that indicates the last requested or desired state for the element, irrespective of the mechanism through which it was requested. The actual state of the element is represented by EnabledState. This property is provided to compare the last requested and current enabled or disabled states. Note that when EnabledState is set to 5 (“Not Applicable”), then this property has no meaning. Refer to the EnabledState property description for explanations of the values in the RequestedState enumeration.

“Unknown” (0) indicates the last requested state for the element is unknown.

Note that the value “No Change” (5) has been deprecated in lieu of indicating the last requested state is “Unknown” (0). If the last requested or desired state is unknown, RequestedState should have the value “Unknown” (0), but may have the value “No Change” (5).Offline (6) indicates that the element has been requested to transition to the Enabled but Offline EnabledState.

It should be noted that there are two new values in RequestedState that build on the statuses of EnabledState. These are “Reboot” (10) and “Reset” (11). Reboot refers to doing a “Shut Down” and then moving to an “Enabled” state. Reset indicates that the element is first “Disabled” and then “Enabled”. The distinction between requesting “Shut Down” and “Disabled” should also be noted. Shut Down requests an orderly transition to the Disabled state, and might involve removing power, to completely erase any existing state. The Disabled state requests an immediate disabling of the element, such that it will not execute or accept any commands or processing requests.

This property is set as the result of a method invocation (such as Start or StopService on CIM_Service), or can be overridden and defined as WRITEable in a subclass. The method approach is considered superior to a WRITEable property, because it allows an explicit invocation of the operation and the return of a result code.

If knowledge of the last RequestedState is not supported for the EnabledLogicalElement, the property shall be NULL or have the value 12 “Not Applicable”.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		5
		No Change

string ElementName

The name of the device’s control (and often data) interface.

uint16 ProtocolIFType

ProtocolIFType’s enumeration is limited to Layer 2-related and reserved values for this subclass of ProtocolEndpoint.

		ValueMap
		Values

		6
		Ethernet CSMA/CD

uint16 EnabledState

EnabledState is an integer enumeration that indicates the enabled and disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value=4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled and disabled states:

Enabled (2) indicates that the element is or could be executing commands, will process any queued commands, and queues new requests.

Disabled (3) indicates that the element will not execute commands and will drop any new requests.

Shutting Down (4) indicates that the element is in the process of going to a Disabled state.

Not Applicable (5) indicates the element does not support being enabled or disabled.

Enabled but Offline (6) indicates that the element might be completing commands, and will drop any new requests.

Test (7) indicates that the element is in a test state.

Deferred (8) indicates that the element might be completing commands, but will queue any new requests.

Quiesce (9) indicates that the element is enabled but in a restricted mode.

Starting (10) indicates that the element is in the process of going to an Enabled state. New requests are queued.

		ValueMap
		Values

		0
		Unknown

		2
		Enabled

		3
		Disabled

		6
		Enabled but Offline

uint16[] AvailableRequestedStates

AvailableRequestedStates indicates the possible values for the RequestedState parameter of the method RequestStateChange, used to initiate a state change. The values listed shall be a subset of the values contained in the RequestedStatesSupported property of the associated instance of CIM_EnabledLogicalElementCapabilities where the values selected are a function of the current state of the CIM_EnabledLogicalElement. This property may be non-null if an implementation is able to advertise the set of possible values as a function of the current state. This property shall be null if an implementation is unable to determine the set of possible values as a function of the current state.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

string MACAddress

The principal unicast address used in communication with the LANEndpoint. The MAC address is formatted as twelve hexadecimal digits (e.g., “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order according to RFC 2469.

uint16 OperatingStatus

OperatingStatus provides a current status value for the operational condition of the element and can be used for providing more detail with respect to the value of EnabledState. It can also provide the transitional states when an element is transitioning from one state to another, such as when an element is transitioning between EnabledState and RequestedState, as well as other transitional conditions.

OperatingStatus consists of one of the following values: Unknown, Not Available, In Service, Starting, Stopping, Stopped, Aborted, Dormant, Completed, Migrating, Emmigrating, Immigrating, Snapshotting. Shutting Down, In Test

A Null return indicates the implementation (provider) does not implement this property.

“Unknown” indicates the implementation is in general capable of returning this property, but is unable to do so at this time.

“None” indicates that the implementation (provider) is capable of returning a value for this property, but not ever for this particular piece of hardware/software or the property is intentionally not used because it adds no meaningful information (as in the case of a property that is intended to add additional info to another property).

“Servicing” describes an element being configured, maintained, cleaned, or otherwise administered.

“Starting” describes an element being initialized.

“Stopping” describes an element being brought to an orderly stop.

“Stopped” and “Aborted” are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the state and configuration of the element might need to be updated.

“Dormant” indicates that the element is inactive or quiesced.

“Completed” indicates that the element has completed its operation. This value should be combined with either OK, Error, or Degraded in the PrimaryStatus so that a client can tell if the complete operation Completed with OK (passed), Completed with Error (failed), or Completed with Degraded (the operation finished, but it did not complete OK or did not report an error).

“Migrating” element is being moved between host elements.

“Immigrating” element is being moved to new host element.

“Emigrating” element is being moved away from host element.

“Shutting Down” describes an element being brought to an abrupt stop.

“In Test” element is performing test functions.

“Transitioning” describes an element that is between states, that is, it is not fully available in either its previous state or its next state. This value should be used if other values indicating a transition to a specific state are not applicable.

“In Service” describes an element that is in service and operational.

		ValueMap
		Values

		0
		Unknown

		1
		Not Available

		3
		Starting

		4
		Stopping

		5
		Stopped

		6
		Aborted

		7
		Dormant

		16
		In Service

Local methods

uint32 RequestStateChange (uint16 RequestedState, CIM_ConcreteJob Job, datetime TimeoutPeriod)

Requests that the state of the element be changed to the value specified in the RequestedState parameter. When the requested state change takes place, the EnabledState and RequestedState of the element will be the same. Invoking the RequestStateChange method multiple times could result in earlier requests being overwritten or lost.

TimeoutPeriod argument is not supported yet and should be NULL.

A return code of 0 shall indicate the state change was successfully initiated.

Any other return code indicates an error condition.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown or Unspecified Error

		3
		Cannot complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

Parameters

		IN uint16 RequestedState

		The state requested for the element. This information will be placed into the RequestedState property of the instance if the return code of the RequestStateChange method is 0 (‘Completed with No Error’). Refer to the description of the EnabledState and RequestedState properties for the detailed explanations of the RequestedState values.

		ValueMap
		Values

		2
		Enabled

		3
		Disabled

		OUT CIM_ConcreteJob Job

		Creating jobs for changing Endpoint state is not supported. This parameter will always be NULL.

		IN datetime TimeoutPeriod

		Using TimeoutPeriod is not supported.

Inherited properties

string[] GroupAddresses

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 LANType

uint16 CommunicationStatus

string SystemName

string NameFormat

string[] AliasAddresses

string Status

string Description

uint16 TransitioningToState

uint64 Generation

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint32 MaxDataSize

string LANID

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

string Caption

string OtherTypeDescription

boolean BroadcastResetSupported

uint16 ProtocolType

string OtherEnabledState

uint16[] OperationalStatus

string CreationClassName

string OtherLANType

string SystemCreationClassName

Inherited methods

BroadcastReset

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_PowerManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_PowerManagementService

Class reference

Subclass of CIM_PowerManagementService

A class derived from Service that describes power management functionality, hosted on a System. Whether this service might be used to affect the power state of a particular element is defined by the CIM_ServiceAvailable ToElement association.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 RequestPowerStateChange (uint16 PowerState, CIM_ManagedElement ManagedElement, datetime Time, CIM_ConcreteJob Job, datetime TimeoutPeriod)

RequestPowerStateChange defines the desired power state of the managed element, and when the element should be put into that state. The RequestPowerStateChange method has five input parameters and a result code.

		PowerState indicates the desired power state.

		ManagedElement indicates the element whose state is set. This element SHOULD be associated to the service using the AssociatedPowerManagementService relationship.

		Time indicates when the power state should be set, either as a regular date-time value or as an interval value (where the interval begins when the method invocation is received).

		Job is a reference to the job if started.

		TimeOutPeriod indicates the maximum amount of time a client is expects the transition to take.

See CIM_PowerStateCapabilities for descriptions of PowerState parameter enumerations.

		ValueMap
		Values

		0
		Completed with No Error

		1
		Not Supported

		2
		Unknown or Unspecified Error

		3
		Cannot complete within Timeout Period

		4
		Failed

		5
		Invalid Parameter

		6
		In Use

		
		DMTF Reserved

		4096
		Method Parameters Checked - Job Started

		4097
		Invalid State Transition

		4098
		Use of Timeout Parameter Not Supported

		4099
		Busy

		4100..32767
		Method Reserved

		32768..65535
		Vendor Specific

Parameters

		IN uint16 PowerState

		The power state for ManagedElement.

		ValueMap
		Values

		2
		Power On

		3
		Sleep - Light

		4
		Sleep - Deep

		5
		Power Cycle (Off Soft)

		6
		Power Off - Hard

		7
		Hibernate

		8
		Power Off - Soft

		9
		Power Cycle (Off Hard)

		10
		Master Bus Reset

		11
		Diagnostic Interrupt (NMI)

		12
		Power Off - Soft Graceful

		13
		Power Off - Hard Graceful

		14
		Master Bus Reset Graceful

		15
		Power Cycle (Off - Soft Graceful)

		16
		Power Cycle (Off - Hard Graceful)

		IN CIM_ManagedElement ManagedElement

		ManagedElement indicates the element whose state is set.

		IN datetime Time

		Time parameter is not currently supported.

		OUT CIM_ConcreteJob Job

		Reference to the job.

		IN datetime TimeoutPeriod

		TimeoutPeriod is not currently supported.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

SetPowerState

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_AccountManagementService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_AccountManagementService

Class reference

Subclass of CIM_SecurityService

LMI_AccountManagementService creates, manages, and if necessary destroys Linux Accounts on behalf of other SecurityServices.

Key properties

Name

SystemName

SystemCreationClassName

CreationClassName

Local properties

None

Local methods

uint32 CreateAccount (CIM_ComputerSystem System, string Name, string GECOS, string HomeDirectory, boolean DontCreateHome, string Shell, uint32 UID, uint32 GID, boolean SystemAccount, string Password, boolean DontCreateGroup, boolean PasswordIsPlain, CIM_Account Account, CIM_Identity[] Identities)

Create a new account on the system

		ValueMap
		Values

		0
		Operation completed successfully

		1
		Operation unsupported

		2
		Failed

		
		DMTF Reserved

		4096
		Unable to set password, user created

		4097
		Unable to create home directory, user created and password set

Parameters

		IN CIM_ComputerSystem System

		The scoping ComputerSystem in which to create the Account.

		IN string Name

		Desired user login name for the account to be created.

		IN string GECOS

		GECOS information for new user

		IN string HomeDirectory

		Set home directory for the user.

		IN boolean DontCreateHome

		Wheter to create home directory.

		IN string Shell

		Default shell for new user

		IN uint32 UID

		Pick a specific user id for new user

		IN uint32 GID

		Pick a specific group id for new user

		IN boolean SystemAccount

		True for creating system account

		IN string Password

		Password for a new user. By default has to be encrypted, but can be plaintext if PasswordIsPlain is set to true

		IN boolean DontCreateGroup

		Whether to create group

		IN boolean PasswordIsPlain

		If set to true, the Password is treated as plain text, otherwise has to be ecnrypted

		OUT CIM_Account Account

		Reference to the instance of CIM_Account created when the method returns a value of 0.

		OUT CIM_Identity[] Identities

		Reference to the instances of CIM_Identity created when the method returns a value of 0. NULL if no such instances are created.

uint32 CreateGroup (CIM_ComputerSystem System, string Name, uint32 GID, boolean SystemAccount, CIM_Group Group, CIM_Identity[] Identities)

Create a new group on the system

		ValueMap
		Values

		0
		Operation completed successfully

		1
		Operation unsupported

		2
		Failed

		
		DMTF Reserved

Parameters

		IN CIM_ComputerSystem System

		The scoping ComputerSystem in which to create the Account.

		IN string Name

		Desired group name for the account to be created.

		IN uint32 GID

		Pick a specific group id for new user

		IN boolean SystemAccount

		True for creating system account

		OUT CIM_Group Group

		Reference to the instance of CIM_Group created when the method returns a value of 0.

		OUT CIM_Identity[] Identities

		Reference to the instances of CIM_Identity created when the method returns a value of 0. NULL if no such instances are created.

Inherited properties

uint16 RequestedState

uint16 HealthState

string[] StatusDescriptions

string InstanceID

uint16 CommunicationStatus

string SystemName

string LoSID

string Status

string ElementName

string Description

uint16 TransitioningToState

boolean Started

datetime TimeOfLastStateChange

uint16 PrimaryStatus

uint16 DetailedStatus

string Name

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

string LoSOrgID

string PrimaryOwnerContact

string Caption

string StartMode

uint16[] AvailableRequestedStates

uint64 Generation

string OtherEnabledState

uint16[] OperationalStatus

uint16 OperatingStatus

string SystemCreationClassName

string CreationClassName

string PrimaryOwnerName

Inherited methods

RequestStateChange

StopService

ChangeAffectedElementsAssignedSequence

StartService

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_HostedIPConfigurationService.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_HostedIPConfigurationService

Class reference

Subclass of CIM_HostedService

LMI_HostedIPConfigurationService is an association between a LMI_IPConfigurationService and the ComputerSystem on which the functionality is located.

Key properties

Dependent

Antecedent

Local properties

LMI_IPConfigurationService Dependent

The Service IPConfigurationService on the System.

CIM_ComputerSystem Antecedent

The hosting System.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_EthernetPort.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_EthernetPort

Class reference

Subclass of CIM_NetworkPort

Capabilities and management of an EthernetPort.

Key properties

SystemName

DeviceID

CreationClassName

SystemCreationClassName

Local properties

uint16[] Capabilities

Capabilities of the EthernetPort. For example, the Device might support AlertOnLan, WakeOnLan, Load Balancing, or FailOver. If failover or load balancing capabilities are listed, a SpareGroup (failover) or ExtraCapacityGroup (load balancing) should also be defined to completely describe the capability. LLDP indicates that this Ethernet Port is capable of supporting Link Layer Discovery Protocol (LLDP) communications. PoE indicates that this Ethernet Port is capable of supporting Power over Ethernet (PoE). EEE indicates that this Ethernet Port is capable of supporting Energy Efficient Ethernet (EEE). DCE indicates that this Ethernet Port is capable of supporting Data Center Ethernet. Data Center Ethernet requires support for Prioritiy-Based Flow Control (PFC), Enhanced Transmission Selection (ETS), and Data Center Bridging eXchange (DCBX) protocol. VDP indicates that this Ethernet Port is capable of supporting Virtual Station Interface (VSI) Discovery Protocol. S-Channel indicates that this Ethernet Port is capable of supporting S-Channel.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		AlertOnLan

		3
		WakeOnLan

		4
		FailOver

		5
		LoadBalancing

		6
		LLDP

		7
		PoE

		8
		EEE

		9
		DCE

		10
		VDP

		11
		S-Channel

		
		DMTF Reserved

uint16 PoEPowerEntityType

This property indicates the Power over Ethernet power entity type.

		ValueMap
		Values

		0
		None

		1
		Other

		2
		Power Sourcing Equipment

		3
		Powered Device

		
		DMTF Reserved

uint16 PVID

Each ethernet port on an ethernet switch has a VLAN ID that is called Port VLAN ID (PVID). The PVID will be applied to the frames which are untagged or tagged with priority (vid = 0). This property indicates the PVID of the Ethernet port.

uint32 MaxDataSize

The maximum size of the INFO (non-MAC) field that will be received or transmitted.

uint16[] EnabledCapabilities

Specifies which capabilities are enabled from the list of all supported ones, which are defined in the Capabilities array. For details on each capability, see the description of each capability in the description of property Capabilities.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		2
		AlertOnLan

		3
		WakeOnLan

		4
		FailOver

		5
		LoadBalancing

		6
		LLDP

		7
		PoE

		8
		EEE

		9
		DCE

		10
		VDP

		11
		S-Channel

		
		DMTF Reserved

string[] NetworkAddresses

Ethernet/802.3 MAC addresses formatted as twelve hexadecimal digits (for example, “010203040506”), with each pair representing one of the six octets of the MAC address in “canonical” bit order. (Therefore, the Group address bit is found in the low order bit of the first character of the string.)

string[] CapabilityDescriptions

An array of free-form strings that provides more detailed explanations for any of the EthernetPort features that are indicated in the Capabilities array. Note, each entry of this array is related to the entry in the Capabilities array that is located at the same index.

string[] PortDiscriminator

A string array used to discriminate the supported context of this EthernetPort. The following strings are currently defined:

‘SNIA:None’ - indicates this EthernetPort does not provide support for any specific function.

‘SNIA:iSCSI’ - indicates this EthernetPort provides support for iSCSI.

‘SNIA:FCoE’ - indicates that this EthernetPort provides support for FC over Ethernet - FCoE.

uint16 PortType

The specific mode that is currently enabled for the Port. When set to 1 (“Other”), the related property OtherPortType contains a string description of the type of port.

		ValueMap
		Values

		0
		Unknown

		1
		Other

		50
		10BaseT

		51
		10-100BaseT

		52
		100BaseT

		53
		1000BaseT

		54
		2500BaseT

		55
		10GBaseT

		56
		10GBase-CX4

		57
		1000Base-KX

		58
		10GBase-KX4

		59
		10GBase-KR

		60
		1000-10GBase-KX

		61
		1000Base-KX10GBase-KX4KR

		62
		10-100-1000BaseT

		63
		100-1000-10GBaseT

		100
		100Base-FX

		101
		100Base-SX

		102
		1000Base-SX

		103
		1000Base-LX

		104
		1000Base-CX

		105
		10GBase-SR

		106
		10GBase-SW

		107
		10GBase-LX4

		108
		10GBase-LR

		109
		10GBase-LW

		110
		10GBase-ER

		111
		10GBase-EW

		112
		10GBase-LRM

		200
		40GBase-KR4

		201
		40GBase-CR4

		202
		40GBase-SR4

		203
		40GBase-FR

		204
		40GBase-LR4

		300
		100GBase-CR10

		301
		100GBase-SR10

		302
		100GBase-LR4

		303
		100GBase-ER4

		304
		100GBase-KR4

		305
		100GBase-CR4

		306
		100GBase-KP4

		16000..65535
		Vendor Reserved

string[] OtherEnabledCapabilities

An array of free-form strings that provides more detailed explanations for any of the enabled capabilities that are specified as ‘Other’.

Local methods

None

Inherited properties

uint16 RequestedState

uint16 HealthState

uint64 MaxSpeed

string OtherNetworkPortType

boolean PowerManagementSupported

string[] OtherIdentifyingInfo

uint16 CommunicationStatus

string SystemName

datetime TimeOfLastStateChange

uint64 SupportedMaximumTransmissionUnit

string Name

string Status

string ElementName

string[] StatusDescriptions

string Description

uint16 TransitioningToState

uint16 LinkTechnology

string[] IdentifyingDescriptions

uint64 Generation

boolean ErrorCleared

uint16 PrimaryStatus

string InstanceID

uint16 PortNumber

string DeviceID

uint16 OperatingStatus

uint16 LocationIndicator

uint16 DetailedStatus

uint64 PowerOnHours

datetime InstallDate

uint16 EnabledDefault

uint16 EnabledState

uint16[] AdditionalAvailability

string Caption

uint16 StatusInfo

uint16[] PowerManagementCapabilities

uint16[] AvailableRequestedStates

string PermanentAddress

boolean FullDuplex

uint64 MaxQuiesceTime

uint64 TotalPowerOnHours

string ErrorDescription

uint16 UsageRestriction

string OtherPortType

uint64 RequestedSpeed

string OtherEnabledState

uint16[] OperationalStatus

uint32 LastErrorCode

uint64 ActiveMaximumTransmissionUnit

boolean AutoSense

string CreationClassName

string OtherLinkTechnology

uint64 Speed

uint16 Availability

string SystemCreationClassName

Inherited methods

Reset

RequestStateChange

SetPowerState

QuiesceDevice

EnableDevice

OnlineDevice

SaveProperties

RestoreProperties

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/LMI_SSSDResponder.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

LMI_SSSDResponder

Class reference

Subclass of LMI_SSSDComponent

SSSD responder. An SSSD component that implements one of the supported services and provides data to clients.

Key properties

Name

Local properties

None

Local methods

None

Inherited properties

string ElementName

string Name

string InstanceID

boolean IsEnabled

uint64 Generation

string Caption

uint16 DebugLevel

uint16 Type

string Description

Inherited methods

SetDebugLevelPermanently

Enable

Disable

SetDebugLevelTemporarily

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_HostedCollection.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_HostedCollection

Class reference

Subclass of CIM_HostedDependency

HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a Collection that has meaning only in the context of a System, a Collection whose elements are restricted by the definition of the System, or both of these types of Collections.

Key properties

Dependent

Antecedent

Local properties

CIM_SystemSpecificCollection Dependent

The collection defined in the context of a system.

CIM_System Antecedent

The scoping system.

Local methods

None

Inherited properties

None

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_MethodResult.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_MethodResult

Class reference

Subclass of CIM_ManagedElement

Jobs are sometimes used to represent extrinsic method invocations that execute for times longer than the length of time is reasonable to require a client to wait. The method executing continues beyond the method return to the client. The class provides the result of the execution of a Job that was itself started by the side-effect of this extrinsic method invocation.

The indication instances embedded an instance of this class shall be the same indications delivered to listening clients or recorded, all or in part, to logs. Basically, this approach is a corollary to the functionality provided by an instance of ListenerDestinationLog (as defined in the Interop Model). The latter provides a comprehensive, persistent mechanism for recording Job results, but is also more resource-intensive and requires supporting logging functionality. Both the extra resources and logging may not be available in all environments (for example, embedded environments). Therefore, this instance-based approach is also provided.

The MethodResult instances shall not exist after the associated ConcreteJob is deleted.

Key properties

InstanceID

Local properties

string InstanceID

Within the scope of the instantiating Namespace, InstanceID opaquely and uniquely identifies an instance of this class. In order to ensure uniqueness within the NameSpace, the value of InstanceID SHOULD be constructed using the following ‘preferred’ algorithm:

<OrgID>:<LocalID>

Where <OrgID> and <LocalID> are separated by a colon ‘:’, and where <OrgID> MUST include a copyrighted, trademarked or otherwise unique name that is owned by the business entity creating/defining the InstanceID, or is a registered ID that is assigned to the business entity by a recognized global authority (This is similar to the <Schema Name>_<Class Name> structure of Schema class names.) In addition, to ensure uniqueness <OrgID> MUST NOT contain a colon (‘:’). When using this algorithm, the first colon to appear in InstanceID MUST appear between <OrgID> and <LocalID>.

<LocalID> is chosen by the business entity and SHOULD not be re-used to identify different underlying (real-world) elements. If the above ‘preferred’ algorithm is not used, the defining entity MUST assure that the resultant InstanceID is not re-used across any InstanceIDs produced by this or other providers for this instance’s NameSpace.

For DMTF defined instances, the ‘preferred’ algorithm MUST be used with the <OrgID> set to ‘CIM’.

instance PostCallIndication

This property contains a CIM_InstMethodCall Indication that describes the post-execution values of the extrinisic method invocation.

instance PreCallIndication

This property contains a CIM_InstMethodCall Indication that describes the pre-execution values of the extrinisic method invocation.

Local methods

None

Inherited properties

string ElementName

string Description

string Caption

uint64 Generation

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

mof/CIM_ExtendedStaticIPAssignmentSettingData.html

 Navigation

 		
 index

 		
 modules |

 		OpenLMI providers PROVIDERSVER documentation »

CIM_ExtendedStaticIPAssignmentSettingData

Class reference

Subclass of CIM_IPAssignmentSettingData

CIM_ExtendedStaticIPAssignmentSettingData defines a IP configuration which could be statically assigned to a Network Interface / LANEndpoint.

Key properties

InstanceID

Local properties

string[] SubnetMasks

The mask for the IPv4 address.

uint16[] IPv6SubnetPrefixLengths

IPv6SubnetPrefixLengths is used to identify the prefix length of the IPv6Addresses

string[] IPAddresses

IP addresses to be statically assigned. Either IPv4 address array or IPv6 address array shall be represented by this property. If it is IPv6 array, then for each element, there will be a corresponding element in IPv6SubnetPrefixLengths array. If it is IPv4 array, then for each element, there will be a corresponding element in SubnetMasks array.

string[] GatewayAddresses

IP Addresses for the Gateways

Local methods

None

Inherited properties

string SoOrgID

string ElementName

string OtherAddressSuffixOriginDescription

string OtherAddressPrefixOriginDescription

uint16 ChangeableType

uint16 ProtocolIFType

string InstanceID

string[] ComponentSetting

string Caption

uint16 AddressPrefixOrigin

string ConfigurationName

string SoID

uint64 Generation

uint16 AddressOrigin

uint16 AddressSuffixOrigin

string Description

Inherited methods

None

 © Copyright OpenLMI authors.
 Created using Sphinx 1.2.2.

_images/logicalfile.png
LMI_UnixFile

[String FSCreationClasshame |
string CSName

string CSCreationClasshame
string CreationClassName
string FSName

string LFName

LMI_Fileldentity

CIM_ManagedElement REF SameElement
CIM_ManagedElement REF Systemelement

1 LMI_UnixDeviceFile

CIM_LogicalFile

CIM_ComputerSystem

LMI_DirectoryContainsFile

String CreationClassName

CIM_Directory REF GroupComponent
CIM LogicalFile REF PartComponent

string Name

LMI_RootDirectory

CIM_ManagedElement REF GroupComponent
LM UnixDirectory REF PartComponent

=1 LM_unixDirectory

String FSCreationClassName
+ |string Name

string CsName LMI_Unixsocket
string CsCreationclasshame -

string CreationClassName
string FSName

LMI_DataFile

LMI_FIFOPipeFile LMI_SymbolicLink

